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1 The ODE governing the combined dose-effect curve of the Hand model

1.1 Derivation of the ODE

According to the Hand model, the dose-effect fAB,λ for the combined agent Cλ satisfies the ODE

f ′AB,λ(f−1AB,λ(x)) = λ · f ′A(f−1A (x)) + (1− λ) · f ′B(f−1B (x)). (1)

This ODE for the combined dose-effect curve fAB,λ at fixed dose ratio λ can be derived using a Taylor expansion up
to first order.

Denote by x1 = fA( da+ f−1A (x0)) and x2 = fB( db+ f−1B (x1)) the intermediate and final effect level after applying
da and db, respectively. Then the gains in effect due to A, B and their combination are

xA = x1 − x0 = fA( da+ f−1A (x0))− fA(f−1A (x0))

xB = x2 − x1 = fB( db+ f−1B (x1))− fB(f−1B (x1))

xAB = x2 − x0 = fAB,λ( dc+ c)− fAB,λ(c).

By expanding we obtain

fAB,λ( dc+ c)− fAB,λ(c) =(x1 − x0) + (x2 − x1)

=
(
fA( da+ f−1A (x0))− fA(f−1A (x0))

)
+
(
fB( db+ f−1B (x1))− fB(f−1B (x1))

)
= da · f ′A(f−1A (x0)) + db · f ′B(f−1B (x1)) + o( dc).
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Dividing by dc yields

fAB,λ(c+ dc)− fAB,λ(c)

dc
=

da

dc
f ′A(f−1A (x0)) +

db

dc
f ′B(f−1B (x1)) + o(1)

= λf ′A(f−1A (x0)) + (1− λ)f ′B(f−1B (x1)) + o(1).

If we let tend dc −→ 0, also x1 → x0, the difference quotient approaches

lim
dc→0

fAB,λ(c+ dc)− fAB,λ(c)

dc
= f ′AB,λ(c) = f ′AB,λ(f−1AB,λ(x0))

and we get the above ODE.

1.2 Representations of the ODE

For completeness, and as they are referred to in the Supplementary Information, we mention here again the alternative
representations of the ODE. This is an exact copy of the main article. Using the inverse derivative formula, we express
the differential equation (1) as

1

f−1AB,λ
′
(x)

=
λ

f−1A
′
(x)

+
1− λ
f−1B

′
(x)

, (2)

or in integral representation

f−1AB,λ(x) =

∫ x

0

(
λ

f−1A
′
(y)

+
1− λ
f−1B

′
(y)

)−1
dy. (3)

In terms of sensitivities it is

sAB,λ(x) = λsA(x) + (1− λ)sB(x). (4)

2 Effect-sensitivity curves

2.1 Derivation of the effect-sensitivity formula for Hill curves

The dose-effect behavior is often modeled by Hill curves. For Hill curves of the form

fA(a) = Emin,A +
Emax,A − Emin,A

1 +
(

EC50,A

a

)nA = Emax,A −
(Emax,A − Emin,A)

(
EC50,A

a

)nA
1 +

(
EC50,A

a

)nA ,

the derivative is

f ′A(a) =
nA

EC50,A · (Emax,A − Emin,A)
(fA(a)− Emin,A)

1− 1
nA (Emax,A − fA(a))

1+ 1
nA .

Thus, for the sensitivity we find

sA(x) = f ′A(f−1A (x)) =
nA

EC50,A · (Emax,A − Emin,A)
(x− Emin,A)

1− 1
nA (Emax,A − x)

1+ 1
nA . (5)

2.2 Conversion of dose-effect and effect-sensitivity curves

Starting with a strictly increasing, piecewise differentiable dose-effect function fA, its inverse exists and its sensitivity is
given by sA(x) = f ′A(f−1A (x)). For a given positive piecewise continuous effect-sensitivity function sA, the inverse f−1A
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is obtained by

f−1A (x) = f−1A (Emin,A) +

∫ x

Emin,A

f−1A
′
(y) dy

= f−1A (Emin,A) +

∫ x

Emin,A

1

f ′A(f−1A (y))
dy

= f−1A (Emin,A) +

∫ x

Emin,A

1

sA(y)
dy.

Since by this calculation f−1A is a strictly increasing function, it is injective and its inverse fA exists. Alternatively, fA
is obtained as the unique strictly increasing solution of the autonomous ODE d

dax(a) = sA(x(a)), x(0) = Emin,A.
In order for the above calculation to be valid, we must assume that if limx→Emin,A

sA(x) = 0, the integral

∫ Emin,A+ε

Emin,A

1

sA(y)
dy (6)

is finite. For the class of sA as given by the above formula for Hill curves, this assumption is satisfied, because 1
sA

behaves
like (x−Emin,A)−γ near Emin,A with γ = 1− 1

nA
∈ (0, 1) and thus integrates to a finite value. Note, that in the limit case

nA =∞,EC50,A =∞, such that n
EC50,A

= cA, sA behaves like the logistic equation sA(x) = cA (x− Emin,A) (Emax,A − x)

and the solution x(a) of ẋ = sA(x) approaches Emin,A only in the limit a→ −∞, not in a finite amount of dose.
Numerically the integral (6) or equivalently the ODE ẋ = sA(x), x(0) = Emin,A must be treated with care whenever

sA(Emin,A) = 0 because it allows the unfavored constant solution x ≡ Emin,A as well as solutions that are initially
constant and exit Emin,A at an arbitrary dose value.

In the numerical implementation we solved this problem by setting the ODE’s initial value to x0 = ε = 1e-7. Details
can be found in Sections 6 and 7.

3 Model properties

3.1 Proof of congruency of the Hand and the Loewe model assuming constant potency
ratio

Let α be the constant potency ratio, i.e., for any effect level x, f−1A (x) = αf−1B (x), it holds for the derivatives:

f−1A
′
(x) = αf−1B

′
(x).

Then by (2) it follows for the combined curve fAB,λ of child agent Cλ

1

f−1AB,λ
′
(x)

= (λ+ α(1− λ))
1

f−1A
′
(x)

or equivalently f−1A
′
(x) = (λ+ α(1− λ)) f−1AB,λ

′
(x).

Provided that f−1A (0) = 0 = f−1AB,λ(0), we get the relation

f−1A = (λ+ α(1− λ)) f−1AB,λ. (7)

Consequently fAB,λ, fA and fB are pairwise in constant potency relation. Let x be a given effect level. Now, we prove
that the dose pair (a, b) lies on the straight line connecting (f−1A (x), 0) and (0, f−1B (x)), if and only if fAB,λ(a+ b) = x
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for λ = a
a+b :

a

f−1A (x)
+

b

f−1B (x)
= 1

⇔(a+ b)

(
a

a+ b
+

αb

(a+ b)

)
= f−1A (x)

⇔(a+ b) (λ+ α(1− λ)) = f−1A (x)

⇔(a+ b) = f−1AB,λ(x).

3.2 Proof of the sham combination principle for the Hand, the Loewe and the Tallarida
model

If A = B, then A and B have constant potency ratio α = 1. In this case the Loewe, the Hand and the Tallarida models
coincide, i.e.

EL(a, b) = ET,A→B(a, b) = ET,B→A(a, b) = EH(a, b) = fA(a+ b).

Then
fAA,λ(c) = E(λc, (1− λ)c) = fA(c).

3.3 Disproof of the sham combination principle for the Bliss and the HSA model

The sham combination principle for the Bliss model is addressed in (Foucquier and Guedj, 2015). The HSA model
predicts

fAA,λ(c) = max{fA(λc), fA((1− λ)c)} < fA(c)

if λ ∈ (0, 1) and fA is strictly increasing.

3.4 Proof of the commutativity for the Hand, the Loewe, the Bliss and the HSA model

• The Hand model is commutative in A and B. fAB,λ = fBA,1−λ because both satisfy the same ODE. Hence
switching the roles of A and B along with their weights does not alter the combined dose-effect curve.

• The formulas for effects EBliss and EHSA are symmetric in A and B.

• The Loewe isobole equation is symmetric in A and B. The isoboles determine the effect surface uniquely.

3.5 Disproof of the commutativity for the Tallarida model

The proof for the asymmetry in the Tallarida model is given in (Lorenzo and Sánchez-Marin, 2006).

3.6 Proof of the associative property for the Loewe and the Hand model

• The Loewe model: In terms of the combined curve fAB,λ, we write the Loewe isobole equation as

λf−1AB,λ(x)

f−1A (x)
+

(1− λ)f−1AB,λ(x)

f−1B (x)
= 1 or equivalently f−1AB,λ(x) =

(
λ

f−1A (x)
+

(1− λ)

f−1B (x)

)−1
.
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Using analogous equations for fAB,µ and fCλCµ,ν , we can calculate

f−1CλCµ,ν(x) =

(
ν

f−1AB,λ(x)
+

(1− ν)

f−1AB,µ(x)

)−1

=

(
νλ+ (1− ν)µ

f−1A (x)
+
ν(1− λ) + (1− ν)(1− µ)

f−1B (x)

)−1
= f−1AB,νλ+(1−ν)µ(x),

consequently fCλCµ,ν = fAB,νλ+(1−ν)µ.

• The Hand model: The combined agents Cλ and Cµ satisfy (2)

1

f−1Cλ
′
(x)

=
λ

f−1A
′
(x)

+
1− λ
f−1B

′
(x)

,
1

f−1Cµ
′
(x)

=
µ

f−1A
′
(x)

+
1− µ
f−1B

′
(x)

.

For arbitrary ν ∈ [0, 1], the grand child agent satisfies

1

f−1CλCµ,ν
′
(x)

=
ν

f−1Cλ
′
(x)

+
1− ν
f−1Cµ

′
(x)

=
νλ+ (1− ν)µ

f−1A
′
(x)

+
1− (νλ+ (1− ν)µ)

f−1B
′
(x)

=
1

f−1AB,νλ+(1−ν)µ
′
(x)

provided f−1CλCµ,ν(0) = 0 = f−1AB,νλ+(1−ν)µ(0) the grand child agent formed of the child agents Cλ and Cµ can
indeed be formed by the parent agents A and B at appropriate ratio νλ+ (1− ν)µ.

3.7 Disproof of the associativity property for the Tallarida, the Bliss and the HSA model

• The Tallarida model does not satisfy the associativity property. By the choice λ = 0, µ = 1, the associativity
property implies commutativity, which the Tallarida model violates.

• For the Bliss model, the case λ = µ = ν = 1
2 , A = B shows that the associative property is violated because

2fA (c)− fA (c)
2 6= fA (2c)− 1

2
fA (2c)

2
.

• The HSA model is characterized by isoboles that form a rectangle with the dose axes. If the newly allocated
coordinate axes are bent, the isobole will be reshaped to an angle of more than 90◦. The characteristic property is
then lost. Moreover, the isobole suggested by applying the HSA model on Cλ and Cµ encloses the original isobole,
resulting in a smaller prediction value. This geometric interpretation of the associative property is displayed in
the formal definition as well: From

fAB,λ(c) = max{fA(λc), fB((1− λ)c)}}
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we conclude that

fCλCµ,ν(c) = max{fAB,λ(νc), fAB,µ((1− ν)c)}

= max{fA(λνc), fB((1− λ)νc), fA((1− ν)µc), fB((1− ν)(1− µ)c)}

< max{fA((νλ+ (1− ν)µ)c), fB((ν(1− λ) + (1− ν)(1− µ))c)}

= fAB,νλ+(1−ν)µ(c).

4 Proof of the isoboles’ convexity in the Hand model

The isoboles obtained from the Hand model are convex. They are strictly convex if and only if fA and fB exhibit a
varying potency ratio.

We prove this property of the Hand model using (i) the integral representation (3) and (ii) the associativity property:

• Fix an effect level x, which is in the target domain of fA and of fB . Then for any λ ∈ (0, 1), it holds with
c = f−1AB,λ(x), a = λc, b = (1− λ)c, that

a

f−1A (x)
+

b

f−1B (x)
≤ 1, (8)

i.e., the pair (a, b) predicted by the Hand model to generate EH(a, b) = x lies below the Loewe straight isobole.

• To show convexity, apply the same argument with two child agents Cλ, Cµ instead of A,B and corresponding
points

P1 = (λc1, (1− λ)c1), P2 = (µc2, (1− µ)c2)

on the isobole at level x. By the associativity property, we can conclude that for any σ ∈ [λ, µ] the point
(σc, (1− σ)c) on the Hand isobole at effect level x lies below the line segment through P1 and P2, completing the
proof of the convexity property.

Now that the plan was established we carry out the steps.

• We proceed by first proving (8). For readability set Ã = f−1A (x), B̃ = f−1B (x). Factoring out c, and multiplying by
ABλ−1(1− λ)−1, (8) is equivalent to

c

(
Ã

λ
+

B̃

1− λ

)
≤

(
Ã

λ

)(
B̃

1− λ

)
. (9)

Integrating the rates f−1
′

AB,λ, f
−1′
A , f−1

′

B , we get the following representations

c =

∫ x

0

f−1
′

AB,λ(y)dy,
Ã

λ
=

∫ x

0

f−1
′

A (y)

λ
dy,

B̃

1− λ
=

∫ x

0

f−1
′

B (y)

1− λ
dy. (10)

Define the second and third integrand as hA(y) and hB(y), respectively. Using the integral representation (3) of
the ODE and the identity (z−1 + w−1)−1 = zw

z+w , which holds for any two positive real numbers:

c =

∫ x

0

(
λ

f−1A
′
(y)

+
1− λ
f−1B

′
(y)

)−1
dy =

∫ x

0

hA(y)hB(y)

hA(y) + hB(y)
dy. (11)

Substituting (10) and (11), (9) is equivalent to proving:∫ x

0

hA(y)hB(y)

hA(y) + hB(y)
dy ·

∫ x

0

hA(y) + hB(y)dy ≤
∫ x

0

hA(y)dy

∫ x

0

hB(y)dy.
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In order to establish this integral inequality, we use Cauchy-Schwarz

〈f, g〉2 − ‖f‖2 ‖g‖2 ≤ 0 (12)

for the scalar product

〈f, g〉 :=

∫ x

0

f(y)g(y)dy

where we choose f = hA√
hA+hB

, g =
√
hA + hB . For readability we omit the integral bounds 0, x and the integration

variable y when calculating∫
hAhB
hA + hB

∫
(hA + hB) =

∫
hA((hA + hB)− hA)

hA + hB

∫
(hA + hB)

=

∫
hA

(∫
hA +

∫
hB

)
−
∫

h2A
hA + hB

·
∫

(hA + hB)

=

∫
hA

∫
hB +

(∫
hA

)2

−
∫ (

hA√
hA + hB

)2 ∫ (√
hA + hB

)2
≤
∫
hA

∫
hB .

Furthermore, equality holds in (12) if and only if f = γg for some γ 6= 0. For the above f and g, this is equivalent
to saying

(1− γ)hA = γhB

or by plugging in the definitions of hA, hB

f−1
′

A

f−1
′

B

=
λγ

(1− λ)(1− γ)
,

which means that fA and fB exhibit a constant potency ratio.

• It remains to prove that (8) indeed assures the convexity of the isobole. Let any three points P1 = (a1, b1), P2 =

(a2, b2) and P3 = (a3, b3) lie on the isobole. Rewrite ai = λici, bi = (1− λi)ci for λi = ai
ai+bi

and ci = λ−1i ai, upon
relabeling we may assume λ1 < λ3 < λ2. For convexity, it has to be proven that (a3, b3) lies inside the triangle
∆1 = ∆((0, 0)T , (a1, b1)T , (a2, b2)T ). The linear transformation

T = (λ1 − λ2)−1

(
1− λ2 −λ2
λ1 − 1 λ1

)

converts the ([a], [b])-plane into a ([c1], [c2])-plane, with compound drugs

[ci] = λi[a] + (1− λi)[b].

The assertion is then equivalent to (a′3, b
′
3) := T (a3, b3) lying in ∆2 = ∆((0, 0)T , (c1, 0)T , (0, c2)T ) = T∆1. The

dose pair (a′3, b
′
3) expresses the quantities of the drug compounds C1, C2 and has a ratio of

ν =
a′3

a′3 + b′3
=

a3 − λ2(a3 + b3)

(λ1 − λ2)(a3 + b3)
=
λ3c3 − λ2c3
(λ1 − λ2)c3

=
λ2 − λ3
λ2 − λ1

.

Using the associative property of the Hand model, we can apply the above derivation by replacing fA = fC1
, fB =

fC2
, fAB,λ = fC1C2,ν and get

a′3
c1

+
b′3
c2
≤ 1,
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which establishes that (a′3, b
′
3) lies in ∆2, and thus (a3, b3) lies in ∆1. By this final argument we conclude convexity.

5 Derivation of the Loewe limit isobole

Let A and B be a partial and a full agent, i.e. Emax,A < Emax,B . Define b∗ := f−1B (Emax,A). Then the Loewe model
assigns an effect value to all dose pairs (a, b) in the domain D = {(a, b)|b < b∗} and EL(a, b) < Emax,A.

Proof: Take an arbitrary (a0, b0) ∈ D. Define the function ϕ : [b0, b
∗] → R, ϕ(b) = fA(ab) − fB(b), where ab is the

unique value such that (ab, 0), (a0, b0) and (0, b) lie on one line. For b0: ϕ(b0) = Emax,A − fB(b0).
Then ϕ is a continuous function and ϕ(b0) > 0, ϕ(b∗) < 0. Hence for some b ∈ (b0, b

∗) we obtain

fA(ab) = fB(b) =: x

so (a0, b0) lies on the isobole at effect level x. Since fB is increasing x = fB(b) < fB(b∗) = Emax,A.
On the other hand, all isoboles at effect levels 0 < x < Emax,A lie in the domain D. The isoboles at effect levels

0 < x < Emax,A cover the domain D. By continuity of EL the limit isobole at the effect level Emax,A is forced to be the
boundary of the set D, which is the horizontal line {(a, b)|b = b∗}.

6 Numerical implementation of the Hand model

The analysis of the experimental data from (O’Neil et al., 2016) was performed in MATLAB 2017a. The code can be
found on GitHub: https://github.com/ICB-DCM/NullModels

For each cell line the coefficients of the Hill curve

fA(a) = Emin,A +
Emax,A − Emin,A

1 +
(

EC50,A

a

)nA
of the dose-effect curves of all drugs are fitted. We used multi-start optimization with starting values coming from
a Latin hypercube and MATLAB’s lsqnonlin for the least squares fit. The BIC was used to choose between a zero
response-model and the Hill curve.

The different null models were implemented in MATLAB. The equation

a

f−1A (x)
+

b

f−1B (x)
= 1, (13)

which defines the reference effect for the Loewe model, was solved by bisection. If the dose pair (a, b) did not lie
in the set {(a, b)|0 ≤ a < f−1A (Emax,B), 0 ≤ b < f−1B (Emax,A)}, in which (13) is solvable, we extended the Loewe
by EL(a, b) = max{fA(a), fB(b)} = EHSA(a, b). This was done since the (axis parallel) HSA isobole can be seen as
continuous extension of the Loewe isobole (see Section 5).

The combined dose-effect curve fAB of the Hand model was computed by solving the ODE (4):

d

dc
x(c) = sAB,λ(x(c)) = λsA(x(c)) + (1− λ)sB(x(c))

The initial condition was set to ε = 1e-7, a value slightly above the ODE solvers absolute error tolerance. The MATLAB
solver ode15s was used with the settings AbsTol = 1e-8, RelTol = 1e-5 and the non-negative option.
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7 Estimate on the Error

Numerically, the ODE (1) must not be solved starting in x(0) = Emin,A, since the simulation would result in the
unfavored solution which is constant x ≡ Emin,A, unless the Hill coefficient is 1. If the ODE is simulated starting in
x(0) = Emin,A+ε, the error for the dose can be approximated. Assuming without loss of generality that Emin,A = 0, we
obtain

f−1AB,λ(ε) =

∫ ε

0

1

λsA(x) + (1− λ)sB(x)
dx

≤
∫ ε

0

1

min{sA(x), sB(x)}
dx

≤
∫ ε

0

1

sA(x)
+

1

sB(x)
dx

= f−1A (ε) + f−1B (ε).

For λ ∈ (.25, .75) we even get a better bound.

f−1AB,λ(ε) =

∫ ε

0

1

λsA(x) + (1− λ)sB(x)
dx

=

∫ ε

0

1
λsA(x) ·

1
(1−λ)sB

1
λsA(x) + 1

(1−λ)sB(x)

dx

≤ 1

4

(∫ ε

0

1

λsA(x)
+

1

(1− λ)sB(x)

)
dx

=
1

4

(
f−1A (ε)

λ
+
f−1B (ε)

1− λ

)
≤ min{λ, 1− λ}−1

4

(
f−1A (ε) + f−1B (ε)

)
,

where we used the inequality of the geometric and arithmetic mean to estimate the integral.
In any case, the magnitude of the error f−1AB,λ(ε) that results from starting the simulation at x = ε is of the same

order as max{f−1A (ε), f−1B (ε)}. For a Hill curve fA and ε small, we have

f−1A (ε) ≈ ε
1
n · EC50

E
1
n

max,A

.

For example, if ε = 1e-7, Emax,A = 1e0, n = 2,EC50 =1e-1, then f−1A (ε) ≈ 10−4.5.
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