Supplemental information

A GlastCreER^{T2}; GFP; Tfam^{wt/wt} and GlastCreER^{T2}; GFP; Tfam^{fl/fl}

Supplemental Figure 1: Confirmation of *Tfam* deletion in astrocytes

(A) Experimental paradigm used for (B). (B) Genotyping PCR of GFP-expressing astrocytes isolated by FACS from distinct brain regions of 10 months old $Tfam^{ctrl}$ and $Tfam^{cko}$ mice (3 animals per genotype). $Tfam^{ctrl}$ animals exclusively carried the $Tfam^{wt}$ band (404 bp); positive control (Tfam^{wt} lane) was DNA isolated from tail clips of $Tfam^{ctrl}$ mice. Recombination of the Tfam locus in astrocytes isolated from diverse brain regions of $Tfam^{cko}$ mice was indicated by $Tfam^{cko}$ band (330bp); $Tfam^{floxed}$ band (437bp); DNA of $Tfam^{cko}$ lane derived from tail clips of $Tfam^{cko}$ mice. OB = olfactory bulb, SVZ = subventricular zone, CB = cerebellum, HC = hippocampus, CTX = cortex. (C) Experimental scheme used in (D-E). (D) Confocal image of HTNCre transduced astrocytes derived from GFP; $Tfam^{fl/fl}$ animals; Immunohistochemistry against the GFP reporter (green) indicates recombined cells; Cytochrome C (CytC, white) labels mitochondria; recombined astrocytes (GFP⁺) lost expression of Tfam (red); non-recombined astrocytes (GFP⁻) expressed Tfam. (E) Genotyping PCR of astrocytes transduced

with different amounts of HTNCre or control solution. Increasing recombination efficiency of the *Tfam* locus occurred with increasing concentration of Cre protein. Band size: *Tfam*^{floxed} band = 437bp, *Tfam*^{cko} band = 330bp. Scale bar = $10\mu m$.

Supplemental Figure 2: *Tfam*-deficient astrocytes survive under physiological and injury conditions

(A-C) Survival of astrocytes in $Tfam^{ctrl}$ and $Tfam^{cko}$ mice was measured by counting recombined astrocytes (A) under physiological conditions 4 months post-recombination, (B) one year post-recombination; (C) upon PIT-induced injury 4 months post-recombination. (A) $n_{ctrl} = 3$ animals, $n_{cko} = 4$ animals; (B) $n_{ctrl} = 4$ animals, $n_{cko} = 4$ animals; (C) $n_{ctrl} = 5$ animals, $n_{cko} = 5$ animals. Data represented as mean \pm SEM; t-test (B, C) and Mann-Whitney test (A) were performed to determine significance.

Supplemental Figure 3: Cell death in the contralateral and PIT-lesioned cortex

(A-B) Confocal images of a coronal cortical section from $Tfam^{ctrl}$ and $Tfam^{cko}$ mice upon PIT; immunohistochemistry against Casp3 (red) to identify dying cells; nuclei stained with DAPI (blue). Contralateral hemisphere shown on the right; PIT lesioned hemisphere (left) with lesion core containing Casp3⁺ cells and damaged tissue. Very few cell undergo cell death in the contralateral hemisphere. (C) High magnification confocal image of perilesional area; immunostaining against Casp3⁺ in red (cell death marker; arrows); GFP (labeling recombined cells, green); NeuN⁺ (neuronal marker; white), and DAPI (nulcei; blue) showing a dying neuron (Casp3⁺/GFP⁻/NeuN⁺). (D-F) Confocal images and quantification of Casp3 immunostaining (red) of the contralateral hemispheres; GFP⁺ shows recombined cells (green); NeuN labels neurons (white); DAPI indicates cell nuclei. No difference in neuronal cell death was detected contralaterally between $Tfam^{ctrl}$ and $Tfam^{cko}$ mice (F). (D-F) n_{ctrl} = 5 animals, n_{cko} = 5 animals. Scale bars = 100µm (A-B), and = 20µm (C-E). Data represented as mean ± SEM; t-test was performed to determine significance.