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Abstract

Background: Associations between childhood asthma phenotypes and genetic,

immunological, and environmental factors have been previously established. Yet,

strategies to integrate high‐dimensional risk factors from multiple distinct data sets,

and thereby increase the statistical power of analyses, have been hampered by a

preponderance of missing data and lack of methods to accommodate them.

Methods: We assembled questionnaire, diagnostic, genotype, microarray, RT‐qPCR,
flow cytometry, and cytokine data (referred to as data modalities) to use as input factors

for a classifier that could distinguish healthy children, mild‐to‐moderate allergic asthmat-

ics, and nonallergic asthmatics. Based on data from 260 German children aged 4‐14
from our university outpatient clinic, we built a novel multilevel prediction approach for

asthma outcome which could deal with a present complex missing data structure.

Results: The optimal learning method was boosting based on all data sets, achieving

an area underneath the receiver operating characteristic curve (AUC) for three classes

of phenotypes of 0.81 (95%‐confidence interval (CI): 0.65‐0.94) using leave‐one‐out
cross‐validation. Besides improving the AUC, our integrative multilevel learning

approach led to tighter CIs than using smaller complete predictor data sets (AUC =

0.82 [0.66‐0.94] for boosting). The most important variables for classifying childhood

asthma phenotypes comprised novel identified genes, namely PKN2 (protein kinase

N2), PTK2 (protein tyrosine kinase 2), and ALPP (alkaline phosphatase, placental).

Conclusion: Our combination of several data modalities using a novel strategy

improved classification of childhood asthma phenotypes but requires validation in

external populations. The generic approach is applicable to other multilevel data‐
based risk prediction settings, which typically suffer from incomplete data.
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1 | INTRODUCTION

Asthma, a complex chronic pulmonary disorder, is the most common air-

way inflammatory disease in children worldwide, with increasing preva-

lence. It is characterized by bronchial hyperresponsiveness and

reversible airway obstruction, causing recurrent episodes of wheezing,

cough, shortness of breath, and chest tightness.1,2 Several subpheno-

types of childhood asthma were suggested in various epidemiological

studies.3,4 However, clinical practice and also molecular studies still

divide children into two main phenotypes, namely allergic and nonaller-

gic asthma.5,6 Attempts were made to disentangle distinct underlying

pathophysiological mechanisms, but were hampered by the complex nat-

ure of the disease.6-9 While singular targets were identified, one could

not consistently pinpoint a reliable pattern of relevant pathways critical

for asthma phenotype differentiation and in the long‐term potentially

patient‐tailored treatment of the disease. However, this is important as

to date, several children with asthma are not well controlled, potentially

due to uniform, non‐patient‐specific therapies with mainly steroids.

Omics data, such as genomics and transcriptomics, have become

increasingly available in human cohorts and thus more critical for under-

standing the pathogenesis of childhood asthma.10 Inherent high dimen-

sionality, incomplete data, and multiple platforms make the analysis of

prediction models complex. Reliable analysis strategies for multi‐omics

data from multiple platforms in large cross‐sectional studies are urgently

needed to predict the risk of this multifaceted disease. Tools for integra-

tion of multiple omics data sets exist in literature11 but are often

restricted to analyzing correlation structures rather than building multi-

variable prediction models. Methods have been proposed to do so, that

is, using several modalities for prediction.12 Acharjee et al13 use the

machine learning method random forest and preselect significant vari-

ables. Zhao et al14 analyze each modality separately and merge the sin-

gle components. Boulesteix et al15 incorporate each modality via

penalized regression estimating weights for each modality. However,

successful solutions are not yet available for cases where different

modalities are assessed for different individuals. Strategies to build and

validate multivariable prediction models incorporating all individuals and

all variables simultaneously are needed for classifying asthma in children.

In this study, we propose a novel approach to optimize predic-

tion of childhood asthma phenotypes when different modalities are

used as input factors. Prediction in the context of this paper refers

to describing and distinguishing childhood asthma phenotypes in

terms of classifying them into the corresponding clinical phenotype

category rather than predicting the development of asthma. Our

data include questionnaire, clinical diagnostic, genotype, expression

microarray, quantitative real‐time RT‐PCR (RT‐qPCR), flow cytome-

try, and cytokine secretion data. Combining multilevel data types by

a reliable analysis strategy for large human cohorts will contribute to

detailed understanding of childhood asthma, potentially relevant for

novel therapeutic strategies. The strategy can also be translated into

numerous other complex diseases.

2 | METHODS

2.1 | Study population

Children between 4 and 15 years from southern Germany were

recruited in the University Children′s Hospital Munich from the CLARA/

CLAUS (Clinical Asthma Research Association) study6 in three clinical

GRAPHICAL ABSTRACT

Statistical learning on immunological, genetic, and environmental data classifies asthma well. Risk estimation is most precise when incorporating

all given data with the novel multi‐modality strategy (area under the receiver operating characteristics curve = 0.81). Best predictors are three

target genes of microarray data, comprising novel identified genes protein kinase N2, protein tyrosine kinase 2, and alkaline phosphatase, pla-

cental. These show the highest importance for childhood asthma classification.
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groups, namely healthy children (HC), mild‐to‐moderate allergic asthmat-

ics (AA), and nonallergic asthmatics (NA). Parents completed a detailed

questionnaire assessing health data on allergy, asthma, and socioeco-

nomic factors. Asthmatic patients were diagnosed according to GINA

guidelines.16 Inclusion criteria for asthmatics were classical asthma

symptoms, including at least three episodes of wheeze and/or a doctor's

diagnosis and/or history of asthma medication in the past and lung func-

tion indicating significant reversible airflow obstruction according to

American Thoracic Society (ATS)/European Respiratory Society (ERS)

guidelines.17 Allergy was defined based on a positive specific IgE level in

accordance with clinical symptoms. Blood specimen was collected dur-

ing the children's recruitment and processed identically.

2.2 | PBMC isolation, RNA and DNA extraction

Peripheral blood mononuclear cells (PBMCs) were isolated within

24 hours after blood withdrawal, cultured in X‐Vivo (48 hours)

unstimulated (U), stimulated with plate‐bound anti‐CD3 (3 μg/mL)

plus soluble anti‐CD28 (1 μg/mL), lipid A (LpA, 0.1 μg/mL), or pepti-

doglycan (PGN, 1 mg/mL, OR) at 37°C. Cell pellets were used for

RNA isolation utilizing the RNeasy Mini Kit (Qiagen, Hilden, Ger-

many), and supernatants were frozen at −80°C. Genomic DNA was

extracted from whole blood (Flexigene DNA‐Kit, Qiagen).

2.3 | Modalities

We investigated seven data modalities: questionnaire, diagnostic,

genotype, microarray, RT‐qPCR, flow cytometry, and cytokine data.

Diagnostics included weight, height, blood count, immunoglobulins,

CrP and IL‐6 as well as FeNo.

2.4 | Genotyping

Extracted DNA was genotyped for 101 loci using matrix‐assisted
laser desorption/ionization time‐of‐flight‐mass spectrometry (Seque-

nom, Inc., San Diego, CA). Deviations from Hardy‐Weinberg equilib-

rium were assessed for quality control of genotyping procedures.

Loci were selected based on known biological relevance and gen-

ome‐wide association study results.18

2.5 | Microarrays

RNA of PBMC from a subgroup (14AA/8NA/14HC), comparable to

the whole population, was analyzed by Affymetrix‐GeneChip®

Human‐Gene 1.0 ST‐arrays. Quality of scanned arrays was checked

by MvA, density, RNA degradation plots, using R and Bioconduc-

tor.19,20 Robust multichip averages were used for background cor-

rection, normalization, and control of technical variation.

2.6 | RT‐qPCR, flow cytometry, and cytokines

Isolated RNA was processed (1 μg) with reverse transcriptase (Qia-

gen). Gene‐specific PCR products were measured by CFX96

TouchTM Real‐Time PCR Detection System (Bio‐Rad, Munich, Ger-

many) for 40 cycles. Subpopulations of 2.5 × 106 PBMC were

counted on a FACSCanto II flow cytometer (Becton Dickinson).

Cytokine levels were determined in supernatants of cultured PBMCs

with Human Cytokine Multiplex Assay Kit (Bio‐Rad) using LUMINEX.

2.7 | Computational and statistical analysis

The statistical analyses were performed with R software.19 Details of

this section are provided in the article's Supplement. The complex

sparse data structure required strategies for handling missing values.

Variables containing more than 25% missing values within one

modality data set were removed. Remaining missing values were

handled via multiple imputation21 (without using any information on

the outcome variable) since we assumed missingness at random. This

yielded a basic structure of the full data set (Figure 1). We could rule

out the possibility that this remaining complex missing data suffered

from sample selection bias.6 The intersection data set containing

complete observations from all modalities embraced 33 children.

For classification of the three categorical outcome variable with cat-

egories AA, NA, and HC, we utilized four state‐of‐the‐art classification
algorithms suitable for high‐dimensional predictors: the least absolute

shrinkage and selection operator (LASSO) and elastic net,22 both repre-

senting penalized regression methods (in our case multi‐class logistic

regression); and random forest23 and (stochastic gradient) boosting,22

both machine learning ensemble methods based on decision trees.

The area under the receiver operating characteristics curve (AUC)

was used as metric for comparing prediction accuracy.24 As we com-

pared three outcome categories instead of the standard number two,

we obtained an overall AUC by calculating a weighted average over

the three one‐category‐vs‐all‐categories combinations.24,25 Prediction

models were validated via leave‐one‐out cross‐validation (Figure S1).

For the complex data structure, we utilized two standard modeling

strategies and combined them to a novel one. We compared the result-

ing three approaches to the four mentioned statistical learning

approaches (in short: LASSO, elastic net, random forest, boosting). In

Strategy A, each modality was analyzed independently, so that all obser-

vations were used but training and validation were possible only modal-

ity‐wise. Strategy B is a complete case model, that is, we used only

complete observations where all seven modalities were measured. Here,

all modalities were analyzed at once, but only the completely measured

cases were left for analysis. The newly developed Strategy C combined

the former two: Classifiers were trained on each modality separately in

a first step on a training data set. Applying an inner validation, each

modality obtained an optimized weight. The weighted classifiers were

combined to a single prediction model, which was evaluated on the

complete observations. The three strategies are illustrated in Figure 2.

3 | RESULTS

Two hundred and sixty individuals of the CLARA/CLAUS population

with well‐defined phenotypes (AA/NA/HC) in total were available for
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the present analyses. AA cases (47%), NA cases (11%), and HC (43%)

in the data differed with respect to variables from seven data modali-

ties (Table S4). Full information on all variables was available for 33

children. The most complete modality was the questionnaire with all

260 individuals being measured. The smallest modality data set regard-

ing the number of measured individuals was the microarray data set

with 36 observations. The remaining modality data sets, cytokines,

flow cytometry, diagnostics, questionnaire, and RT‐qPCR contained

148, 172, 162, 248, and 107 observations, respectively (Table S4).

3.1 | Prediction modeling

For preventing from severe overoptimistic bias regarding perfor-

mance of a best model, we report results for all models26,27:

Strategy A performed prediction on single modalities separately

(Figure 2A). On a stand‐alone basis, there was no discriminatory power

shown for any classifier on flow cytometry (AUC for best classifier

boosting 0.54 [0.45‐0.64]) and RT‐qPCR (AUC for LASSO 0.47 [0.36‐
0.59], Figure 3A). Here, all CIs crossed the AUC = 0.5 line, indicating

that the prediction models did not do better than random guessing.

There were moderate performances (mean AUC less than 0.7) for

cytokines (boosting 0.60 [0.51‐0.70]), SNPs (random forest 0.66 [0.57‐
0.75]), and diagnostics (LASSO 0.69 [0.61‐0.75]). Mean AUCs higher

than 0.7 were yielded by modalities environment with an AUC for

boosting of 0.75 [0.69‐0.82] and microarray with an AUC of 0.74 and

a comparatively large confidence interval [0.54‐0.90] (Figure 3A).

Strategy B considered only observations with values of all modal-

ities given (Figure 2B) and achieved a higher AUC than Strategy A

F IGURE 2 Schematic illustration of data partitions taken into account for prediction modeling at a time. A, All observations per modality
were included, but training and validation were done separately for each block. B, Only complete observations were used, and classifiers were
trained on all modalities at once. C, All modalities and all observations were incorporated in a single prediction model and validated on
complete observations

F IGURE 1 Structure of the given data
after imputation within each modality. The
blue‐colored areas depict the given data
values (all white areas correspond to
missing data). The given data consist of
seven groups of variables of the same type
(modalities). There are only few subjects
containing data for all modalities. The
given gene expression by microarray data
is the restricting component regarding
complete cases and contains the most
variables (reduced in figure for illustration
reasons)
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for LASSO (0.77 [0.60‐91]) and boosting (0.81 [0.65‐0.94], Fig-

ure 3B), again with large confidence intervals.

Strategy C combined A and B. Here, as in B, boosting outper-

formed the other classifiers clearly with an AUC of 0.82 [0.66‐0.94]
(Figure 3C). Performance did not significantly increase from Strategy

B to C. However, the classifiers’ variance for C decreased slightly as

shown by the narrower confidence intervals (Table S1).

3.2 | Variable importance

Strategy B presents a reasonable trade‐off between convenient

interpretability and good prediction performance. Hence, we investi-

gated its best prediction model with respect to its most important

predictor variables. For meaningful interpretation, we considered

annotated genes only for the microarray modality set here.

Figure 4 shows the performance of the refitted modified model,

that is, Strategy B with annotated genes only. Boosting, which origi-

nally performed best (AUC = 0.81 [0.65‐0.94]), predicted slightly

worse in the modified version (AUC = 0.77 [0.58‐0.93]). Here, LASSO

performed similarly to boosting (AUC = 0.77 [0.60‐0.91]). Therefore,
we analyzed the most important variables of both classifiers. As we

based our investigations on variable importance on the two prediction

models, we looked in detail at the sensitivities and specificities in

terms of ROC curves for these two models (Figure 5); even though

the overall AUC was equal in both prediction models, their values dif-

fered regarding their one‐vs‐all comparisons. Generally, the predictive

quality was higher for discriminating healthy controls from both kind

of asthmatics (Figure 5A) and for discriminating allergic asthmatics

from healthy controls and nonallergic asthmatics (Figure 5B) than for

discriminating nonallergic asthmatics from healthy controls and aller-

gic asthmatics (Figure 5C) (for boosting: AUC = 0.79 for HC vs all,

AUC = 0.78 for AA vs all, AUC = 0.72 for NA vs all).

Over all imputations, LASSO selected 22 non‐highly correlated

variables, which were exclusively genes from the microarray modality

(Table S2, Figure 6B). In contrast, boosting used all variables by pre-

ferring and ranking them according to their importance without

excluding correlated variables. Here, we took those 50 variables into

consideration which were ranked highest (Figure S2). The selection

contained variables from modalities microarray, cytokines,

F IGURE 3 Comparison of prediction for different modalities for different statistical methods and strategies. A, Performance of prediction
models on each modality analyzed separately (Strategy A). B, Performance for complete case model (Strategy B). C, Performance of
combination strategy (Strategy C)

F IGURE 4 Performance of prediction models on the 33 complete
cases (Strategy B). The procedure was run twice—once the modified
model including genes which only contained annotated genes (left),
once the original model including nonannotated genes in addition
(right). The AUCs are calculated as the average over the 5
imputations; the error bars show 95% bootstrap confidence intervals
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diagnostics, environment, and RT‐qPCR (Table S3, Figure 6A). The

two lists overlapped in three variables, illustrated by Figure 6C and

Tables S2 and S3, all of them were genes from the microarray

modality: PKN2, PTK2, and ALPP. Thus, we considered these as

model‐independent most important variables for prediction of child-

hood asthma.

A wider overlap could be determined with more relaxed assump-

tions (s. details in Table S5 and Figure S3), that is, when variables in

the two sets were considered as corresponding to each other when

their correlation coefficient exceeded a predefined threshold (Figure

S2). Besides breastfeeding, other characteristics considered as poten-

tial confounders in a standard analysis (such as age and sex) did not

show high variable importance.

4 | DISCUSSION

This study contains a novel proposal for prediction analyses of child-

hood asthma using cytokine, genotype, flow cytometry, diagnostic,

questionnaire, RT‐PCR, and microarray data simultaneously. Many

studies on childhood asthma currently analyze phenotypes based on

assessment of singular measurements only.28

Combining several data types has optimized prediction of child-

hood asthma phenotypes in the CLARA study. The most important

variables for prediction of childhood asthma phenotypes comprised

novel identified genes, namely PKN2 (protein kinase N2), PTK2 (pro-

tein tyrosine kinase 2), and ALPP (alkaline phosphatase placental).

The need for a new strategy arose from the complex data design

with seven groups of variables (modalities) of various dimensions on

the one hand, and the comparably rare number of complete cases,

where observations were given for all modalities, on the other side.

The novel strategy incorporated all individuals and all variables simul-

taneously. The employed classifiers (LASSO, elastic net, random for-

est, boosting) were capable of handling biomedical data difficulties

such as highly correlated and large numbers of variables, possibly

exceeding the number of observations, and of filtering important

variables from big amounts of noisy variables, which is especially

important for the huge amount of predictor variables and the addi-

tional heterogeneity in the variables.

4.1 | Prediction by seven modalities—best
prediction obtained by boosting

The single‐modality approach (Strategy A) showed differences in pre-

diction quality for the various modalities and four classifiers. Predic-

tion was unambiguously successful for environment and microarray,

partly successful for cytokines, genetics, and diagnostics, and unsuc-

cessful for flow cytometry and RT‐qPCR. This is crucial as several

studies are analyzed based on singular modalities.

The complete case approach (Strategy B) proved that combining

all variables of all modalities to one model is more predictive than

using only single modalities.

Both strategies were trade‐offs between using all observations

per modality and using all modalities simultaneously. Combining both

aspects led to the novel combined approach (Strategy C), using the

complete data for the training process (Figure 2C) by training a clas-

sifier and optimizing a weight via internal model validation for each

modality separately in a first step and aggregating all established

components in a second step (Figure S1). This strategy tended to

decrease the variability of asthma prediction on independent data

(Table S1). Thus, including not only all data modalities but also all

observations per modality, as Strategy C does, may offer the chance

to improve precision in risk estimates for asthma rather than it is

possible by using, for example, only clinical or only diagnostic mea-

sures, or otherwise using all possible modalities but taking only those

observations into account where all values for all these modalities

are measured. Even though the decrease in the variability in terms

of smaller confidence intervals was small in our data, in further

F IGURE 5 Sensitivities and specificities in terms of ROC curves for the two best‐performing prediction models, LASSO and boosting, on
the 33 complete cases (Strategy B), when all variables were used but nonannotated genes were excluded. ROC curves were calculated
separately (aggregated over all 5 imputations) as (A) Healthy controls (HC) vs all others, (B) Allergic asthmatics (AA) vs all others and (C)
Nonallergic asthmatics (NA) vs all others. The overall AUC of 0.77 for both prediction models is a weighted average over the three single AUC
comparisons. The weights correspond to the proportions of HC (0.36), AA (0.39), and NA (0.24), respectively
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applications, the strategy will generally guarantee at least as good

precision as Strategy B, as more information in the data is used. The

strategy is especially advantageous when the number of complete

cases is substantially smaller than the number of overall individuals

in the study. It may even be the only solution when this number is

too small for Strategy B.

Boosting showed best performance for both Strategies B and C

(Figure 3B/C). This method is convenient for clinical data sets where

a multitude of immune‐related measurements are available, but miss-

ing or small numbers of subjects pose a problem for common analy-

sis strategies.

4.2 | Contributional influences—gene expression is
most predictive

Prediction on complete cases using annotated genes only was com-

parable to the original model using also nonannotated genes and

yielded high interpretability regarding the most important variables

for prediction. We thus repeated prediction by Strategy B on the

adjusted selection of genes. Evaluation by two conceptually different

methods, the variable selection via LASSO and the relative influence

determined by decision trees in the framework of boosting, yielded

three model‐independent most important variables for prediction:

the genes PTK2, PKN2, and ALPP.

PTK2, a member of focal adhesion kinase (FAK), encodes a cyto-

plasmic protein tyrosine kinase that localizes to focal adhesions and

contributes to integrin‐mediated cell processes related to cell sur-

vival. The activation of this gene regulates a wide variety of cellular

responses and is assumed to be important in the early step of cell

growth and intracellular signal transduction pathways.29 Although

tyrosine kinases play an important role in several pulmonary mecha-

nisms like in airway hyperresponsiveness and airway remodeling, no

correlation between PTK2 gene and asthma has been described so

far.30 PKN2, also called protein kinase C‐related kinase 2 (PRK2), is a

Rho target protein which regulates the apical junction formation in

human bronchial epithelium. It has been shown critical for human

F IGURE 6 Variable importance for best models on complete observations. Genes are denoted by their names with the type of stimulation
in parentheses. A, Boosting variable importance: Variables ranked under the top 50 by boosting in the complete case model averaged over all
five imputations. B, LASSO‐selected variables: Variables selected by LASSO in the complete case model over all five imputations. C, Venn
diagram/pie charts for sets of variables ranked highest by boosting (50 variables) and of variables selected by LASSO (19 variables). Three
variables (genes) were selected in both prediction models
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cancer and would represent a novel gene pathway potentially rele-

vant for childhood asthma.31 ALPP is a gene which encodes the pla-

cental alkaline phosphatase that catalyzes the hydrolysis of

phosphoric acid monoesters and was previously identified to be

potentially involved in recurrent spontaneous abortion.32 We

acknowledge that the identification of the novel genes PKN2, PTK2,

and ALPP is based on a limited number of children and requires con-

firmation in future cohorts. Although these three genes have not

been associated with childhood asthma yet, the findings in this study

could be a first hint for future investigations.

Further model‐specific variables contributing to prediction were

obtained (Tables S2, S3). Contrary to the LASSO model which only

labeled genes as most important, boosting found variables also from

other modalities. One of them is the number of months of breastfeed-

ing. This may have an influence on asthma, however can be a case of

translucent correlation since mothers with family history may be biased

in their decisions for breastfeeding. Besides this, selected cytokines

such as IL‐1β and IL‐5, diagnostics variables, and RT‐qPCR variables

such as IRF8 have been identified as important by boosting (Figure 6A).

In our results, no genotype variables (SNPs) turned out to be

important for prediction. This is not surprising as in our and in previ-

ous analyses SNPs on a stand‐alone basis did not exceed AUC values

of around 0.60.18 The low predictive effects of SNPs may be cov-

ered by effects from other modalities in our analysis.

4.3 | Prediction techniques—using well‐established
algorithms and all data information

We have used four of the most powerful instruments for prediction

in terms of classification from regularization regression methodology

to machine learning. In practice, classical approaches as (multivari-

able) nonpenalized logistic regression can bias parameter estimates

and make models instable when variables are highly correlated. Fur-

thermore, there is no maximum‐likelihood estimator when the num-

ber of variables exceeds the number of observations. Particularly the

microarray data set represents both difficulties. Penalized regression,

such as LASSO and elastic net, solves these problems: Variable

selection generally ensures stability and prevents from overfitting.

Conceptually different but equally sufficient prediction methods

are ensembles of decision trees, commonly random forest and boost-

ing, as used here. Both belong to the most popular methods in

machine learning and are now used in immune‐related analysis. They

can handle highly correlated variables and high‐dimensional data as

well and incorporate interactions between contributing variables.

The ensembling principle combines many decision trees at once and

thus makes the two methods highly robust.

Applying efficient classification algorithms in combination with

running and comparing three modeling strategies complements the

methodology of predicting childhood asthma: Multi‐omics approaches

for childhood asthma have been proposed33 but rather for finding

associations than for building multivariable prediction models. Predict-

ing on each modality separately revealed first answers on the predic-

tive power of each modality. However, this ignored the multivariate

structure between the modalities and could hence cause an informa-

tion loss. The obvious solution to only use complete observations with

respect to all modalities, again, came at the cost of a lack of informa-

tion due to a smaller number of observations. Prediction seemed com-

plete and fully efficient only if all variables and all observations were

included in the analysis. Our novel approach, combining weighted pre-

diction scores obtained from the full information of each modality, ful-

filled this requirement.

The rigorous use of cross‐validation performance to select opti-

mal models brings some limitations, though. Single variables found to

be relevant for prediction have no P‐values attached. Although there

are concepts to derive them empirically, their validity is doubtful in

the context of statistical modeling with intense variable selection.

The different prevalence of phenotypes affected the ability of the

model to discriminate between HC, AA, and NA. The smallest group,

NA, could not be identified satisfactorily in the presented three‐class
prediction model, and further efforts are needed to improve this

behavior. As another consequence of small sample sizes, we focused

on the assessment of main clinical phentoypes and suggest in‐depth
analysis of additional subgroups such as distinct wheeze and asthma

phenotypes in larger studies.

For predicting asthma from seven modalities from genetics,

immunology, and environment, we applied robust classification algo-

rithms in concordance with strategies for fully exploiting all informa-

tion of the data. Penalized regression methods complemented with

machine learning approaches have not been used in this context so

far and should be considered as efficient prediction methods for this

kind of application and beyond. Prediction analysis on incomplete

data with respect to different modalities is feasible with certain

strategies. We developed a novel strategy combining all information

from the data leading to smaller prediction variability. However, the

sufficient performance of the complete case prediction model sug-

gests focusing future data collection on enriching complete observa-

tions rather than enlarging the number of (at least partially)

investigated individuals in total. This is important and requires a

strict and thorough recruiting protocol, which is particularly difficult

in children and if multicenter studies are envisioned.

Microarray data in terms of three target genes responsible for

integrin‐mediated cell processes, regulation of apical junction forma-

tion in human bronchial epithelium, and placental alkaline phos-

phatase are predictive for asthma independently of the model

approach, even though model‐specific results show contributions

from other modalities, such as breastfeeding months, IL1‐beta and

IL‐5 cytokine and IRF-8 gene expression.

For the future, we suggest to implement our novel analysis strat-

egy to more comprehensively understand and analyze complex

human immune regulation with respect to childhood asthma pheno-

types. The method is also applicable for other cohort studies aiming

to assess multi‐omics data sets in medium or large cohort studies.

Further, when more data like in the given study can be made avail-

able, there is high potential for building and improving current risk

tools for childhood asthma which can be optimized by distinguishing

for pairs of outcome categories as in Ref. 34.
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In conclusion, with our approach of combining seven data modal-

ities (cytokines secretion, candidate SNPs, flow cytometry, clinical

diagnostics, questionnaires, RT–qPCR gene expression, and microar-

ray gene expression) using a novel strategy, it was possible to

improve the classification of childhood asthma phenotypes in con-

trast to using only single aspects of the data. A rigorous cross‐valida-
tion scheme was implemented to assess the performance. Of note, a

validation in external populations is important. This generic approach

is applicable to other risk prediction or classification settings with

incomplete data sets, typically arising in circumstances where collec-

tion of specimen depends on clinical feasibility and availability of

advanced laboratory techniques. The outlined strategy of this manu-

script offers the chance to overcome these challenges and provides

a quantitative method making use of the entire information at

hand.
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