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Abstract

Background and Objective: Fetal magnetoencephalography (fMEG) is a method

for recording fetal brain signals, fetal and maternal heart activity simultane-

ously. The identification of the R-peaks of the heartbeats forms the basis for

later heart rate (HR) and heart rate variability (HRV) analysis. The current

procedure for the evaluation of fetal magnetocardiograms (fMCG) is either semi-

automated evaluation using template matching (SATM) or Hilbert transforma-

tion algorithm (HTA). However, none of the methods available at present works

reliable for all datasets.

Methods: Our aim was to develop a unitary, responsive and fully automated

R-peak detection algorithm (FLORA) that combines and enhances both of the

methods used up to now.

Results: The evaluation of all methods on 55 datasets verifies that FLORA

outperforms both of these methods as well as a combination of the two, which

applies in particular to data of fetuses at earlier gestational age.

Conclusion: The combined analysis shows that FLORA is capable of providing
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good, stable and reproducible results without manual intervention.

Keywords: magnetocardiography

1. Introduction

Fetal magnetoencephalography (fMEG) facilitates the investigation of fe-

tal brain and autonomic nervous system development [1, 2]. Like magnetoen-

cephalography in children and adults [3], fMEG is a noninvasive method. It is

primarily used to measure auditory or visually event related brain responses of5

the fetus [4, 5, 6, 7, 8, 9] as well as spontaneous brain activity [10, 11]. With its

good spatio-temporal resolution, it also allows to monitor maternal (mMCG)

and fetal magnetocardiograms (fMCG) simultaneously to the recording of fetal

brain activity (see Fig. 2). This enables us to additionally evaluate maternal

and fetal heart rate (HR), different parameters of heart rate variability (HRV)10

[12] and fetal behavioural states [13, 14], starting at 20 weeks of gestational age.

Identification of the R-peaks [15] of the heart activity (see Fig. 3) forms the basis

of HR and HRV analysis. The challenge of a good R-peak detection algorithm is

to find as many R-peaks as possible and reduce the number of false negative (FN)

peaks without detecting false positive (FP) peaks such as movement artifacts.15

Both a low number of FN and a low number of FP peaks should result in a num-

ber of peaks per minute in the range of the natural heart rate, and small and

well-distributed distances between consecutive R-peaks (RR-interval). While

too many FN peaks lead to a too low heart rate and huge RR-intervals, too

many FP peaks cause a too high heart rate estimation, too small RR-intervals20

and a lower signal-to-noise ratio (SNR).

A combination of semi automated evaluation by experts using template match-

ing (SATM) and the automated Hilbert transformation approach (HTA) [16]

is the standard procedure for both maternal and fetal R-peak detection. Both

of these commonly used methods function for most maternal heart evaluations25

since the representation of the maternal heart signal is quite strong and virtu-

ally stationary. In fetal HR, however, the evaluation is somewhat more difficult.

2



Since the mMCG signal is between 10 and 100 times stronger than the fMCG

signal, the maternal heart signal must first be removed from the data before fe-

tal heart evaluation can be carried out. In addition, the strength of the detected30

heart activity is highly dependent on the quality of the recording, gestational

age and position of the fetus. It is even more difficult to detect the fMCG signal

when it is superimposed by muscle artifacts or if the fetus moves during the

recording. For both HR and HRV analysis, the maternal/fetal heart activity

must be detected as comprehensively and as precisely as possible. For critical35

and noisy dataset, the previously used methods tend to be either complete or

precise but not both.

SATM requires the manual selection of one heartbeat as a template (see section

2.2.1). This template is then used to locate and mark all similar heartbeats in

the dataset. One dataset contains the information of 156 sensors over the whole40

recording time. Since template matching works for the data of each sensor indi-

vidually, it achieves high accuracy results for stable recordings. However, if the

mother or the fetus moves during the measurement, this method is at a disad-

vantage since the fetal heart signal then no longer fits the template. This could

lead to a long gap in R-peak detection of up to several minutes per dataset.45

Nevertheless, semi-automated evaluation is generally much more flexible than

fully automated evaluation. Due to manual interventions it is possible to meet

the individual demands of a specific dataset (e.g. the deactivation of very noisy

sensors), making it difficult for fully automated algorithms to achieve compara-

ble results. By contrast, the HTA generates a single signal for all sensors which50

is an advantage for non-stationary measurements (see section 2.2.2). However,

if the overall noise level is too high, movements of the fetus could cover the real

R-peak or could be misinterpreted as an additional peak, leading to a loss of

accuracy and quality.

A continuous and precise R-peak identification must therefore be performed55

by a combination of both methods to ensure that the majority of datasets are

validly evaluated. Since this is a complex and very time-consuming procedure,

we aimed to develop an fully automated R-peak detection algorithm (FLORA)
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Figure 1: Sketch of the fMEG device

which combines the advantages of both previously used methods, automatically

detects sensors with high physiological or non-physiological noise and is adaptive60

to the real heart rate in each dataset. It is also aimed to eliminate erroneously

detected heart beats and fill in missing peaks automatically to evaluate fMEG

data rapidly and at the same time as effectively as manual guided evaluation.

This paper describes how FLORA functions and compares its performance not

only to the two established methods, but also to a combination of the two.65

2. Methods

2.1. Fully automated R-peak detection algorithm (FLORA)

FLORA can be divided into four main steps: First, a noise analysis is per-

formed. Second, the heart frequency of the raw dataset is analyzed to identify

the individual characteristics of each recording. Third, R-peaks are detected70

by combining three different approaches. Fourth, contingently existing gaps are

filled step by step. This procedure is the same for both maternal and fetal

R-peak detection. Each of these steps will be explained in more detail in the

following (the workflow of FLORA is depicted in Figure 2).
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Figure 2: Sketch of the FLORA algorithmic procedure

Figure 3: Shape of averaged fetal heart beats over one dataset. Time point 0 refers to the

detected R-peaks (the moment of highest magnetic activity during one heartbeat).

2.1.1. Noisy sensor detection75

It is possible that some of the 156 single sensors show some unspecific noise

caused by defect sensors, a tattoo or the retainer of the pregnant woman. Such

sensors impede the evaluation of the dataset and should be removed before
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Figure 4: Frequency between 1.5 and 3Hz of one dataset, after removal of the maternal heart

interference. In this case fnat = 2.27 which matches RRmain = 0.44 and a mean HR of about

136 bpm.

data processing. Since these sensors show high signal variance and/or very low

correlation to the signal of their neighbor sensors they can be easily identified80

and set to zero.

2.1.2. Frequency analysis

The aim of the frequency analysis is to identify the individual heart rate

characteristic of each dataset. Therefore, a fast Fourier spectral analysis is

performed of the whole dataset. The result of the spectral analysis is smoothed85

by a moving average window of 20 datapoints. The frequency at the maximum

of this curve represents the main natural frequency of the HR fnat (see Fig. 4).

The window for maternal frequency analysis is 0.8-2.2Hz (corresponds to a HR

of 48 - 132 bpm) and 1.5-3Hz (corresponding to a HR of 90 - 180 bpm) for

fetal. The resulting main RR-interval RRmain = 1/fnat is used as parameters90

for further analysis (see Fig. 2).
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2.1.3. Peak detection

Hilbert transformation. The magnitude of the Hilbert transformation is calcu-

lated for all sensors and all sampling points (t), resulting in a vector (resultmht)

with dimension 1× t, rendering this kind of search resistant to fetal movements.95

R-peaks are identified by a top-down peak search that commences with the

highest maximum point in the transformed dataset and continues with the next

maximum with a minimum distance dmin to the recent one. This minimum

distance is defined by the result of the frequency analysis: dmin = RRmain ∗0.7.

Factor 0.7 is chosen since it is assumed that the HR does not deviate more than100

30% from the main RR-interval RRmain. Subsequently, the average over the

whole dataset at the time points of all detected heartbeats (Ph) is calculated

and k sensors with the highest absolute R-peak value are selected (k = 20 for

maternal, k = 5 for fetal MCG).

RMS analysis and template generation. Having taken the signal of the selected105

k sensors, a matrix with dimension k× t, the root mean square (RMS) over the

k sensors at each sampling point t is calculated resulting in a vector (resultrms)

with dimension 1× t. Peak detection is performed with the same parameters as

in the previous step. The result is averaged over all peak times (Pv) to generate

one template for each of the k sensors. Each template has the length of the110

average RR-interval, with 40% of the time before and 60% after the R-peak.

This procedure is adopted to ensure that the characteristics of the P, Q, S and

T wave are enclosed.

Template matching. After generating the template by the RMS analysis, the

cross-correlation between the template and the signal is calculated for each of115

the k sensors individually. These k cross correlations are summed up to a general

template cross-correlations vector (resulttcc) with dimension 1× t.

Combination of results. To combine the results of the previous three analysis

steps, the product of their resulting curves is calculated:

resultall = resultmht ∗ resultrms ∗ resulttcc120
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A final peak search is performed on resultall using the minimum peak distance

dmin and a minimum peak height of 0, since the baseline of resultall is negative.

The thereby detected R-peaks (Pfound) are used for further analysis.

Interpolation of missing peaks. By dividing all resulting RR-intervals by RRmain,

gaps in the R-peak detection can be easily identified. The number of missing125

beats is subsequently calculated by dividing the size of the gap by the mean of

the HR before and after the gap. The gaps are initially filled by dividing the

length of the gap by the number of missing beats (m) + 1 and thereby creat-

ing m artificial peak time points. Since such an artificial filling would have a

profound effect on measures like the HRV, the algorithm searches for additional130

peaks of resultall in the time window of ± 20 ms around the artificial time point.

These artificial time points are then replaced by the the highest peak in this

time window. The final number of detected R-peaks in FLORA (NPFLORA) is

the sum of detected peaks (Pfound) and interpolated peaks (Pint).

2.2. Comparison to standard methods135

To evaluate the performance of FLORA, the algorithm was compared to

both previously used methods SATM and HTA as well as to the combination

of both methods.

2.2.1. Semi Automated Template Matching (SATM)

This section describes template matching as implemented in the Data Edi-140

tor Software, which is the standard software provided by the fMEG hardware

manufacturer (VSM MedTech Ltd.). Prior to R-peak detection, the dataset

is detrended and filtered with a bandpass filter from 1-35 Hz. The user is

requested to mark a regular heart beat manually which is subsequently used

as a template for template-matching R-peak detection. The resulting R-peaks145

(PSATM ) are exported to a marker-file.

2.2.2. Hilbert Transformation Approach (HTA)

This approach by Wilson et al. [16] uses Hilbert transformation. Prior to

R-peak detection, the dataset is filtered with a Butterworth bandpass filter from
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1-60 Hz. A Fast Fourier Transformation of each sensor is carried out to calculate150

the sum of the power at each frequency afterwards. The Hilbert transformation

is calculated on the 10 sensors with the highest power sum. The algorithm

works with an upper (210 bpm) and lower (100 bpm) limit for the fetal heart

rate (40 - 110 bpm for maternal heart rate). Threshold values are used to locate

the peaks in Hilbert-transformed data which indicate the heartbeats (PHTA).155

2.2.3. Combination of SATM and HTA (COMB)

For standard analysis of our fMEG studies, always both methods are applied

after each other to get the best heart beat detection for the existing datasets.

The result in which more R-peaks are detected is usually chosen for further

evaluation. Using these standard methods, an additional visual check is always160

necessary to ensure that a higher number of peaks is not caused by arbitrarily

added peaks. With regard to the 55 selected datasets in this evaluation, the

evaluation by an expert found SATM to be more precise for 21 datasets and

HTA better for the other 34 datasets. This combination is denoted as COMB

below.165

2.3. Evaluation

Data was recorded by a 156 sensor SARA (SQUID Array for Reproduc-

tive Assessment, VSM MedTech Ltd., Port Coquitlam, Canada) system at the

University of Tuebingen with a sampling rate of 610 or 1220 Hz. In total, 55

datasets of singleton pregnant women were evaluated. The gestational age of170

the fetuses ranged from 26 to 39 weeks (mean 30.89 ± 3.31). The length of the

recordings varied between 6 and 27 minutes (mean 12.96 ± 5.73) and included

both spontaneous data and different stimulation paradigms. Prior to process-

ing, the raw dataset is filtered with a Butterworth band pass filter from 1 to

35 Hz. Four metrics were used to evaluate the detection methods which are175

explained in more detail in the following sections.
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2.3.1. Number of detected peaks per minute (NP)

The number of R-peaks found in the dataset is the first indicator for the

quality of the algorithm. Although in general, less peaks are found in critical180

datasets, particularly when using the HTA, it could also be that fetal move-

ments are misinterpreted as R-peak which in turn would lead to higher NP and

lower SNR (see 2.4 and 2.4.1). Nevertheless, the NP for fetal analysis should

produce results in the normal range of fetal heart rate (120 - 160 bpm).

185

2.3.2. Difference between RR measures (RR-DIFF)

A mean HR of healthy fetuses of between 120 and 160 bpm results in a

normal RR-interval of between 0.375 and 0.5 seconds. The histogram of a HR

recording should therefore resemble a Gaussian distribution of the RR-interval

with a peak within that range. The more gaps there are in the analysis, the190

higher the mean RR-interval will be, and the more additional noise peaks the

algorithm finds, the lower the mean RR-interval will be. Due to the fact that

the mean RR-distance is dependent on the behavioral state of the fetus and that

it could also change over gestational age, the main natural RR-interval RRmain

is calculated by extracting the main frequency fnat using a frequency analysis of195

the data as described in Figure 4. The more continuously the R-peak detection

works, the lower the difference RR-DIFF between RRmain and the mean RR-

interval RRest of the estimated HR will be. This parameter compares how close

NP and RR are to the average heart rate/heart frequency of each dataset.

RRmain =
1

fnat
(1)

200

RRdiff = |RRmain −RRest| (2)

2.4. Percentage of normal to normal intervals (PNN)

The percentage of normal to normal (PNN) is the amount of normal RR-

intervals. ’Normal’ in this case is defined as all RRest values between RRmain/2

and 2 ∗RRmain. Since the normal-to-normal and other parameters of the heart
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rate are generally used for HRV analysis, a high PNN is important for a valid205

HRV result. While in the RR-DIFF value many smaller gaps do not weigh as

heavily as one very big gap, the opposite applies with regard to the PNN.

2.4.1. Signal to noise ratio (SNR)

Although the above-mentioned measurements give us an indication about210

the reliability of the algorithms, they cannot guarantee that the R-peaks added

by FLORA correspond to real R-peaks and are not just arbitrary added points.

Therefore, the SNR of the averaged RR-peaks (see Fig. 3) of the raw data

is calculated, where amppeak describes the height of the amplitude at the R-

peak which is then divided by the median of the amplitude over the whole215

average sample. Precisely located R-peaks would result in a high SNR, whereas

arbitrary added R-peaks would result in a lower amplitude at the time of the

R-peaks amppeak, and in more noise over the whole averaged sample (higher

median(amp)) and therefore in a lower SNR.

SNR =
amppeak

median(amp)
(3)

2.4.2. Statistics220

SATM, HTA and COMB were compaired against FLORA in all four metrics

by using a Wilcoxon Signed Rank Test. To decide whether a result is significant,

the significance levels were adjusted by Bonferroni correction to p = frac0.053.

Due to extreme outliers in the results, it was decided to report [median ±

standard deviation] instead of the mean.225

3. Results

FLORA algorithm was analyzed for maternal and fetal R-peak detection.

Maternal R-peak detection is easily performed and works very well for all three

algorithms. Hence, there were no obvious differences and the following results

relate to fetal R-peak detection only.230
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Figure 5: Number of R-peaks, identified per minute. ∗denotes significant differences in the

Wilcoxon signed rank test (p < 0.05), Bonferrroni corrected for multiple comparison.

3.0.1. Number of detected peaks per minute (NP)

A comparison of the number of heart beats (NP) per minute as obtained

with the four different methods showed a significant difference between SATM

[132.67 ± 36.86] and FLORA [139.17 ± 23.15] as well as between HTA [137.40 ±

41.05] and FLORA. No significant difference is observed between COMB [138.35235

± 29.24] and FLORA (see Fig. 5).

3.0.2. Difference between RR measures (RR-DIFF)

The difference between RRmain and the mean RR-interval RRest of the

estimated HR also showed a significant difference between SATM [0.01 ± 1.57]

and FLORA [0.001 ± 0.72] as well as HTA [0.005 ± 1.96] and FLORA. Again,240

no significant difference is found between COMB [0.004 ± 0.20] and FLORA

(see Fig. 6).

3.1. Percentage of normal to normal intervals (PNN)

The PNN showed significant differences between FLORA [100 ± 5.81] and

all other methods, SATM [98.48 ± 19.26], HTA [99.97 ± 23.16] and COMB245

[99.85 ± 14.57] (see Fig. 7).

In Figure 8 the PNN with regard to gestation age (GA) is displayed for FLORA,

SATM and HTA. The figure shows that especially for fetuses with lower GA
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Figure 6: The difference between RRnat and the averaged RR-interval RRest as estimated

by the different R-peak detection methods. ∗denotes significant differences in the Wilcoxon

signed rank test (p < 0.05), Bonferrroni corrected for multiple comparison.

Figure 7: The percentage of normal RR-intervals. ∗denotes significant differences in the

Wilcoxon signed rank test (p < 0.05), Bonferrroni corrected for multiple comparison.

both, SATM and HTA result in lower PNN than FLORA. Figure 9 displays the

PNN with reference to the measurement duration. FLORA in contrast to the250

other methods shows a high PNN also in short time measurements (see Fig. 9).

3.2. Signal to noise ratio (SNR)

The SNR of FLORA [20.38 ± 4.50] is significantly different to SNR of HTA

[17.83 ± 6.48]. No significant difference is shown between FLORA and SATM

[20.03 ± 6.62], or COMB [19.34 ± 5.43] (see Fig. 10).255
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Figure 8: The relation of the gestational age (GA) of the fetus and the amount of normal

RR-intervals in percent (PNN).

Figure 9: The relation of the measurement duration and the amount of normal RR-intervals

in percent (PNN).

4. Discussion and Conclusion

Since FLORA was developed to perform fully automated R-peak detection,

its performance was tested on 55 different real datasets and compared it with the

currently established procedures. Four different evaluation metrics were used to

compare performance between the different approaches. Our results show that260
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Figure 10: The SNR shows how clearly the R-peak contrasts from the rest of the averaged

heart signal. ∗denotes significant differences in the Wilcoxon signed rank test (p < 0.05),

Bonferrroni corrected for multiple comparison.

FLORA not only performs just as well as the established methods SATM and

HTA and their combination COMB but also that it has some advantages over

these. FLORA is significantly more accurate in number of detected peaks per

minute (NP) than SATM and HTA and the difference between RR measures

(RR-DIFF) of FLORA is also considerably lower. Even if there is no significant265

difference in NP and RR-DIFF between FLORA and COMB, FLORA is con-

vincing in percentage of normal to normal intervals (PNN) , where the results

are significantly different from those of the standard methods SATM and HTA

as well as to their combination COMB. Based on the results PNN it could be

shown that FLORA works reliable over the whole GA range and is independent270

of the measurement duration. FLORA resulted in a significantly higher sig-

nal to noise ratio (SNR) than HTA, indicating that despite the higher NP the

peaks derive from heartbeats that were actually detected and not from randomly

added points. In sum, FLORA is user-independent which is very important for

reproducibility. By removing noisy sensors, estimating the physiological heart275

rate of the subject, optimizing the peak search, filling gaps and modulating the

interpolated peaks, FLORA generates high quality HR datasets that can be

easily post-processed. Due to its automatization, FLORA can also be used for

batch processing.
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M. Weiss, H.-U. Häring, H. Preissl, A. Fritsche, Gestational Diabetes Im-

pairs Human Fetal Postprandial Brain Activity, The Journal of Clinical

Endocrinology & Metabolism 100 (11) (2015) 4029–4036. doi:10.1210/

jc.2015-2692.300

[5] F. Schleger, K. Landerl, J. Muenssinger, R. Draganova, M. Reinl, I. Kiefer-

Schmidt, M. Weiss, A. Wacker-Gußmann, M. Huotilainen, H. Preissl, Mag-

netoencephalographic Signatures of Numerosity Discrimination in Fetuses

and Neonates, Developmental Neuropsychology 39 (4) (2014) 316–329.

doi:10.1080/87565641.2014.914212.305

16

http://dx.doi.org/10.1210/jc.2015-2692
http://dx.doi.org/10.1210/jc.2015-2692
http://dx.doi.org/10.1210/jc.2015-2692
http://dx.doi.org/10.1080/87565641.2014.914212


[6] J. Muenssinger, T. Matuz, F. Schleger, R. Draganova, M. Weiss, I. D.

Kiefer-Schmidt, A. Wacker-Gussmann, R. B. Govindan, C. L. Lowery,

H. Eswaran, et al., Sensitivity to auditory spectral width in the fetus and

infant–an fmeg study, Frontiers in human neuroscience 7 (2013) 917.

[7] R. Draganova, H. Eswaran, P. Murphy, C. Lowery, H. Preissl, Serial mag-310

netoencephalographic study of fetal and newborn auditory discriminative

evoked responses, Early human development 83 (3) (2007) 199–207.

[8] L. Moraru, R. Sameni, U. Schneider, J. Haueisen, E. Schleußner, D. Hoyer,

Validation of fetal auditory evoked cortical responses to enhance the as-

sessment of early brain development using fetal meg measurements, Phys-315

iological measurement 32 (11) (2011) 1847.

[9] M. Chen, B. D. Van Veen, R. T. Wakai, Linear minimum mean-square error

filtering for evoked responses: Application to fetal meg, IEEE transactions

on biomedical engineering 53 (5) (2006) 959–963.

[10] N. Haddad, R. B. Govindan, S. Vairavan, E. Siegel, J. Temple, H. Preissl,320

C. L. Lowery, H. Eswaran, Correlation between fetal brain activity patterns

and behavioral states: an exploratory fetal magnetoencephalography study,

Experimental neurology 228 (2) (2011) 200–205.

[11] D. F. Rose, H. Eswaran, Spontaneous neuronal activity in fetuses and new-

borns, Experimental neurology 190 (2004) 37–43.325

[12] E. Fehlert, K. Willmann, L. Fritsche, K. Linder, H. Mat-Husin, F. Schleger,

M. Weiss, I. Kiefer-Schmidt, S. Brucker, H.-U. Häring, H. Preissl,
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