
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Modeling the variation in speed of
sound between couplant and tissue
improves the spectral accuracy of
multispectral optoacoustic
tomography

Hong  Yang, Dominik  Jüstel, Jaya  Prakash, Vasilis
Ntziachristos

Hong  Yang, Dominik  Jüstel, Jaya  Prakash, Vasilis  Ntziachristos, "Modeling
the variation in speed of sound between couplant and tissue improves the
spectral accuracy of multispectral optoacoustic tomography," Proc. SPIE
10890, Label-free Biomedical Imaging and Sensing (LBIS) 2019, 1089027 (4
March 2019); doi: 10.1117/12.2506425

Event: SPIE BiOS, 2019, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 Mar 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

Modeling the variation in speed of sound between couplant and tissue 
improves the spectral accuracy of multispectral optoacoustic 

tomography 
Hong Yang1,2, Dominik Jüstel1,2, Jaya Prakash1,2, Vasilis Ntziachristos1,2,* 

 
1Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, Neuherberg, Germany. 
2Chair of Biological Imaging, Technical University of Munich, Munich, Germany 
 
Corresponding author: Vasilis Ntziachristos, Ph.D., Helmholtz Zentrum München, Ingolstädter 
Landstrasse 1, D-85764 Neuherberg, Germany. Tel: +49 89 3187 3852. Email: 
v.ntziachristos@tum.de  
 
 

ABSTRACT 
Even though the speed of sound (SoS) is non-homogeneous in biological tissue, most reconstruction algorithms for 
optoacoustic imaging neglect its variation. In addition, when heavy water is used as coupling medium to enable imaging 
of certain biological chromophores such as lipids and proteins, the SoS also differs significantly between couplant and 
tissue. 

While the assumption of uniform SoS is known to introduce visible deformations of features in single-wavelength 
optoacoustic images, the spectral error introduced by the assumption of uniform SoS is not fully understood. In this work, 
we provide an in-depth spectral analysis of multi-spectral optoacoustic imaging artifacts that result from the assumption 
of uniform SoS in situations where SoS changes substantially. 

We propose a dual-SoS model to incorporate the SoS variation between the couplant and the sample. Tissue-mimicking 
phantom experiments and in vivo measurements show that uniform SoS reconstruction causes spectral smearing, which 
dual-SoS modeling can largely eliminate. Due to this increased spectral accuracy, the method has the potential to 
improve clinical studies that rely on quantitative optoacoustic imaging of biomolecules like hemoglobin or lipids. 

Keywords: photoacoustic, multi-spectral optoacoustic imaging, image reconstruction, spectral smearing, handheld 
system. 

1. INTRODUCTION 
Optoacoustic (photoacoustic) tomography involves shining biological samples with light in the near-infrared (NIR) 
regime (700-1050 nm) and collecting the generated acoustic signals using tomographic detection geometry [1]. The 
acquired tomographic signals are reconstructed based on the time of flight of acoustic waves. The time of flight depends 
on the traversed distance and the Speed of Sound (SoS) distribution in the Field of View (FOV). During optoacoustic 
reconstruction, the imaging medium is normally assumed to be acoustically homogeneous and SoS to be therefore 
invariant, enabling the derivation of a closed-form solution to the acoustic wave equation [2]. However, this assumption 
leads to visible artifacts on the image when the variation of the SoS in the FOV is around or larger than 10% [3]. In most 
cases, 10% SoS variation can be easily met, such as the SoS variation between different tissue types or between couplant 
and sample, especially when heavy water is used as coupling medium [4]. For imaging biological chromophores like 
lipids and proteins [5], heavy water is essential in these cases since light absorption is much lower in heavy water than in 
water at wavelengths >900 nm [6]. For example, an optoacoustic imaging set-up with heavy water as coupling medium 
has successfully imaged fatty tumors and showed the potential of optoacoustic tomography in the diagnosis and 
evaluation of subcutaneous soft-tissue masses [5]. Heavy water is also needed as coupling medium when simultaneously 
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imaging lipid and hemoglobin while also determining oxygen saturation, which is required for many cardiovascular and 
oncological applications [7, 8].  

The reconstruction artifacts induced by uniform SoS model have attracted increasing attention in recent years. Prior work 
has shown that uniform SoS can introduce localization errors, reconstruct absorbers with inaccurate dimensions, and 
decrease the maximal resolution of the recovered image [6]. Other studies have described additional artifacts such as 
smearing and deformation of absorbers due to the assumption of constant SoS, and these artifacts are difficult to reduce 
using post-processing schemes [9, 10]. All these studies have focused on image artifacts in single-wavelength optoacoustic 
data. Much less understood is the impact of uniform SoS reconstruction on the spectra of chromophores in multi-spectral 
optoacoustic data. It is likely that the impact of such artifacts on multi-spectral optoacoustic imaging is underestimated, 
and that they can hinder quantitative analysis of reconstructed spectral information [11], such as the analysis of 
endogenous chromophores such as lipids and proteins [12].  

Therefore, in this study we analyzed the spectral artifacts of multi-spectral optoacoustic imaging induced by assuming 
uniform SoS. The analysis is based on the multi-spectral optoacoustic images of a phantom and human tissue in vivo, 
allowing us to develop and evaluate a dual-SoS model that can assign different SoS values in couplant and the sample. 
Our model extends the algebraic reconstruction technique (ART) type model-based reconstruction using interpolated-
matrix-model inversion (IMMI) [13] and angular discretization strategy [14] to include dual SoS.  

2. MATERIAL AND METHODS 
2.1 Reconstruction using uniform/single SoS  
For optoacoustic imaging, when a short nanosecond laser pulse is used as the light source, the propagation of the acoustic 
wave ( , )p tr  at spatial position r  and time instant t  can be described as [14], 

2
2 2

2

( , ) ( )( , ) ( )p t tc p t H
tt
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∂∂
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where c is the SoS in the FOV, Γ  is Grueneisen parameter, ( )tδ  presents the laser pulse and ( )H r is the absorbed 
energy per unit volume. Based on Eq. (1), the pressure distribution in a 2D acoustically homogeneous space 
(uniform/single SoS) can be written as, 
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With multiple transducer positions and time instants, a system of linear equations can be formulated by discretizing the 
integral and expressed in a matrix form as, 

singleP = A H        (3) 

where singleA  is the model matrix with uniform SoS. With limited-view tomographic handheld set-up, the inversion of 
last equation is conveniently achieved with regularization, 

2 2arg minsol m single λ= − +
H

H P A H LH     (4) 

where mP  is the measured pressure signals with ultrasound transducers, λ  is the regularization parameter and L is a 2D 
Laplace operator. 

2.2 Reconstruction using dual SoS  

When the SoS difference between couplant and sample is considered (dual-SoS), Eq. (2) is rewritten as: 
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hemoglobin, fat, and water. In this way, dual-SoS model may improve the unique ability of multi-spectral optoacoustic 
imaging to simultaneously visualize numerous parameters of health and disease non-invasively in real time. 

Previous studies examined artifacts induced by invariant SoS in single-wavelength optoacoustic imaging, and they 
demonstrated visual smearing of key features in the reconstructed image. Here we demonstrate the spectral equivalent, 
which we term "spectral smearing", when uniform SoS is assumed during reconstruction of multi-wavelength 
optoacoustic images. We show that this assumption can lead to substantial spectral distortion even when visual distortion 
is less obvious in reconstructed images; such spectral smearing can substantially affect the accuracy of the unmixing. 
This results in inaccurate quantitation of functional tissue parameters and distribution of chromophores, which is 
precisely where mutli-spectral optoacoustic imaging can offer a high-resolution, non-invasive advantage over other 
imaging methods.  

The dual-SoS model developed in this study can be easily adapted to other coupling media, such as water and ultrasound 
gel, without increasing computational cost. This model may be useful for handling SoS variation not only between 
sample and coupling medium, but also between different tissues inside the sample, such as fat and muscle. An extension 
from dual-SoS model to spatially variant SoS model in the whole FOV should improve spectral unmixing results and 
subsequent quantitation of molecules in tissues. This should be tested directly in future controlled experiments.  

In conclusion, we studied the influence of uniform SoS modeling on spectral accuracy and the benefits of using a dual-
SoS model to account for the SoS variation between couplant and tissue sample. The dual-SoS model was developed by 
employing two SoS in the imaged region specifically focused towards imaging lipids and biomolecules. The spectral 
smearing introduced by uniform SoS reconstruction was quantified and the dual-SoS reconstruction was demonstrated to 
be able to correct the spectral smearing and lead to more accurate spectral information. As spectral accuracy is the 
foundation of molecular optoacoutic imaging, dual-SoS reconstruction should be applied in the future to avoid spectral 
smearing and enable accurate unmixing of different chromophores like oxyhemoglobin, deoxyhemoglobin, and lipids. 
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