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Abstract

Neurotensin, a gut hormone and neuropeptide, increases in circulation after bariatric 

surgery in rodents and humans and inhibits food intake in mice. However, its potential 

to treat obesity and the subsequent metabolic dysfunctions have been difficult to 

assess owing to its short half-life in vivo. Here, we demonstrate that a long acting, 

pegylated analogue of the neurotensin peptide (P-NT) reduces food intake, body 

weight and adiposity in diet-induced obese (DIO) mice when administered once daily 

for 6 days. Strikingly, when P-NT was combined with the GLP-1 mimetic liraglutide 

the two peptides synergized to reduce food intake and body weight relative to each 

mono-therapy, without inducing a taste aversion. Further, P-NT and liraglutide co-

administration improved glycemia and reduced steatohepatitis. Finally, we show that 

the melanocortin pathway is central for P-NT-induced anorexia and necessary for the 

full synergistic effect of P-NT and liraglutide combination-therapy. Overall, our data 

suggest that P-NT and liraglutide combination-therapy could be an enhanced 

treatment for obesity with improved tolerability compared to liraglutide mono-

therapy.       
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The prevalence of obesity and diabetes has reached epidemic proportions and is still 

on the rise (1). Despite this, a limited number of anti-obesity drugs are currently 

approved, including the glucagon-like peptide-1 (GLP-1) analogue liraglutide. 

However, liraglutide and other obesity pharmacotherapies evoke only modest weight 

loss of 5-10% (2). To improve efficacy and limit unacceptable adverse effects, a 

current innovation in the development of anti-obesity treatments involves targeting 

multiple signaling pathways simultaneously. This approach has several advantages 

including exploiting additive or synergistic effects between distinct signaling 

pathways, and is supported by the marked weight loss associated with bariatric 

surgery, which broadly stimulates anorexigenic hormone release (3). Further, 

tolerability is expected to improve with combination-treatments as lower doses of 

each agent could be used. With mono-therapy, adverse effects are often reported due 

to the usage of peak doses. For example, upwards of 30-40% of patients on 

therapeutic doses of liraglutide suffer from nausea in a dose-dependent manner (4; 5). 

Combinatorial treatment approaches have thus far largely been explored for GLP-1 

mimetics (6) in combination with a range of other hormones including leptin (7), 

peptide YY (PYY) (8), cholecystokinin (9), amylin (10) and glucagon/glucose-

dependent insulinotropic polypeptide (11) either as adjunctive co-treatments or as co-

agonist fusion peptides. We recently demonstrated that, in addition to the expression 

in N-cells, the gut hormone neurotensin (NT) is co-expressed with GLP-1 and PYY in 

L-cells (12), suggesting a common functional importance. 

NT is generally considered an anorexigenic neuropeptide and reduces food intake 

when administered directly into the brain (13-15). Further, NT is increased in 

circulation following gastric bypass surgery in rodents and humans (16-18), which we 

demonstrated might contribute to the subsequent hypophagia (16). The metabolic 
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effects of peripheral NT are, however, incompletely understood, which may relate to 

the challenges working with peptide hormones with short circulatory half-lives such 

as NT, where the half-life is estimated to 30 s in rodents (19). To improve the 

understanding of NT effects on metabolism, we have developed a long-acting NT 

peptide (pegylated NT, P-NT)(16). P-NT prolongs the inhibition of feeding in mice at 

least ten times compared to native NT (16) but its effects in a chronic setting as well 

as its downstream targets are incompletely understood. We hypothesized that long-

acting NT and GLP-1 mimetics converge in the central melanocortin pathway but 

through different intracellular signaling pathways, Gαq and Gαs respectively, to 

reduce food intake and reverse obesity.

Research design and methods

Animals

Male C57Bl/6J mice (Janvier, Le Genest-Saint-Isle, France) were used as wildtype 

lean or diet-induced obese (DIO) mice. DIO mice were fed a high-fat high-sucrose 

diet (58% fat; #D12331, Research diets, New Brunswick, NJ) from 7 weeks of age for 

4-6 months. Lean mice were fed a chow diet (altromin 1310, Lage, Germany). Mice 

were housed in temperature-controlled environments under a 12/12 h light-dark cycle 

with ad libitum access to food and water unless otherwise stated. Animal experiments 

using wildtype lean or DIO mice and male loxTB melanocortin 4 receptor (MC4R) 

mice (20) (B6;129S4-Mc4r tm1Lowl/J stock no: 006414; Jackson Laboratory, 

Bar Harbor, ME) were approved by the Danish animal inspectorate or the Animal Use 

and Care Committee of Bavaria, Germany and followed institutional guidelines. 

Electrophysiology studies using Pomc-hrGFP mice (21) were performed in 

Page 4 of 42Diabetes



5

accordance with the guidelines established by the National Institute of Health Guide 

for the Care and Use of Laboratory Animals and approved by the University of Texas 

Institutional Animal Care and Use Committee. 

Peptides 

The side-chain protected NT with a KKGG linker at N-terminal was assembled by 

automated synthesis employing an ABI-433A peptide synthesizer with standard 

Fmoc/6-Cl-HOBt/DIC coupling protocols. The crude peptide was acylated with 20K 

PEG NHS ester (Iris Biotech GmbH, Marktredwitz, Germany). The desired PEG-

peptide was purified by preparative reverse-phase HPLC, final peptide-deprotection 

was conducted and a second preparative HPLC purification was performed. MALDI 

analysis confirmed the molecular weight of the final product. 

Liraglutide was provided by Novo Nordisk (Indianapolis, IN or Måløv, Denmark). 

All peptides were solubilized in saline. Liraglutide was dosed in a concentration of 2, 

3 or 8 nmol/kg equivalent of 7.5, 11.3 and 30 μg/kg respectively as indicated in figure 

legends. Importantly, to allow a sufficient window for weight loss synergy 

subthreshold doses of liraglutide were used and each batch of liraglutide was 

independently dose-optimized. P-NT was dose-optimized in concentrations ranging 

from 44-1188 nmol/kg in 3-fold increments in DIO mice both as a mono-treatment 

and in combination with liraglutide. A dose of 396 nmol/kg P-NT was used in 

additional experiments. P-NT and liraglutide co-treatment was administered by single 

formulated injections. Peptides were dosed at a volume of 5 mL/kg subcutaneously. 

Food intake, body weight and indirect calorimetry
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DIO and MC4R KO mice (n=5-8 as indicated in figure legends) were single-housed 

or housed in pairs and treated daily for 2-6 days as indicated in figures with vehicle, 

liraglutide, P-NT, or co-treatment with liraglutide and P-NT in the end of the light 

phase. One cohort of DIO mice (n=8) was placed in an indirect calorimetry system 

(TSE systems, Bad Homburg, Germany) during peptide treatment where food intake, 

respiratory exchange ratio (RER), energy expenditure and activity levels were 

continuously monitored for 72 hours. Body composition was assessed using MRI 

(EchoMRI, Houston, TX). MC4R KO mice were fed a high-fat high-sucrose diet 

(D12331, Research diets) for 5 weeks prior to pharmacological treatment. Weight-

matched DIO C57Bl/6J mice served as controls for MC4R KO mice. After a 1-week 

washout period, the effect of a 10x dose of liraglutide (20 nmol/kg; 75 μg/kg) was 

assessed in MC4R KO and weight-matched DIO controls. 

Tissue collection for blood biochemistry, liver histology and qPCR

Tissue was collected after 6 days of treatment in DIO mice. On the day of sacrifice, 

mice were fasted for 4 h, blood sampling was done from the tail vein and glucose 

measured using a glucometer before mice received an injection of peptides before 

sacrifice and tissue collection 2 h later. Liver samples were immersed in 4% 

paraformaldehyde or snap frozen in liquid nitrogen and plasma was collected in 

EDTA-coated tubes, centrifuged at 3000 g, 15 min, 4C and stored at -80C. 

Blood biochemistry

Lipoprotein separation was performed using size exclusion chromatography with 120 

μL pooled plasma from the treatment groups as previously described (22). The 

following kits were used for remaining analyses: Cholesterol (Thermo Scientific, 
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Waltham, MA), triglycerides (Wako Chemicals, Neuss, Germany), insulin (mesoscale 

Discoveries, Rockville, MD) and leptin (mesoscale Discoveries). 

Liver histology

Excised liver samples were fixed in 4% formalin, embedded in paraffin and cut into 3 

μm slices for hematoxylin and eosin (H&E) staining. The H&E slides were evaluated 

using a brightfield microscope (Axioplan, Zeiss, Oberkochen, Germany). The 

steatohepatitis score was defined as the unweighted sum of the individual score for 

steatosis and lobular inflammation. Steatosis and lobular inflammation was scored as 

previously described (23). Total scores ranged from 0 to 6 with score 0 considered no 

steatohepatitis, scores 1 and 2 considered borderline steatohepatitis, scores 3 and 4 

considered onset steatohepatitis and score 5 and 6 considered definite steatohepatitis.   

Quantitative polymerase chain reaction

Liver RNA was extracted using the RNeasy lipid tissue mini kit (Qiagen, Hilden, 

Germany) with DNAse digestion according to the manufacturer’s instructions. cDNA 

was synthesized from RNA matched samples using the superscript III Reverse 

Transcriptase kit (Thermo Fisher Scientific, Waltham, MA). qPCR was performed 

using PrecisionPLUS Mastermix on a LightCycler480 (Roche Applied Science, 

Penzberg, Germany). Relative gene expression was calculated using the ∆∆Ct method 

normalizing to the average value of the reference genes TATA-box binding protein 

(TBP) and hypoxanthine-guanine phosphoribosyltransferase (HPRT). See table S1 for 

primers. 

Taste aversion
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Taste aversion was performed in lean mice (n=8) as previously described (16). During 

conditioning, mice received injections of vehicle, liraglutide (3 nmol/kg), P-NT (396 

nmol/kg), combination-treatment with liraglutide (3 nmol/kg) and P-NT (396 

nmol/kg) or LiCl (3 mmol/kg), which served as a positive control. 

Pharmacokinetic profiling

Lean mice (n=4) were treated with vehicle, P-NT (396 nmol/kg), liraglutide (3 

nmol/kg) or co-treatment with liraglutide (3 nmol/kg) and P-NT (396 nmol/kg). Blood 

was drawn from the tail vein at the indicated time-points into EDTA-coated tubes, 

centrifuged at 3000 g, 15 min, 4C and stored at -80C. Intact NT was measured as 

previously described (24).  

Oral glucose tolerance test

DIO mice (n=14) were treated with a single dose of vehicle, liraglutide (2 nmol/kg), 

P-NT (396 nmol/kg) or combination-treatment 1 hour prior to glucose administration 

(1 g/kg p.o.) to assess the acute effect of the peptides on glucose tolerance. Blood 

glucose was measured from the tail vein using a glucometer and insulin was measured 

in retro-orbital vein samples at the indicated time points. 

Taste preference

Taste preference during peptide treatment was evaluated between regular chow and a 

palatable medium-fat high-sucrose diet (Condensed milk diet, D12266B, Research 

diets). Single-housed DIO mice were provided with both diets in separate 

compartments in the wire cage top equidistant from the water bottle. Fresh diet was 

provided daily. Baseline preference was assessed during 6 days. After this, mice were 
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divided into treatment groups with comparable baseline diet preference and body 

weight and diet preference was assessed in 2 separate experiments. First, mice had 2 

days access to either chow or condensed milk diet followed by 2 days access to the 

same diet during treatment with vehicle, P-NT (396 nmol/kg), liraglutide (2 nmol/kg) 

or combination treatment. After a 1-week washout period the mice were switched to 

the opposite diet and the protocol was repeated and the ability of the treatments to 

inhibit the intake of the 2 diets was compared. Another cohort of DIO mice had 

access to both diets simultaneously during peptide injections and the data is presented 

as intake of condensed milk diet/total intake. 

Electrophysiology

Pomc-hrGFP mice (21) were used to identify Pomc neurons in the arcuate nucleus of 

the hypothalamus. Brain slices were prepared from male mice (5–8 weeks old) and 

electrophysiology performed as previously described (25-27). NT (100 nM; 

Polypeptide, Hillerød, Denmark), liraglutide (100 nM) and tetrodotoxin (TTX; 2 μM; 

Tocris; Bristol, UK) were added to the artificial cerebrospinal fluid for specific 

experiments. Solutions containing drug were typically perfused for 5 min. A drug 

effect was required to be associated temporally with peptide application, and the 

response had to be stable within a few min. A neuron was considered depolarized if a 

change in membrane potential was at least 2 mV in amplitude. n represents the 

number of cells studied. 

Multiplex fluorescence in situ hybridization

Brains from lean wildtype mice were frozen in powdered dry ice and sectioned on a 

cryostat into 12 μm thick coronal sections that were collected from the arcuate 
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nucleus. In situ hybridization was performed according to manufacturers instructions 

using the RNAscope® Multiplex Fluorescent Reagent Kit v2 (Advanced Cell 

Diagnostics (ACD), Newark, CA) and PerkinElmer TSA® Plus fluorescein, Cyanine 

3 and Cyanine 5 Systems (PerkinElmer, Waltham, MA). Probes targeting mm-Pomc 

(Cat.No. 314081-C3, ACD), mm-NtsR1 (Cat.No. 422411, ACD), mm-GLP-1R 

(Cat.No. 418851-C2, ACD), mm-Ppib (Cat.No. 313911, ACD) and DapB (Cat.No. 

310043, ACD) were used. Images were captured using a laser scanning confocal 

microscope (LSM700, Zeiss).

Statistics

Data was tested for statistical significance using Graphpad Prism except for 

ANCOVA, which was performed using SAS. T-test, Mann-Whitney non-parametric 

test, two-way ANOVA repeated measurements, two-way ANOVA and one-way 

ANOVA were performed with appropriate multiple comparison’s test as indicated in 

figure legends. Energy expenditure data was analyzed using ANCOVA with body 

weight as covariate. All data are represented as mean  SD.  The level of significance 

was set at p<0.05. 

Results

Combination-treatment with P-NT and liraglutide reduces body weight and food 

intake in DIO mice 

Optimization of the P-NT dose showed that increasing the dose from 396 nmol/kg to 

1188 nmol/kg both as a mono-therapy and in combination with liraglutide did not 

result in improved weight loss or food intake inhibition (Fig. S1A-B). Decreasing the 
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P-NT dose below 396 nmol/kg to 132 nmol/kg and 44 nmol/kg negatively impacted 

the ability of P-NT to reduce food intake and body weight as a mono-therapy, 

however, in combination with liraglutide, the 132 nmol/kg dose showed equal 

efficiency as the 396 nmol/kg dose (Fig. S1C-D). For remaining experiments, the 396 

nmol/kg dose was used. 

During 6 days of daily treatment, P-NT mono-therapy reduced food intake and body 

weight while liraglutide was not significantly different from vehicle-treated mice. 

Mice co-treated with P-NT and liraglutide lost approximately 8% (4 g) of their body 

weight and a synergistic effect of the peptides was observed on feeding inhibition and 

body weight loss (Fig. 1A-B). The weight loss was predominantly due to loss of fat 

mass (Fig. 1C-D). Mice in the combination-treatment group had decreased insulin and 

leptin levels compared to vehicle reflecting the weight loss in this group (Table 1). 

Mice treated with P-NT and liraglutide combination-treatment also had lower glucose 

levels, and this appeared to be driven by liraglutide (Table 1). 

Combination-treatment with P-NT and liraglutide does not affect energy expenditure 

or induce a taste aversion 

To further understand the mechanism for the observed weight loss indirect 

calorimetry was performed. No differences were observed between groups in energy 

expenditure and activity levels (Fig. 2A-C), while a reduction in the RER value was 

found after combination-treatment reflecting increased lipid oxidation (Fig. 2D). Food 

intake and body weight were reduced in a synergistic manner following P-NT and 

liraglutide combination-treatment relative to mono-therapies (Fig. 2E-F). Vehicle-

treated mice that were pair-fed to the combination-treatment had a weight loss similar 

to that of the combination treatment group, suggesting that energy expenditure did not 
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contribute to the phenotype (Fig. 2G). To establish if the decreased food intake could 

be due to nausea as previously described for peak doses of liraglutide (28-30) a taste 

aversion experiment was performed. P-NT, subthreshold liraglutide dose, or the 

combination of P-NT and liraglutide did not cause a conditioned taste aversion, 

whereas injections of the positive control LiCl induced an aversion towards saccharin 

(Fig. 2H).

The exposure time in plasma of P-NT was similar when administered alone or in 

combination with liraglutide and plasma NT levels were elevated above baseline for 

up to 48 h (Fig. 2I). In comparison, native NT is cleared in just 15 min using the same 

method (16). Finally, we assessed if P-NT and liraglutide mono-and combination-

treatment affected taste preference. When mice were given the choice between chow 

and a palatable medium-fat high-sucrose diet (condensed milk diet), we found no 

changes in their diet preference following peptide treatment (Fig. 2J). Further, we 

found no differences in the ability of P-NT and liraglutide mono-and combination-

treatment to inhibit the intake of chow versus the condensed milk diet, indicating that 

the treatments did not affect taste preference (Fig. 2 K-L). 

The melanocortin system is central for P-NT and P-NT and liraglutide combination-

treatment efficacy

In accordance with previous publications (31; 32), we found that NtsR1 and GLP-1R 

were expressed in Pomc neurons in the arcuate nucleus and that numerous Pomc 

neurons co-expressed both NtsR1 and GLP-1R using in situ hybridization (Fig. 3A-B; 

positive and negative controls fig. S2). Next, we assessed if NT increases the firing 

rate of arcuate Pomc neurons in Pomc-eGFP mice. NT (100 nM) depolarized Pomc 

neurons (change of resting membrane potential: +5.5 ± 0.5 mV, n=7; Fig. 4A-E,G). 
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Similar to previous reports studying GLP1(31), we found that liraglutide (100 nM) 

depolarized Pomc neurons to a similar degree (change of resting membrane potential: 

+6.4 ± 0.3 mV, n=3; Figure 4G). Notably, combined administration with NT 

(100 nM) and liraglutide (100 nM) resulted in a larger depolarization 

of Pomc neurons (change of resting membrane potential: +10.9 ± 0.7 mV; n = 5; Fig. 

4F-G). These data suggest that liraglutide can enhance the NT-induced excitatory 

effect on Pomc neurons. The depolarization induced by NT and combination 

treatment with NT and liraglutide was observed in the presence of TTX (2 μM; +7.4 ± 

0.2 mV (NT), n=4 and +11.5 ± 2.0 mV (NT+liraglutide); n = 5, Fig. S3A-C), 

indicative of a direct membrane depolarization independent of action potential-

mediated synaptic transmission.  

Finally, we tested the effect of P-NT and liraglutide mono-and combination-therapy 

in MC4R KO mice compared to weight-matched DIO controls during 3 days of 

treatment. MC4R KO mice were unresponsive to the anorexigenic and body weight 

reducing effect of P-NT (Fig. 5B and E). MC4R KO and DIO control mice showed no 

response to sub-threshold liraglutide mono-therapy (Fig. 5A and D), however, a 10x 

dose of liraglutide evoked a larger anorexic and body weight reducing response in 

DIO control mice compared to MC4R KO mice (Fig. S4A-B). MC4R KO mice 

decreased their food intake and body weight after P-NT and liraglutide combination-

therapy but their response was blunted compared to DIO controls (Fig. 5C and F). 

Loss of fat and lean mass was likewise blunted in MC4R KO mice compared to DIO 

controls following P-NT mono-therapy and P-NT and liraglutide combination-therapy 

(Fig. 5G-H), overall suggesting that the melanocortin pathway is important for P-NT 

induced appetite regulation and body weight reduction.  
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Acute P-NT and liraglutide combination-treatment does not affect glucose tolerance 

We evaluated the acute effect of P-NT and liraglutide treatment on glucose 

homeostasis using an oral glucose tolerance test in DIO mice. P-NT lowered the 

glucose level at the 15-minute time-point compared to vehicle and liraglutide mono-

therapy (Fig. 6A). However, overall no differences in glucose levels (area under the 

curve) were observed between groups (Fig. 6B), as P-NT slightly delayed the glucose 

excursion. Insulin levels were likewise similar after acute peptide treatment (Fig. 6C). 

P-NT and liraglutide combination-treatment reduces steatohepatitis

We observed a modest improvement in steatohepatitis in the P-NT and the P-NT and 

liraglutide combination-treatment group in DIO mice after 6 days of treatment (Fig. 

7A-B). This was accompanied by a reduction in PCSK9 expression in the 

combination-treatment group suggestive of increased removal of cholesterol from 

circulation, while major hepatic bile acid metabolism pathways were not regulated 

(Fig. 7C-D). Although total plasma cholesterol was not statistically different between 

groups (Fig. 7E), LDL-cholesterol was substantially reduced in the combination 

treatment group, while HDL-cholesterol showed a more modest decrease (Fig. 7F). 

Discussion

The lack of safe and effective pharmacotherapies to treat obesity and associated 

disorders combined with a growing burden of metabolic diseases worldwide, 

highlight the need for new treatment strategies. A pioneering approach to improve 

pharmacological efficacy has focused on combination-therapies to obtain superior 

efficacy and better tolerability compared to mono-therapies. In the present study, we 

find that a pegylated version of the gut hormone NT reduced food intake, body weight 
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and adiposity in DIO mice. Intriguingly, when P-NT was combined with a sub-

threshold dose of the GLP-1 mimetic liraglutide, the two peptides exerted a 

synergistic reduction in body weight and food intake in obese mice relative to each 

mono-therapy. Our indirect calorimetry and pair-feeding data suggest that altered 

activity and energy expenditure were not contributing to the weight phenotype. 

Further, glucose homeostasis and liver function were improved following chronic 

liraglutide and combination-treatment respectively demonstrating an overall 

improvement in metabolic disorders. Finally, we found that the melanocortin pathway 

is central for the anorexigenic effect of P-NT and the synergy observed between 

liraglutide and P-NT. 

Currently, liraglutide mono-therapy constitutes one of the safest treatment options for 

obesity but only elicits modest weight loss in humans (2) and problems with 

compliance exists mainly due to nausea, which is experienced for upwards of 30-40% 

of patients (4; 5). This is likewise seen in rodents where peak doses of liraglutide 

induce a taste aversion towards associated flavors (28-30). Thus, it is desirable to 

improve tolerability by employing lower liraglutide doses while maintaining efficacy 

by combining it with another weight reducing agent that does not evoke nausea and 

emesis. In the present study, we demonstrate this principle by combining liraglutide 

with P-NT. Sub-threshold dosing of the mono-therapies give rise to modest 

improvements in body weight but, when administered in combination, liraglutide and 

P-NT synergize to amplify anorexigenic signaling without inducing taste aversion. 

NT has previously been described to have varying effects on glucose homeostasis 

(33). Here we found that acute treatment with P-NT and sub-threshold liraglutide 

mono-and combination-therapy did not result in improvements in glucose control or 

insulin levels. However, following 6-days treatment, glucose and insulin levels 
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significantly improved in mice that were treated with liraglutide and the combination 

of P-NT and liraglutide, suggesting that liraglutide drives the chronic benefits on 

glucose metabolism. 

We also observed modest improvements in steatohepatitis, decreased plasma LDL-

cholesterol and changes in liver gene expression suggestive of improved hepatic lipid 

handling and removal of cholesterol from the blood following 6 days of combination-

treatment in DIO mice. Recent clinical studies report discrepant results regarding the 

association between circulating NT levels and non-alcoholic fatty liver disease (34; 

35). Although previous studies report the presence of NtsR1 in the liver in some 

species (36; 37), we did not find any NtsR1 expression in mouse liver using qPCR 

(data now shown). The lack of NtsR1 expression in liver is supported by results in 

human and mouse databases (www.proteinatlas.org, 

www.informatics.jax.org/assay/MGI:3625053). Therefore, the reduced steatohepatitis 

in our study is most likely an indirect mechanism potentially contributable to the 

weight loss of the mice. 

The downstream mechanism by which peripheral NT reduces food intake is largely 

unexplored. We previously showed that NT-induced anorexia persists in vagotomized 

mice pointing to a direct effect in the brain of NT (16). The NtsR1 is widely 

expressed centrally with high levels in both homeostatic i.e. hypothalamus and 

hedonic i.e. the ventral tegmental area food intake regulating regions (38). Due to the 

size and hydrophilic nature of the PEG modification of our NT peptide, the effects 

seen in the present study are more likely to be mediated via brain areas with a 

compromised blood-brain-barrier such as the arcuate nucleus of the hypothalamus. 

This is supported by our taste preference data, showing that P-NT and liraglutide 

mono-and combination-treatment exert the same level of inhibition on diets of 
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varying palatability pointing to homeostatic feeding regulation. In the arcuate nucleus, 

the NtsR1 is present on both Pomc and AgRP neurons (32). Following acute P-NT 

treatment we previously observed an upregulation of Pomc expression in the arcuate 

nucleus while AgRP and NPY were not regulated (16). Thus, here we focused on 

Pomc neurons in our characterization of the downstream effectors of P-NT and 

liraglutide therapy. We found that Pomc neurons co-expressed the NtsR1 and the 

GLP-1R. Further, Pomc neurons were depolarized in response to NT and the change 

in membrane potential was augmented with liraglutide co-application. These effects 

persisted in the presence of TTX indicative of a direct effect on Pomc neurons 

independent of synaptic transmission. Next, we assessed the effect of P-NT and 

liraglutide mono-and combination-therapy in MC4R KO mice in comparison to 

weight-matched DIO control mice. MC4R KO mice were unresponsive to the 

anorexic and body weight lowering effects of P-NT mono-therapy and showed a 

blunted response to P-NT and liraglutide combination- therapy. This suggests that the 

melanocortin pathway is essential for P-NT-induced anorexia and necessary for P-NT 

and liraglutide to synergize in their regulation of food intake and body weight. 

Liraglutide reduces food intake when micro-injected into the arcuate nucleus (39) and 

Pomc neurons have been suggested as important downstream effectors of liraglutide-

induced anorexia (31). However, others have challenged the necessity of Pomc 

neurons for liraglutide to reduce food intake (30; 40; 41) and a model where several 

sites and neuronal populations in the brain contribute to liraglutide-induced anorexia 

is emerging (42). As the anorexigenic and body weight lowering effects of medium 

dose liraglutide mono-therapy (20 nmol/kg) were blunted in MC4R KO mice 

compared to DIO controls in our study, our data suggest that liraglutide can partly act 

through this pathway. We therefore hypothesize that NT and liraglutide converge on 
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the same population of Pomc neurons to reverse obesity but through different intra-

cellular signaling pathways as NT is Gαq-coupled while GLP-1 acts through Gαs. The 

Gαq and Gαs signaling pathways have previously been described to synergize in other 

cellular systems (43). Future studies should map out the exact contribution of the 

different intracellular signaling events underlying the observed synergy between P-

NT and liraglutide. 

In conclusion, we developed a stable long-acting analogue of NT enabling us to 

establish the impact of sustained NT signaling on metabolic homeostasis. We 

demonstrate a synergistic action between GLP-1 and NT mediated pathways in the 

regulation of food intake and body weight, and show that P-NT in combination with 

sub-threshold doses of liraglutide reverse obesity and metabolic syndrome without the 

concurrent induction of nausea seen with peak dose liraglutide mono-therapy. Finally, 

we identify the melanocortin pathway as a key downstream effector circuit for P-NT 

action in the brain and suggest that P-NT and liraglutide may synergize in Pomc 

neurons via segregated intra-cellular signaling pathways.
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Table 1 Blood biochemistry

Vehicle Liraglutide P-NT P-NT + 
Liraglutide

Triglycerides 
(mg/dL)

95.115.2 82.29.0 100.417.4 82.215.7

Leptin (pg/mL) 48.19.9 42.311.8 35.412.7 21.73.5*

Insulin 
(ng/mL)

6.43.0 5.32.2 4.92.4 2.31.9*

Glucose 
(mM)

8.30.9 6.70.9** 8.40.8 6.40.4**

Values denote mean  SD. *p<0.05 difference against vehicle. **p<0.01 difference 
against vehicle and P-NT. Data tested with one-way ANOVA with Tukey’s multiple 
comparison test. n=6. 
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Figure legends

Figure 1 Metabolic effects of P-NT, liraglutide and P-NT+liraglutide 

combination-therapy in obese mice during 6-days treatment. A) Body weight, B) 

Cumulative food intake, C) Fat mass and D) Lean mass following treatment with 

vehicle, P-NT (396 nmol/kg), liraglutide (8 nmol/kg) or combination treatment with 

P-NT (396 nmol/kg) and liraglutide (8 nmol/kg). *p<0.05, **/##p<0.01, ###p<0.001 

****p<0.0001. **** in A and B denotes difference between combination-treatment 

and all other conditions. Data tested with two-way ANOVA repeated measurements 

with Tukey’s multiple comparison test for individual time points (A, B) and one-way 

ANOVA with Sidak’s multiple comparison test (C, D). Data are mean ± SD. n=6.   

Figure 2 Indirect calorimetry, taste aversion, pharmaco-kinetics and taste 

preference. A) Energy expenditure, B) Weight adjusted energy expenditure, C) 

Activity levels, D) RER, E) Body weight, F) Food intake, G) Body weight with pair-

feeding, H) Saccharin preference ratio during taste aversion, I) Intact neurotensin 

levels following peptide injections, J) Taste preference with simultaneous 2-diet 

access, K-L) Food intake inhibition on a chow versus a palatable medium-fat high-

sucrose diet (condensed milk diet). *p<0.05, **/##p<0.01, ***/###p<0.001. 

****/####p<0.0001. **** in E denotes difference between combination-treatment 

and vehicle, while ##/#### denote differences between P-NT and liraglutide mono-

treatment and combination treatment. Data tested with ANCOVA (A, B) one-way 

ANOVA with Sidak’s multiple comparison test (C, D, F and H) two-way ANOVA 

repeated measurements with Tukey’s multiple comparison test for individual time 

points (E) and two-way ANOVA with Tukey’s multiple comparison test (J-L). Data 
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are mean ± SD. n=8 (A-F, H and J-L), n=5 (G) and n=4 (I). Liraglutide dosed in a 

concentration of 2 nmol/kg (A-F and J-L) and 3 nmol/kg (G-I).   

Figure 3 Multiplex fluorescence in situ hybridization (M-FISH) staining of GLP-

1R, NtsR1and Pomc mRNA in the murine arcuate nucleus. A) Representative 

merged confocal image of arcuate nucleus section co-stained with probes (Pr) specific 

for GLP-1R (green), NtsR1 (magenta) and Pomc (orange) mRNA transcripts using 

M-FISH and counterstained with DAPI (blue). Insets show cells in higher 

magnification in B. Scale bar = 100 µm. B) Selected areas from above showing 

neurons co-stained with Pomc- (orange, column 1), NtsR1- (magenta, column 2), 

GLP-1R-transcripts (green, column 3) and a merged picture (column 4). Dashed line 

outline cytosol border. Scale bar = 5 µm. ME: Median eminence; 3V: 3rd Ventricle.

Figure 4 Neurotensin and liraglutide effects on Pomc neuron activity. A) 

Brightfield illumination of Pomc-hrGFP neuron, B) The neuron under fluorescein 

isothiocyanate (FITC; hrGFP) illumination, C) Complete dialysis of Alexa Fluor 350 

from the intracellular pipette, D) Merged image illustrates colocalization of 

brightfield, hrGFP, and Alexa Fluor 350 indicative of a Pomc neuron. Scale 

bar = 50 μm, E) Current-clamp recording demonstrates that NT (100 nM) depolarized 

Pomc neurons, F) current-clamp recording demonstrates a Pomc-hrGFP neuron is 

depolarized by NT (100 nM) and liraglutide (100 nM), G) NT, liraglutide and 

combination-treatment induced change in membrane potential. Data are mean ± SD. 

**p<0.01, ****p<0.0001. Data tested with one-way ANOVA with Tukey’s multiple 

comparison test n=3-7.
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Figure 5 Role of the melanocortin system for P-NT, liraglutide and combination-

therapy effects. A) Body weight loss following liraglutide (2 nmol/kg) treatment, B) 

Body weight loss following P-NT (396 nmol/kg) treatment, C) Body weight loss 

following P-NT (396 nmol/kg) + liraglutide (2 nmol/kg) treatment, D) Cumulative 

food intake following liraglutide (2 nmol/kg) treatment, E), Cumulative food intake 

following P-NT (396 nmol/kg) treatment F) Cumulative food intake following P-NT 

(396 nmol/kg) + liraglutide (2 nmol/kg) treatment, G) Change in fat mass, H) Change 

in lean mass. Data represent differences between MC4R KO mice and weight-

matched DIO controls during 3 days treatment. */#/§p<0.05, ##p<0.01, 

***/###/§§§p<0.001, ****/####/§§§§p<0.0001. */***/**** represent differences 

between DIO treatment and MC4R KO treatment, #/##/###/#### represent 

differences between DIO vehicle and DIO treatment and §/§§§/§§§§ represent 

differences between MC4R KO vehicle and MC4R KO treatment. Data tested with 

two-way ANOVA repeated measurements with Tukey’s multiple comparison test for 

individual time points (A-F) and two-way ANOVA with Sidak’s multiple comparison 

test (G-H). Data are mean ± SD. n=6.

Figure 6 Glucose tolerance after acute treatment with P-NT, liraglutide and P-

NT+liraglutide combination-therapy in DIO mice. A) Glucose levels at individual 

time points, B) Glucose area under the curve, C) Insulin levels at individual time 

points following vehicle, P-NT (396 nmol/kg), liraglutide (2 nmol/kg) or combination 

treatment with P-NT (396 nmol/kg) and liraglutide (2 nmol/kg). * denotes differences 

between P-NT and liraglutide and P-NT and vehicle. Data tested with two-way 
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ANOVA repeated measurements with Tukey’s multiple comparison test (A), one-way 

ANOVA with Tukey’s multiple comparison test (B) and two-way ANOVA with 

Tukey’s multiple comparison test (C). Data are mean ± SD. n=14.   

Figure 7 Effects of 6 days treatment with P-NT, liraglutide or combination 

therapy on liver function and plasma cholesterol. A) Hematoxylin & Eosin stain 

(scale bar 500 = µm / zoom = 100 µm), B) Steatohepatitis score C) Hepatic gene 

expression related to cholesterol/lipoprotein uptake and D) Hepatic gene expression 

related to cholesterol and bile acid metabolism/ efflux, E) Total cholesterol and F) 

Lipoprotein profile following vehicle, P-NT (396 nmol/kg), liraglutide (8 nmol/kg), 

and P-NT (396 nmol/kg) + liraglutide (8 nmol/kg) treatment. *p<0.05, **p<0.01, 

****p<0.0001. Data tested with Student’s t-test (C-D) and one-way ANOVA with 

Tukey’s multiple comparison test (E). Data are mean ± SD. n=6.    
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Figure 2 Indirect calorimetry, taste aversion, pharmaco-kinetics and taste preference 
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Figure 3 Multiplex fluorescence in situ hybridization (M-FISH) staining of GLP-1R, NtsR1and Pomc mRNA in 
the murine arcuate nucleus 
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Figure 4 Neurotensin and liraglutide effects on Pomc neuron activity 
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Figure S1 Dose optimization of the P-NT dose A) Body weight and B) Food intake 

during 6 days of treatment for vehicle, liraglutide (8 nmol/kg), P-NT (396 nmol/kg), 

P-NT (1188 nmol/kg), P-NT (396 nmol/kg) + liraglutide (8 nmol/kg) and P-NT (1188 

nmol/kg) + liraglutide (8 nmol/kg), C) Body weight and D) Food intake during 3 days 

of treatment for vehicle, Liraglutide (2 nmol/kg), P-NT (44 nmol/kg), P-NT (132 

nmol/kg), P-NT (396 nmol/kg), P-NT (44 nmol/kg) + liraglutide  (2 nmol/kg), P-NT 

(132 nmol/kg) + liraglutide (2 nmol/kg) and P-NT (396 nmol/kg) + liraglutide (2 

nmol/kg). Data are mean ± SD.  n=6.

Figure S2 Multiplex fluorescence in situ hybridization (M-FISH) control studies 

in the murine arcuate nucleus.

A) Representative confocal images of the arcuate nucleus section stained with probes 

specific for the housekeeping gene (positive control) Mus musculus Peptidylpropyl 

isomerase B (Ppib) mRNA with either fluorescein (Fluor), Cyanine3 (Cy3) or 

Cyanine5 (Cy5) demonstrating no or negligible crosstalk between the respective 

channels. B) Same as above, however stained with probes specific for Bacillus 

subtilis dihydrodipicolinate reductase (DapB) mRNA as a negative control 

demonstrating no staining in any channels. Nuclei was visualized with DAPI 

counterstaining (blue). Scale bars, 20 µm. n=3 mice.

Figure S3 Depolarization of Pomc neurons by neurotensin and liraglutide in the 

presence of tetrodotoxin. A) Representative electrophysiological trace 

demonstrating that the NT induced depolarization of Pomc-hrGFP neurons persists in 

the presence of TTX, B) Representative electrophysiological trace demonstrating that 
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the NT and liraglutide induced depolarization of Pomc-hrGFP neurons persists in the 

presence of TTX, C) NT and NT+liraglutide induced changes of membrane potential 

of POMC neurons with pretreatment of TTX. Error bars indicate SD. Data tested with 

Mann-Whitney non-parametric test n=4-5.

Figure S4 Effect of high dose liraglutide mono-therapy in MC4R KO mice 

compared to DIO controls. A) Body weight, B) Cumulative food intake. #p<0.05, 

##p<0.01, ###p<0.001, ****/####/§§§§p<0.0001. **** represent differences 

between DIO vehicle and DIO liraglutide, #/##/###/#### represent differences 

between DIO liraglutide and MC4R KO liraglutide, §§§§ represent differences 

between MC4R KO vehicle and MC4R KO liraglutide. Data tested with two-way 

ANOVA repeated measurements with Tukey’s multiple comparison test for 

individual time points. Data are mean ± SD. n=6.
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Supplemental Table 1 Primers 

 

Gene Forward primer Reverse primer 

HPRT CTTTGCTGACCTGCTGGATT 

 

TTTCCAGTTAAAGTTGAGAGAT

CA 

 

TBP TCAAACCCAGAATTGTTCTC

C 

 

GGTAGATGTTTTCAAATGCTTC

A 

 

LDLR TCAGACGAACAAGGCTGTC

C 

CCATCTAGGCAATCTCGGTCTC 

LRP1 AACCTTATGAATCCACGCG

C 

 

TTCTTGGGGCCATCATCAGT 

 

PCSK9 CACCCTGGATGCTGGTATCT 

 

GACCTCTTCCCTGGCTTCTT 

 

LIPC ATGTGGGGTTAGTGGACTG

G 

 

TTGTTCTTCCCGTCCATGGA 

 

IDOL AGGACTGTCTCAACCAGGT

G 

 

TGCCTTGTCTGCTCCTGTAA 

 

SORT1 ATCCCAGGAGACAAATGCC

A 

 

AACCTTCCGCCACAGACATA 

 

Cyp7b1 TCTGGGCCTCTCTAGCAAAC 

 

GCACTTCTCGGATGATGCTG 

 

Cyp8b1 CAGCGGACAAGAGTACCAG

A 

 

TGGATCTTCTTGCCCGACTT 

 

Cyp27A1

1 

CTTCATCGCACAAGGAGAG

C 

 

CCAAGGCAAGGTGGTAGAGA 

 

Cyp3A11 CTCTCACTGGAAACCTGGG

T 

 

TCTGTGACAGCAAGGAGAGG 

 

SQLE TGTTGCGGATGGACTCTTCT 

 

GAGAACTGGACTGGGGTTGA 

 

APOE GATCAGCTCGAGTGGCAAA

G 

 

TAGTGTCCTCCATCAGTGCC 

 

ABCA1 AAAACCGCAGACATCCTTC

AG 

 

CATACCGAAACTCGTTCACCC 
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