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ABSTRACT
Background: Lean body mass (LM) plays an important role in
mobility and metabolic function. We previously identified five loci
associated with LM adjusted for fat mass in kilograms. Such an
adjustment may reduce the power to identify genetic signals having
an association with both lean mass and fat mass.
Objectives: To determine the impact of different fat mass adjust-
ments on genetic architecture of LM and identify additional LM loci.
Methods: We performed genome-wide association analyses for

whole-body LM (20 cohorts of European ancestry with n = 38,292)
measured using dual-energy X-ray absorptiometry) or bioelectrical
impedance analysis, adjusted for sex, age, age2, and height with or
without fat mass adjustments (Model 1 no fat adjustment; Model
2 adjustment for fat mass as a percentage of body mass; Model 3
adjustment for fat mass in kilograms).
Results: Seven single-nucleotide polymorphisms (SNPs) in separate
loci, including one novel LM locus (TNRC6B), were successfully
replicated in an additional 47,227 individuals from 29 cohorts. Based
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on the strengths of the associations in Model 1 vs Model 3, we
divided the LM loci into those with an effect on both lean mass and
fat mass in the same direction and refer to those as “sumo wrestler”
loci (FTO and MC4R). In contrast, loci with an impact specifically on
LM were termed “body builder” loci (VCAN and ADAMTSL3). Using
existing available genome-wide association study databases, LM
increasing alleles of SNPs in sumo wrestler loci were associated with
an adverse metabolic profile, whereas LM increasing alleles of SNPs
in “body builder” loci were associated with metabolic protection.
Conclusions: In conclusion, we identified one novel LM locus
(TNRC6B). Our results suggest that a genetically determined increase
in lean mass might exert either harmful or protective effects on
metabolic traits, depending on its relation to fat mass. Am J Clin
Nutr 2019;109:276–287.

Keywords: body composition, skeletal muscle, body fat, meta-
analysis of genome-wide association studies, metabolic profile

Introduction
Lean body mass (LM), consisting mostly of skeletal muscle,

plays a role in mobility (1) and metabolic function. It is well
established that high fat mass results in insulin resistance,
increased risk of type 2 diabetes, and dyslipidemia. Observational
studies indicate that lean mass adjusted for weight or fat mass
is inversely associated with insulin resistance and metabolic
abnormalities (2). However, the causal effects of lean mass on
metabolic traits are unclear. Adipocytes and myocytes share
common mesenchymal ancestry (3), and factors (genetic and/or
environmental) stimulating the development of mesenchymal
stem cells toward the myocyte lineage instead of the adipocyte
lineage may lead to more favorable body composition.

In a recent large-scale study, we identified 5 loci associated
with LM adjusted for fat mass in kilograms (4). In that study,
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we were primarily interested in genes contributing to lean mass
independent of those regulating fat mass (4). Because lean mass
is positively correlated with fat mass and may even be stimulated
to increase by the mechanical demands of carrying more fat mass,
our previous results were adjusted for fat mass in the statistical
models. A potential limitation of this strategy of adjusting for fat
mass is that the ability to identify genetic signals with an impact
on both lean mass and fat mass will be reduced. Some studies
suggested lean mass and fat mass have a substantial genetic
correlation (5, 6).

Nevertheless, the FTO signal was found to be significantly
associated with lean mass after fat adjustment, and the direction
of this association was the same as the association with fat mass
found in other studies (7). To identify additional lean mass loci
and to gain more insight into the lean-fat mass relation and its
health consequences, in this study we applied different statistical
models with either no fat adjustment or 1 of 2 fat-adjustment
models: fat as a percentage of body mass, or fat in absolute
kilograms.

For identified lean mass single-nucleotide polymorphisms
(SNPs), we also aimed to evaluate the associations with a variety
of musculoskeletal and metabolic traits. Finally, we aimed to
explore if the associations with musculoskeletal and metabolic
parameters differed for significant loci identified in models
without fat mass adjustment compared with those having the
strongest association in models with fat mass adjustment.

Methods
We performed a genome-wide association study meta-analysis

on whole body lean mass in a set of discovery cohorts (Stage I)
and then meta-analyzed the discovery SNPs in replication cohorts
(Stage II), followed by a combined analysis with discovery
and replication cohorts. The total sample size for the combined
analysis was 85,519 individuals of European ancestry from 47
studies. Because this research is not a clinical trial, it does not
need to be registered.

Study population

The Stage I Discovery sample comprised 38,292 individuals
of European ancestry drawn from 20 cohorts with a variety
of epidemiological designs and participant characteristics (Sup-
plemental Table 1 and Supplemental Note 1). Whole body
lean mass was measured using dual-energy X-ray absorptiometry
(DXA) (10 cohorts, n = 21,074) and bioelectrical impedance
analysis (BIA) (10 cohorts, n = 17,218). Of the 20 cohorts, 15
consisted of males and females, whereas 2 had males, and 3 had
females only. In total, the cohorts included 22,705 women and
15,587 men.

Twenty-nine additional studies were used for replication
with a total sample size of 47,227 subjects of European
ancestry. The Stage II Replication included either cohorts
with existing genome-wide association study (GWAS) data that
were unavailable at the time of the Stage I Discovery or
cohorts without GWAS data who agreed to undergo de novo
genotyping. Because some of the replication cohorts performed
de novo genotyping, there were fewer data points for SNPs that
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were newly genotyped than for SNPs that were imputed from
already available GWAS studies. All studies were approved by
their institutional ethics review committees, and all participants
provided written informed consent.

Lean mass measurements

Lean mass was measured in all cohorts using either DXA
or BIA. DXA provides a 3-compartment body composition
assessment based on specific X-ray attenuation properties: bone
mineral, lipid (triglycerides, phospholipid membranes, etc.), and
lipid-free soft tissue. Each pixel on the DXA scan is quantitatively
partitioned into these 3 tissue types. For the cohorts with DXA
measures, the phenotype used for these analyses was the lipid-
free, soft tissue compartment that is referred to as lean mass
and is the sum of body water, protein, glycerol, and soft tissue
mineral mass. Two lean mass phenotypes were used: whole
body lean mass and appendicular lean mass. The latter was
obtained by DXA while considering only pixels in the arms
and legs collectively (bone mineral excluded), which has been
demonstrated to be a valid measure of skeletal muscle mass (8).
Some of the cohorts estimated body composition using BIA,
which has been detailed in our previous work (4). For BIA cohorts
with specific resistance and reactance measures, we used the
validated equation from Kyle et al. with an R2 of 0.95 between
BIA and DXA to calculate the appendicular lean mass (9).

Stage 1: Genome-wide association analyses in discovery
cohorts

Genome-wide genotyping was carried out in each study on a
variety of platforms following standard manufacturer protocols.
Quality control was performed independently for each study.
To facilitate meta-analysis, each group performed genotype
imputation with IMPUTE (10) or MACH (11) software using
HapMap Phase II release 22 reference panels (CEU or CHB/JPT
as appropriate). Overall imputation quality scores for each
SNP were obtained from IMPUTE (“proper_info”) or MACH
(“rsq_hat”). Details on the genotyping platform used, genotype
quality control procedures, and software for imputation used for
each study are presented in Supplemental Table 2. Because the
project started before the creation of denser imputation panels,
only Hap Map II based imputation was available.

Study-specific genome-wide association analyses with lean
mass and different lean mass models.

Details about study-specific genome-wide association anal-
yses and meta-analyses have been described previously (4).
Briefly, in each study, a multiple linear regression model with
additive genetic effect was applied to test for phenotype–
genotype associations using ∼2.0–2.5 million genotyped and/or
imputed autosomal SNPs. Because lean mass is correlated with
fat mass and height, we prespecified 3 models of adjustment:
Model 1: adjustment for sex, age, age2, height; Model 2:
adjustment for sex, age, age2, height, total body fat percentage;
model 3: adjustment for sex, age, age2, height, total body fat mass
in kilograms. Because no fat mass adjustment was performed
in Model 1, it will identify lean mass SNPs that also may have

an effect on fat mass in the same direction. In contrast, because
Model 3 is adjusted for fat mass (in kilograms), it will identify
SNPs that are associated with lean mass independent of fat mass.
Other covariates adjusted in the model included ancestral genetic
background using principal components and, when appropriate,
study-specific covariates such as clinical center for multicenter
cohorts. For family-based cohorts, including the Framingham
Study, ERF, UK-Twins, Old Order Amish Study, and the Indiana
cohort, familial relatedness was taken into account in the
statistical analysis (4).

Meta-analyses.

Meta-analyses were conducted using the METAL package
(www.sph.umich.edu/csg/abecasis/metal/). We used the inverse
variance weighting and fixed effect model approach. Before
meta-analysis, we filtered out SNPs with a low minor al-
lele frequency, MAF (<1%), and poor imputation quality
(proper_info < 0.4 for IMPUTE and rsq_hat < 0.3) and applied
genomic control correction where the genomic control parameter
lambda (λGC) was >1.0.

We used quantile–quantile (Q-Q) plots of observed compared
with expected –log10 (P value) to examine the genome-wide
distribution of P values, Manhattan plots to report genome-wide
P values, regional plots for genomic regions within 100 kb of
top hits, and forest plots for meta-analyses and study-specific
results of the most significant SNP associations. For all 3 models,
a threshold of P < 5 × 10−8 was prespecified as being genome-
wide significant (GWS), whereas a threshold of P < 2.3 × 10−6

was used to select SNPs for a replication study (suggestive
genome-wide significant—sGWS).

Stage 2: Replication

In each GWS or sGWS locus, we selected the lead SNP with
the lowest P value for replication. In addition, GWS or sGWS
SNPs that had low linkage disequilibrium (LD) with the lead
SNPs (r2 < 0.5) were also selected for replication. Both in
silico replication and de novo genotyping for replication were
conducted. Replication was carried out in 24 cohorts that did
not have data available at the time of the initial discovery efforts
(n = 47,227 for whole body; n = 42,360 for the appendicular
LM; Supplemental Table 3), of which 6927 had available in
silico genome-wide genotyping. De novo replication genotyping
was done using KBioScience Allele-Specific Polymorphism
(KASP) SNP genotyping system (in OPRA, PEAK25, AGES,
CAIFOS, DOPS cohorts), TaqMan (METSIM), Illumina Om-
niExpress + Illumina Metabochip (PIVUS and ULSAM), or
Sequenom’s iPLEX (WHI) (Supplemental Table 4). Samples
and SNPs that did not meet the quality control criteria defined
by each individual study were excluded. Minimum genotyping
quality control criteria were defined as: SNP call rate > 90% and
Hardy–Weinberg equilibrium P > 1 × 10−4.

Meta-analysis of replication and discovery studies

In the replication stage, we meta-analyzed results from
individuals of European descent only. A successful replication
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was considered if the association P value in the combined meta-
analysis (Discovery plus Replication) was GWS and less than
the discovery meta-analysis P value. Using the METAL package,
we also estimated I2 to quantify heterogeneity and P values to
assess statistical significance for a total of 12 associations (3
SNPs from Model 1, 4 from Model 2, and 5 from Model 3) that
were replicated in the cumulative-meta-analysis. Appendicular
lean mass was available in a subsample of those with whole body
lean mass (n = 70,690 from 38 studies), and models 1–3 for
appendicular lean mass were evaluated for the replicated GWS
associations from the whole body lean mass analyses.

Annotation and enrichment analysis of regulatory elements

We predicted the function of coding variants by PolyPhen-
2. For all replicated variants, we annotated potential regulatory
functions based on experimental epigenetic evidence including
DNase hypersensitive sites, histone modifications, and transcrip-
tion factor-binding sites in human cell lines and tissues from
the ENCODE Project and the Epigenetic Roadmap Project. We
first selected SNPs in high LD (r2 ≥ 0.8) with GWAS lead
SNPs based on the approach of Trynka et al. (12) We then
identified potential enhancers and promoters in the GWAS loci
(GWAS SNPs and SNPs in LD with the GWAS SNPs) across 127
healthy human tissues/normal cell lines available in the ENCODE
Project and the Epigenetic Roadmap Project from the HaploReg4
web browser (13) predicted by ChromHMM (14). To evaluate if
replicated GWAS loci were enriched with regulatory elements
in skeletal muscle tissue, we performed a hypergeometric
test. Specifically we tested whether estimated tissue-specific
promoters and enhancers in a GWAS locus were enriched
in 8 relevant skeletal muscle tissues/cell lines compared with
enrichment in nonskeletal muscle tissues (119 tissues/cell lines).
The permutation with minimum P value approach was performed
to correct for multiple testing. Permutation P values < 0.05
were considered statistically significant. In addition, we also
performed enrichment analyses in smooth muscle tissues/cells,
fat tissue, brain, blood cells, and gastrointestinal tract tissues.
The 8 skeletal muscle relevant tissues/cells were excluded when
conducting enrichment analyses for other tissue types. Detailed
information for tissue types and chromatin state estimation
is described in the Supplemental Materials (Supplemental
Note 2).

CIS-expression quantitative trait loci

We looked up cis-expression quantitative trait loci (EQTL)
information from GTEx data on the 7 replicated GWS loci,
SNPs rs2943656, rs9991501, rs2287926, rs4842924, rs9936385,
rs10871777, and rs 733,381 with gene expression within 2Mb of
the SNP position. Multiple testing was corrected by using a false
discovery rate (FDR) q value of <0.05 to account for all pairs of
SNP-gene expression analyses in multiple tissues.

Look-ups of replicated SNPs in GWAS of metabolic and
musculoskeletal traits

For the 7 replicated lean mass SNPs, we performed look-
ups of relevant metabolic and musculoskeletal traits using

available results from published GWAS meta-analyses. The
metabolic and musculoskeletal traits evaluated included % fat
(15), BMI (7), coronary artery disease (16), type 2 diabetes (17),
homeostasis model assessment of insulin resistance (HOMA-IR),
(18), triglycerides (19), total cholesterol (19), LDL cholesterol
(19), HDL cholesterol (19), hand grip strength (20, 21), bone
mineral density (BMD) (22), and fractures (23).

Genetic correlation in LD score regression

We applied LD score regression to estimate genetic corre-
lations across several muscle-related traits from summary-level
data of publicly available GWAS. We used LD Hub (24), which
is a centralized database of summary-level GWAS results for
hundreds of diseases/traits from multiple consortia and online
resources, as well as a web interface that automates the LD score
regression analysis pipeline (25). According to Bulik-Sullivan et
al. (26), the genetic correlation for a set of SNPs S is calculated
as rs(y1, y2) = ρs(y1, y2)/

√
h2S(y1)h2S(y2), where ρS is genetic

covariance among SNPs in S, y1 and y2 denote phenotypes, and
h2

S is the heritability explained by SNPs in S.

Results

GWAS meta-analyses for discovery and replication

Descriptions and characteristics of the study populations
in the discovery stage and the replication stage are listed in
Supplemental Table 1, Supplemental Table 5, and Supplemental
Note 1. The age of the participants ranged from 18 to 100 years.
In the GWAS discovery set, comprising 38,292 participants for
whole body lean mass, a substantial excess of low P values
compared with the null distribution was observed after genomic
control adjustment of the individual studies before meta-analysis:
λGC = 1.078, λGC = 1.075 and λGC = 1.076, for Model 1 (not
adjusted for fat mass), Model 2 (adjusted for percentage fat),
and Model 3 (adjusted for fat mass in kilograms), respectively
(Supplemental Figure 1A–C).

Table 1 shows the GWS and suggestive (sGWS) results
for the 3 models in the discovery set (see also Supplemental
Figure 2). In Model 1, we observed 3 independent GWS
results (in/near FTO, MC4R, and CALCR) and 4 sGWS
results (in/near HSD17B11, GMPPA, CMTM8, and C10orf39;
Table 1; Supplemental Figure 2A). In Model 2, we observed
3 independent GWS results (in/near HSD17B11, FTO, and
CALCR) and 10 sGWS results (in/near MC4R, TNRC6B, RHOC,
GMPPA, NUDT3, AKR1B1, ANGPT2, ZBTB16, ADAMTSL3,
SMG6; Table 1; Supplemental Figure 2B).

Data for Model 3 have already been presented in a previous
publication (4), but for comparison we display it in Table 1. To
reiterate, in Model 3, we observed one independent GWS result
in/near HSD17B11 and 10 sGWS results (in/near IRS1, VCAN,
ADAMTSL3, FTO, RHOC, PRR16, FRK, AKR1B1, CALCR,
KLF12; Table 1; Supplemental Figure 2C).

We selected all GWS and sGWS associations for all 3 models
(Table 1) to conduct a replication study in a set of 27 cohorts
comprising up to 47,227 participants of European descent. Owing
to limited resources, 5 of the sGWS signals were evaluated only
in the cohorts available for in silico replication (Table 1).

The upper parts of each panel (Models 1–3) in Table 1 show
the results for successfully replicated SNPs (defined as combined
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P value < 5 × 10−8 and lower than discovery P values) in
participants, who were part of the discovery phase, replication
phase, and the combined results. For Model 1, combined analysis
of the discovery and replication cohorts successfully replicated 3
SNPs in/near HSD17B11, FTO, and MC4R (P values between
1.6 × 10−8 and 1.8 × 10−30). For Model 2, the same 3
SNPs as reported for Model 1 were successfully replicated, and
in addition one SNP in/near TNRC6B was also successfully
replicated (P values between 7.3 × 10−10 and 2.4 × 10−20).
For Model 3, combined analysis of the discovery and replication
cohorts successfully replicated 5 SNPs in/near IRS1, HSD17B11,
VCAN, ADAMTSL3, and FTO (P values between 1.4 × 10−8

and 1.5 × 10−11. Results of Model 3 SNPs have been
previously reported (4) but are shown here for comparison
(Table 1).

None of the 12 replicated associations (3 for Model 1, 4 for
Model 2, and 5 for Model 3) had significant heterogeneity at
α = 0.0042 (0.05/12, Bonferroni-corrected for 12 tests). Only
mild heterogeneity was indicated for the SNP in/near FTO in
all 3 models (Model 1, I2 = 38%; Model 2, I2 = 33%; Model
3, I2 = 33%; Table 1).

In total, 7 SNPs in independent loci (in/near IRS1, HSD17B11,
VCAN, ADAMTSL3, FTO, MC4R, and TNRC6B) were success-
fully replicated in any of the 3 models, and the results for these
7 SNPs in the 3 different models for whole body lean mass
are given in Table 2. The 7 SNPs were nominally (P < 0.05)
significant in all 3 models except for the SNP in/near IRS1, which
was not associated with lean mass unadjusted for fat mass in
Model 1. Very similar associations were observed when these
7 SNPs were evaluated for their associations with appendicular
lean mass available in up to 70,690 subjects of European descent
(Supplemental Table 6).

We next evaluated the associations for 97 known BMI
associated SNPs (7) with whole body lean mass in the discovery
cohorts. As many as 42 of the known BMI associated SNPs
were also associated (P < 0.05) with lean mass in the same
direction as observed for BMI when evaluated in lean mass
Model 1 not adjusted for fat mass (Supplemental Table 7).
In general, the lean mass associations for the BMI SNPs
were less pronounced after fat mass adjustment in lean mass
Model 3.

Impact of fat mass adjustment for lean mass loci—“sumo
wrestler loci " and "body builder loci”

In general, the results from Model 1 and Model 3 differed
most from each other, whereas the associations for Model 2 were
intermediate. Therefore, in the studies evaluating the impact of
fat mass adjustment for lean mass loci, we mainly compared the
results between Model 1 and Model 3. Six of the 7 loci (FTO,
MC4R, TNRC6B, HSD17B11, VCAN, and ADAMTSL3) had an
impact both on the absolute amount of lean mass (Model 1) and
on the amount of lean mass adjusted for fat mass (Model 3).
However, the strengths of the associations in Model 1 compared
with Model 3 varied substantially. The FTO and MC4R signals
had high Model 1/Model 3 ratios (a measure of the degree of
attenuation of the LM association after fat mass adjustment) of
beta values for the association with lean mass (M1/M3 ratio
222–234%), demonstrating that the strengths of the associations

were reduced after fat mass adjustment. This suggests that these
2 loci have an impact on both lean mass and fat mass in the
same direction, and this is also supported by the fact that they
are associated with BMI and fat mass in the same direction as
with lean mass (Table 3; Supplemental Table 7). Because the
alleles of the FTO and MC4R signals that were associated with
greater lean mass also were associated with increased fat mass,
we named them “sumo wrestler” loci (Table 3; Supplemental
Table 7).

In contrast, there were 2 lean mass loci that had a low Model
1/Model 3 ratio of beta values for the association with lean mass
(M1/M3 ratio 64–67%), including the VCAN and ADAMTSL3
loci. For these loci, the lean mass associations were stronger
after adjustment for fat mass. This means that these 2 loci have a
substantial impact specifically on lean mass with associations in
the opposite direction or no association with fat mass (Table 3;
Supplemental Table 7). Because the alleles of the VCAN and
ADAMTSL3 loci that were associated with greater lean mass were
associated with slightly reduced fat mass, we named them “body
builder” loci. The TNRC6B and HSD17B11 loci had intermediate
Model 1/Model 3 ratios of beta values for the association with
lean mass (M1/M3 ratio 120–125%), suggesting that their impact
on lean mass did not appear to be influenced by fat mass,
so we called them “intermediate” loci (Table 3; Supplemental
Table 7).

The signal in/near IRS1 was not associated with lean mass
without adjustment for fat mass. As shown in Table 3 and
Supplemental Table 7, the lean mass increasing allele in/near
IRS1 was associated with lower fat mass. This association with
lower fat mass may indirectly make the association with fat mass
adjusted lean mass to be significant in the opposite direction. It is
indeed a locus with an impact on the ratio between lean and fat
mass but with no significant association with the absolute amount
of lean mass when the effect of fat mass is not taken into account.
The lean mass increasing allele was associated with reduced BMI
and fat mass (Table 3; Supplemental Table 7), suggesting that
its inverse association with fat mass is dominant for its effect
on BMI, which is influenced by both lean mass and fat mass.
We, therefore, named the IRS1 locus a “fat-mediated lean mass”
locus, because it primarily appears to impact the amount of fat
mass (Table 3; Supplemental Table 7).

Metabolic associations for lean mass increasing alleles

We next evaluated the associations with metabolic traits for
the 7 replicated lean mass SNPs, using available results from
GWAS-meta-analyses of these traits (Table 3; Supplemental
Table 7). The lean mass increasing alleles of SNPs in/near
the 2 sumo wrestler loci (FTO and MC4R) were in general
associated with an adverse metabolic profile regarding both
carbohydrate metabolism (higher fasting insulin, higher HOMA-
IR and increased risk of diabetes mellitus) and lipid metabolism
(higher serum triglycerides and lower HDL cholesterol; Table 3;
Supplemental Table 7). In addition, the lean mass increasing
allele of the SNP in/near FTO was associated with increased
risk of coronary artery disease (Table 3). In contrast, the lean
mass increasing alleles of the SNPs in the 2 body builder loci
(VCAN and ADAMTSL3) were in general associated with some
metabolic protection regarding both carbohydrate metabolism
(lower fasting insulin or reduced risk of diabetes mellitus)
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TABLE 2 Comparison of models for GWS hits1

Whole body lean mass

Model 1 (n = 85,519) Model 2 (n = 85,519) Model 3 (n = 85,519)

SNP ID Chr Position Gene A1/A2 AF 1 β SE P β SE P β SE P

rs2943656 2 226,830,162 IRS1 A/G 0.37 –0.04 0.03 9.1 × 10−2 –0.11 0.02 7.4 × 10−6 –0.14 0.02 1.5 × 10−11

rs9991501 4 88,477,507 HSD17B11 T/C 0.04 –0.46 0.08 1.6 × 10−8 –0.48 0.08 7.3 × 10−10 –0.39 0.07 5.8 × 10−9

rs2287926 5 82,851,164 VCAN A/G 0.13 0.12 0.04 3.2 × 10−3 0.17 0.04 6.2 × 10−6 0.19 0.03 7.5 × 10−9

rs4842924 15 82,378,611 ADAMTSL3 T/C 0.52 –0.08 0.03 2.3 × 10−3 –0.12 0.02 9.7 × 10−7 –0.12 0.02 1.4 × 10−8

rs9936385 16 52,376,670 FTO T/C 0.61 –0.32 0.03 1.8 × 10−30 –0.24 0.03 2.4 × 10−20 –0.14 0.02 1.4 × 10−9

rs10871777 18 56,002,743 MC4R A/G 0.76 –0.28 0.03 1.0 × 10−18 –0.21 0.03 4.2 × 10−13 –0.12 0.03 6.2 × 10−7

rs733381 22 38,999,594 TNRC6B A/G 0.79 0.19 0.03 5.2 × 10−9 0.20 0.03 4.6 × 10−11 0.15 0.03 5.5 × 10−9

1Model 1: not adjusted for fat; Model 2: adjusted for fat mass as a percentage of body mass; Model 3: adjusted for fat mass in kilograms. P < 5 × 10−8 is significant. AF,
allele frequency; Chr, chromosome; SNP, single nucleotide polymorphism.

and lipid metabolism (lower serum triglycerides or higher
HDL cholesterol; Table 3 presents the general direction of
associations; Supplemental Table 7 actual beta coefficients). The
lean mass signals in the intermediate lean mass loci (TNRC6B
and HSD17B11), not influenced by fat mass adjustment, did not
have any major impact on metabolic traits.

As reported previously (27), the lean mass increasing allele of
the SNP in the fat-mediated lean mass locus IRS1 was associated
with an adverse metabolic profile (Table 3; Supplemental
Table 7).

Musculoskeletal associations of lean mass increasing alleles

We also evaluated the associations between the 7 replicated
lean mass SNPs and musculoskeletal traits. Importantly, the
lean mass increasing alleles of the SNPs in/near TNRC6B and
in/near ADAMTSL3 were robustly associated with greater hand
grip strength (Table 4; Supplemental Table 8). In general, the
associations with the other musculoskeletal traits (Table 4; Sup-
plemental Table 8) were less pronounced than the associations
with metabolic traits (Table 3 and Supplemental Table 7), and no
general pattern for the signals in the sumo wrestler loci compared
with the signals in the body builder loci was observed for the
musculoskeletal traits (Table 4; Supplemental Table 8). Surpris-
ingly, the lean mass increasing allele of the SNP in/near TNRC6B

was associated with lower lumbar spine BMD and increased risk
of fractures.

Genetic correlations with lean mass by LD score regression

We next determined the genetic correlations between lean mass
phenotypes and a variety of parameters with a focus on metabolic
and musculoskeletal phenotypes using LD score regression
(Table 5). Obesity traits, including both extreme phenotypes,
such as childhood obesity and extreme BMI, and quantitative
traits, such as BMI and waist-to-hip ratio, demonstrated a strong
positive genetic correlation with lean mass in the model not
adjusted for fat mass (rg from 0.45 to 0.98, Model 1), and as
expected these genetic correlations were attenuated after fat mass
adjustment (from 0.17 to 0.76 and –0.16 to 0.51, respectively, for
Model 2 and Model 3; Table 5).

For all carbohydrate-metabolism-related traits (type 2 diabetes
mellitus, fasting glucose, fasting insulin, fasting proinsulin, gly-
cated hemoglobin, and HOMA-IR) positive genetic correlations
with lean mass in Model 1 were observed (rg from 0.19 to 0.48,
P < 0.005). All these correlations were substantially attenuated
after fat mass adjustment in Models 2 and 3 (0.15–0.33 and 0.05–
0.26, respectively; some nonsignificant).

TABLE 3 Associations of lean mass increasing alleles with metabolic phenotypes1

Effect
in M1

M1/M3
ratio, %

Cross-phenotype
Summary

(metabolism)SNP LM IA Gene Type of locus Fat, % BMI CAD DM Insulin HOMA-IR Trig Chol LDL HDL

rs9936385 C FTO Yes 234 Sumo Wrestler ++ ++ + ++ ++ ++ ++ 0 0 – – Adverse metabolic
profile

rs10871777 G MC4R Yes 222 Sumo Wrestler ++ ++ 0 ++ + + ++ 0 0 – –
rs733381 A TNRC6B Yes 125 Intermediate 0 ++ 0 0 0 0 0 0 0 – No metabolic

phenotype
rs9991501 C HSD17B11 Yes 120 Intermediate 0 0 0 ? 0 0 ? ? ? ?
rs2287926 A VCAN Yes 64 Body Builder 0 0 0 ? – 0 – – 0 0 + Metabolic

protection
rs4842924 C ADAMTSL3 Yes 67 Body Builder – – 0 0 – 0 0 0 0 0 ++
rs2943656 G IRS1 No NA Indirect/Fat locus – – – – ++ ++ + + ++ 0 0 – – Adverse metabolic

profile

1The threshold for a statistically significant association with Bonferroni correction for 10 traits is P = 0.005 (0.05/10). For further details, see Supplemental Table 7. +, nominal significant
increase; ++, multiple testing corrected significant increase; –, nominal significant decrease; – –, multiple testing corrected significant decrease; 0, no significant effect; ?, not included; CAD,
coronary artery disease; Chol, cholesterol; DM, diabetes mellitus; HOMA-IR, homeostasis model assessment of insulin resistance; LM IA, lean mass increasing allele; M1, Model 1 not adjusted
for fat; M3, Model 3 adjusted for fat mass (kg); M1/M3 ratio, a measure of the degree of attenuation of the LM association after fat mass adjustment; NA, not applicable because no effect in M1;
SNP, single nucleotide polymorphism; Trig, triglycerides.
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TABLE 4 Associations of lean mass increasing alleles with musculoskeletal phenotypes1

Cross-phenotype

SNP LM IA Gene
Effect in

M1
M1/M3
ratio, % Type of locus

Grip
strength FN-BMD LS-BMD Fx

rs9936385 C FTO Yes 234 Sumo Wrestler 0 0 0 – –
rs10871777 G MC4R Yes 222 Sumo Wrestler 0 0 0 0
rs733381 A TNRC6B Yes 125 Intermediate ++ 0 – – +
rs9991501 C HSD17B11 Yes 120 Intermediate 0 0 + 0
rs2287926 A VCAN Yes 64 Body Builder 0 0 0 0
rs4842924 C ADAMTSL3 Yes 67 Body Builder ++ 0 0 0
rs2943656 G IRS1 No NA Indirect/Fat locus 0 0 0 0

1The threshold for a statistically significant association with Bonferroni correction for 4 traits is P = 0.0125 (0.05/4). For further details, see
Supplemental Table 8. +, nominal significant increase; ++, multiple testing corrected significant increase; – –, multiple testing corrected significant
decrease; 0, no significant effect; BMD, bone mineral density; FN, femoral neck; Fx, fracture; LM IA, lean mass increasing allele; LS, lumbar spine; M1,
Model 1 not adjusted for fat; M3, Model 3 adjusted for fat mass in kilograms; M1/M3 ratio, a measure of the degree of attenuation of the lean mass
association after fat mass adjustment; NA, not applicable because no effect in M1.

When lipid-metabolism-related traits were evaluated in lean
mass Model 1, a positive genetic correlation was observed
for serum triglycerides, and inverse genetic correlations were
observed for total cholesterol and HDL cholesterol (–0.14
and –0.40; Table 5). The significant genetic correlation with
triglycerides was lost in lean mass Model 3 adjusted for fat
mass in kilograms. Although the genetic correlations with HDL
cholesterol was attenuated after fat mass adjustment (–0.28,
Model 3), the correlation was still significant at P = 0.000002. Of
note, the genetic correlations of lean mass with coronary artery
disease were not significant (0.02–0.08, P > 0.05).

There was a modest positive genetic correlation between BMD
parameters and lean mass in all 3 models, whereas the genetic
correlation with grip strength, a proxy for muscle function, was
observed in Model 3 but not in Model 1 (0.28, P = 0.0036 and
0.16, P > 0.05, respectively; Table 5).

Age at menarche and age at menopause can be regarded as
indicators of lifetime sex steroid exposure. Age at menarche but
not age at menopause displayed inverse genetic correlations with
lean mass in all 3 models, although this was most pronounced in
Model 1 (rg –0.36; Table 5).

Annotation and enrichment analysis of regulatory elements

In the enrichment analysis of tissue-specific regulatory ele-
ments using experimental epigenetic evidence (DNase hyper-
sensitive sites, histone modifications, and transcription factor-
binding sites in human cell lines and tissues from the ENCODE
Project and the Epigenetic Roadmap Project), SNPs in the
TNR6CB locus were significantly enriched in these regulatory
elements in blood cells, but not in muscle or other selected
tissues after multiple testing correction (Supplemental Table 9).
There was no significant tissue-specific enrichment of regulatory
elements for the MC4R locus. The enrichment results for the other
loci have previously been presented (4).

Expression quantitative trait loci

No significant association was found between rs733381
and TNRC6B gene expression in the skeletal muscle tissue
(P = 0.13, N = 491) from GTEx data, although individuals

with homozygosity of minor allele G appear to have relatively
lower TNRC6B gene expression in the skeletal muscle tissue. We
also looked at EQTLs of rs733381 in other tissues from GTEx
data, but none of the associations attained statistical significance
after multiple testing correction. MC4R gene expression is not
detectable in the skeletal muscle tissue, whole blood, and many
other tissue types, except for brain tissues, esophagus, and testis
from GTEx data. Among those tissues with detectable MC4R
gene expression, the smallest P value between rs10871777 and
MC4R gene expression was found in the frontal cortex brain
tissue (P = 0.017, N = 118). However, no statistical significance
was found after multiple testing correction. The EQTL results for
the other loci have previously been presented (4).

Discussion
Body weight consists of LM, fat mass, and bone mass,

each with substantial heritable components and each playing
important roles in physical function and metabolism. Because
LM is correlated with fat mass, it is difficult to identify
genetic determinants specific for LM. In addition, this makes it
challenging to determine the metabolic health consequences of
LM independent of fat mass. In the present study, we performed
large-scale GWAS for LM without or with different fat mass
adjustments (as well as sex, age, age2, and height), and we
identified genetic variants in 7 separate loci, including one novel
locus (TNRC6B), associated with LM. Based on the relative
strengths of the associations in the model without fat mass
adjustment (Model 1) and the model with fat adjustments in
kilograms (Model 3), we divided the LM loci that we identified
into those with an effect on both LM and fat mass in the same
direction (named sumo wrestler loci with a high Model 1:Model
3 ratio) and those with an impact specifically on LM (named body
builder loci with a low Model 1:Model 3 ratio). Of note, both
Model 2—relative amount of fat (percentage fat)—and Model
3—absolute amount of fat (kilograms of fat)—produced similar
results; however, we did identify and successfully replicate the
novel locus (TNRC6B) using Model 2.

LM increasing alleles of SNPs in sumo wrestler loci were
associated with an adverse metabolic profile, whereas LM
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TABLE 5 Genetic correlations of lean mass phenotype with other traits and conditions1

Model 1 Model 2 Model 3

Trait rg P rg P rg P

Obesity BMI 0.96 1.1 × 10−91 0.76 1.2 × 10−53 0.49 3.3 × 10−24

Childhood obesity 0.60 1.4 × 10−19 0.47 4.4 × 10−13 0.30 2.6 × 10−6

Extreme BMI 0.98 4.8 × 10−40 0.76 4.1 × 10−26 0.51 9.4 × 10−13

Overweight 0.93 2.1 × 10−70 0.72 1.3 × 10−43 0.46 1.1 × 10−16

Waist-to-hip ratio 0.48 4.1 × 10−20 0.29 3.3 × 10−9 0.15 4.0 × 10−3

Body fat 0.45 3.7 × 10−13 0.17 1.2 × 10−2 –0.16 1.4 × 10−2

Carbohydrate Type 2 diabetes 0.27 1.0 × 10−4 0.18 1.0 × 10−2 0.10 1.9 × 10−1

Fasting glucose 0.21 4.9 × 10−3 0.20 4.6 × 10−3 0.15 3.6 × 10−2

Fasting insulin 0.48 2.2 × 10−9 0.28 2.0 × 10−4 0.20 1.1 × 10−2

Fasting proinsulin 0.35 9.8 × 10−3 0.21 9.6 × 10−2 0.05 7.1 × 10−1

HbA1C 0.19 4.3 × 10−2 0.15 1.0 × 10−1 0.08 3.5 × 10−1

HOMA-IR 0.48 8.2 × 10−6 0.33 5.0 × 10−4 0.26 8.7 × 10−3

Lipid Triglycerides 0.15 6.5 × 10−3 0.12 2.3 × 10−2 0.08 1.8 × 10−1

Total cholesterol –0.14 1.8 × 10−2 –0.17 3.0 × 10−3 –0.20 6.0 × 10−4

HDL cholesterol –0.40 7.5 × 10−11 –0.35 4.6 × 10−9 –0.28 2.2 × 10−6

LDL cholesterol –0.05 4.4 × 10−1 –0.10 1.1 × 10−1 –0.16 1.9 × 10−2

Cardiovascular CAD 0.08 1.7 × 10−1 0.07 2.0 × 10−1 0.02 7.3 × 10−1

Musculoskeletal FN-BMD 0.15 9.5 × 10−3 0.11 4.3 × 10−2 0.12 2.9 × 10−2

LS-BMD 0.14 2.4 × 10−2 0.15 1.8 × 10−2 0.17 8.9 × 10−3

Grip strength 0.16 1.1 × 10−1 0.2704 4.4 × 10−3 0.2797 3.6 × 10−3

Reproductive Age at menarche –0.36 2.9 × 10−18 –0.32 1.9E-15 –0.24 1.9 × 10−8

Age at menopause –0.11 7.0 × 10−2 –0.04 4.7 × 10−1 0.05 3.8 × 10−1

1BMD, bone mineral density; CAD, coronary artery disease; FN, femoral neck; HbA1C, glycated hemoglobin; HOMA-IR, homeostasis model
assessment of insulin resistance; LS, lumbar spine; rg, genetic correlation. P < 0.05 is significant.

increasing alleles of SNPs in body builder loci were associated
with metabolic protection.

The 7 SNPs that were reproducibly associated with LM
in any of the 3 models used were all in independent loci
(in/near IRS1, HSD17B11, VCAN, ADAMTSL3, FTO, MC4R, and
TNRC6B). Five of these SNPs (in/near IRS1, HSD17B11, VCAN,
ADAMTSL3, and FTO) were identified in the model adjusted for
fat mass in kilograms, and the results from this model have been
previously reported (4). However, in the present study, we could
determine how the strengths of the LM associations for these 5
SNPs were affected in different models without or with fat mass
adjustment, enabling us to divide them into sumo wrestler loci
and body builder loci.

A genetic variant in the MC4R locus was in the present study
GWS associated with LM in the model not adjusted for fat mass,
whereas the association was weaker in the model adjusted for fat
mass in kilograms, and consequently this locus was categorized
as a sumo wrestler locus. The MC4R locus has not previously
been identified as an LM locus in a GWAS on LM. However, in a
GWAS on fat mass, the MC4R locus was found to be associated
not only with fat mass but also in secondary analyses with LM in
the same direction (28). These findings indicate that the MC4R
locus has a pleiotropic effect, regulating both fat mass and lean
mass in the same direction.

Importantly, the TNRC6B (Trinucleotide Repeat Containing
6B) locus was identified as a novel LM locus in the present
study, and comparison of the strengths of the associations in
the different models of fat mass adjustments demonstrated that
its LM association was only modestly affected by different
fat mass adjustments. TNRC6B is a protein coding gene in
pathways related to cellular senescence, innate or adaptive im-
mune system, Wnt signaling, and calcium modulating pathways

(GO:0,007223). In addition to the LM, BMI, HDL, grip strength,
LS-BMD, and fracture associations presented here, other GWAS
have reported the TNRC6B locus GWS associated with a
“chronotype” (defined as “Morningness” or “Eveningness”)
phenotype (29), uterine fibroids (30), and mammographic density
(31). Understanding the mechanisms by which TNRC6B variants
relate to body composition and this multitude of phenotypes
may be useful for mitigating a wide range of aging and disease
states.

The LM increasing allele of SNPs in the sumo wrestler loci
(FTO and MC4R) was associated with higher fasting insulin,
higher HOMA-IR, increased risk of diabetes mellitus, higher
serum triglycerides, and lower HDL cholesterol. In addition,
the LM increasing allele of the SNP in the FTO locus was
associated with increased risk of coronary artery disease. Thus,
a genetically determined increase in LM by genetic variants
in sumo wrestler loci is clearly associated with an adverse
metabolic profile. In contrast, the LM increasing alleles of
SNPs in the body builder loci (VCAN and ADAMTSL3) were in
general associated with a beneficial metabolic profile regarding
both carbohydrate metabolism (lower fasting insulin or reduced
risk of diabetes mellitus) and lipid metabolism (lower serum
triglycerides or higher HDL cholesterol). The intermediate loci
(TNRC6B and HSD17B11) were not associated with a clear
metabolic profile. These findings suggest that the observation
of genetically determined higher LM correlating with adverse
metabolic consequences is being driven by the higher fat mass.
Once adjustment for fat mass is made, the genetic correlation is
more favorable. Our findings therefore support a protective effect
of increased lean mass for glucose intolerance. Alternatively, the
described associations with metabolic traits could be explained
by pleiotropic effects of the respective genes.
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Although we could divide the SNPs that we found to be
associated with LM in the different models into categories based
on a relation with LM and fat mass or LM only, we found that
the SNP in IRS1 behaved differently from the other genes. The
LM increasing allele in/near IRS1 was associated with lower fat
mass and lower BMI but had no significant effect on the absolute
amount of LM when the effect on fat mass was not taken into
account. We, therefore, named the IRS locus a “fat-mediated lean
mass” locus, because it primarily appears to impact the amount
of fat mass.

Besides cross-phenotype analyses, we determined the genetic
correlations between LM phenotypes and a variety of parameters
with a focus on metabolic and musculoskeletal phenotypes using
LD score regression. Genetic correlation in LD score regression
is (asymptotically) proportional to Mendelian randomization
estimates (26). This method has an advantage, for several reasons:
it does not require individual genotypes; it is not restricted to
GWS SNPs; and there is no need for LD pruning (which loses
information if causal SNPs are in LD) (26). LD score regression
analyses revealed strong positive genetic correlations between
LM and several obesity traits and carbohydrate-metabolism-
related traits such as type 2 diabetes mellitus, fasting glucose, and
fasting proinsulin. These genetic correlations were attenuated in
models adjusted for fat mass (in kilograms), supporting the notion
that genes that determine LM not adjusted for fat mass have a
stronger genetic overlap with genes that determine obesity and
glucose intolerance than genes that determine LM irrespective
of fat mass. Similar findings, with stronger genetic correlations
shown for models not adjusted for fat mass, were observed for
the positive genetic correlations with serum triglycerides and the
inverse genetic correlations with HDL cholesterol.

Cross-phenotype analyses revealed that the LM increasing al-
leles of the SNPs in/near TNRC6B and in/near ADAMTSL3 were
robustly associated with higher hand grip strength, suggesting
that increased muscle mass resulted in increased muscle strength.
This notion is supported by our finding of a positive genetic
correlation between LM and grip strength in models adjusted for
fat mass. In general, fat mass adjustment attenuated the genetic
correlations between LM and metabolic traits, whereas the same
adjustment enhanced or did not change the genetic correlations
between LM and musculoskeletal traits.

Interestingly, age at menarche but not age at menopause
displayed inverse genetic correlations with LM in all 3 models
but was most pronounced in Model 1, implying that genes related
to both fat mass and LM are correlated with genes determining
age at menarche. Previous studies have demonstrated that high
BMI is associated with early age at menarche, and the onset of
menstruation may be initiated when body fat percentage levels
exceed 22% (32). The present study indicates that also the amount
of LM is involved in the onset of menarche. Alternatively, it is
possible that sex hormone status might be the link between early
menarche and high LM.

There are limitations to our study. The X chromosome,
harboring the androgen receptor gene, was not included in the
present meta-analysis, which is notable because androgens have a
major impact on muscle mass. Another potential weakness of this
study is our decision to meta-analyze body composition results
using 2 different techniques (BIA and DXA). Nevertheless, the
2 methods are highly correlated (9), and by combining them, the
power to detect GWS loci was greatly enhanced.

In conclusion, we identified one novel LM locus (TNRC6B),
and our results suggest that a genetically determined increase in
LM might exert either harmful or protective effects on metabolic
traits, depending on its relation to fat mass.
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