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ABSTRACT 

Efforts to scale neuroimaging towards the direct visualization of mammalian brain-wide 

neuronal activity face major challenges. Although high resolution optical imaging of whole 

brain in small animals has been achieved ex vivo, the real-time and direct monitoring of 

large-scale neuronal activity remains difficult, owing to the performance gap between 

localized largely invasive optical microscopy of rapid, cellular-resolved neuronal activity and 

whole-brain macroscopy of slow hemodynamics and metabolism. Here, we demonstrate both 

ex vivo and entirely non-invasive in vivo functional optoacoustic neuroimaging of mice 

expressing the genetically encoded calcium indicators GCaMP6f. The approach offers rapid, 

high-resolution 3D snapshots of whole-brain neuronal activity maps with single optoacoustic 

excitations, and of stimulus-evoked slow hemodynamics and fast calcium activity in the 

presence of strong hemoglobin background absorption. By providing direct neuroimaging at 

depths and spatiotemporal resolutions superior to optical fluorescence imaging, functional 

optoacoustic neuroimaging bridges the gap between functional microscopy and whole-brain 

macroscopy. 
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TEXT 

 

Mammalian brain function arises through multi-scale interactions in a highly-interconnected, 

complex network of cortical and sub-cortical neurons1. Its understanding relies heavily upon 

experimental methods for monitoring neuronal activity at different spatial and temporal 

scales2. Whole-brain activity is typically imaged in both humans and small animals using 

methods that only indirectly reflect neuronal activity3-5, and thus recent efforts towards 

directly mapping neural network function have focused on fluorescence microscopy and the 

emerging toolbox of calcium and voltage indicators6. Techniques like two-photon microscopy 

can visualize the activity of thousands of neurons across multiple cortical layers7. However, 

optical brain microscopy approaches generally require invasive methods, namely, skull 

and/or scalp removal, and are further unable to resolve large-scale neuronal activity across 

entire rodent brains due to intense photon scattering. Despite recent developments in 

fluorescence microscopy8-10, achieving imaging rates exceeding 1mm3/s is still challenging2,10 

and real-time direct monitoring of large-scale neuronal activity in the mouse brain remains an 

unmet need. 

Hybrid opto-acoustic (OA) imaging techniques are ideally suited for real-time volumetric 

brain interrogations due to their intrinsic resilience to light scattering with a single laser pulse 

sufficient for inducing OA responses in the entire imaged tissue volume11. This provides an 

optimal trade-off between volumetric imaging rates and spatial resolution not achievable with 

other neuroimaging modalities11-13. Broadband ultrasound waves are generated by transient 

light absorption, enabling high-resolution imaging of optical contrast at centimeter-scale 

depths in tissue14,15, an order of magnitude gain over state-of-the-art optical microscopy. In 

addition, hemoglobin manifests excellent endogenous absorption contrast, and OA naturally 

attains label-free high fidelity images of vascular anatomy, blood oxygenation level and their 

respective dynamics, enabling the assessment and monitoring of multiple activity-related 

hemodynamic parameters in health and disease12,13,15-20.  
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Can the benefits of OA imaging be harnessed towards direct neuronal activity imaging? 

In recent work we demonstrated robust calcium-dependent OA contrast using a genetically 

encoded calcium indicator (GECI) in zebrafish larvae and excised brains11. While promising, 

the initial proof-of-concept demonstrations left important questions unanswered, ranging from 

the basic ability to image calcium responses in large and highly scattering and absorbing 

mammalian brains to whether the method is sensitive enough to observe natural sensory 

responses relative to the high background hemoglobin absorption signals at GCaMP 

excitation wavelengths. Here we devised customized functional OA neuro-tomography 

setups in order to demonstrate and characterize the capacity for real-time volumetric imaging 

of calcium transients across mouse brains expressing GECIs, further demonstrating that the 

OA method is sufficiently sensitive in detecting distributed sensory responses and setting the 

stage for future advances. 

 

RESULTS 

 

An isolated brain preparation 

To study the fundamental ability to optoacoustically image whole-brain calcium dynamics in 

the mammalian brain, we first developed and validated an isolated-brain preparation from 

GCaMP6f-expressing mice (see Methods for details of the model) and a custom imaging 

setup continuously perfused with artificial cerebrospinal fluid (ACSF). The blood-free model 

eliminates background hemodynamic signals, thus allowing for an unequivocal initial 

characterization of the calcium-related optoacoustic signal variations. It further enables 

deeper penetration of the 488nm light used for the GCaMP excitation. The isolated brain 

model exhibits high viability and functional neuronal activity for several hours (Suppl. Figs. 1-

3) and realistic optical light scattering and indicator responses. To evaluate neuronal viability 

of the in vitro model we intracortically injected isolated brains of CD-1 mice (n=3) with 10 kD 

dextran-conjugated Texas Red, an anterograde/retrograde tracer transported by live 

neurons21. The tracer stained structures up to 2 mm away from the injection site, with distant 
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staining observed exclusively in the viable dextran-conjugated dye group (Suppl. Figs. 1C-E). 

We further recorded electroencephalography (EEG) signals from the cortices of isolated 

brains perfused in oxygenated ACSF (n=3) vs. non-vital controls (n=3) and in vivo recordings 

(n=3) in order to evaluate the preparation’s electrophysiological function. We observed that 

injection of the epileptic drug pentylenetetrazol (PTZ) caused significant signal amplitude 

increases in EEG recordings, particularly in the higher 10-20 Hz frequency range in both 

isolated and in vivo brains, but not in the non-vital control brains (Suppl. Fig. 3), nor following 

injection of a 10-fold lower PTZ concentration22 (Fig. 3B). 

 

Volumetric optoacoustic and planar fluorescence of calcium activity in whole isolated 

mouse brains 

The developed hybrid imaging system allows for volumetric OA monitoring of resting and 

stimulus-evoked calcium dynamics concurrently with planar fluorescence imaging (Fig. 1). In 

the experimental set-up, seven optical fibers coupled to a pulsed laser source equally 

illuminated the brain from multiple directions while planar fluorescence and volumetric OA 

images were simultaneously captured using a sensitive camera and hemispherical-matrix 

ultrasound detection array (see schematic in Fig. 1A and Methods for details). The 512-

element spherical matrix transducer array with 5MHz central frequency and 140° angular 

tomographic coverage (Fig. 1B) was specifically designed to provide a field-of-view (FOV) of 

~2cm3 effectively covering the entire mouse brain with nearly isotropic three-dimensional 

(3D) resolution of ~150µm (see characterization data in Suppl. Fig. 4A-C). This corresponds 

to about one million individual voxels that can be visualized within the FOV at a volumetric 

imaging rate of 100 Hz (the maximal pulse repetition rate of the excitation laser). The system 

affords the acquisition of volumetric OA images covering the entire GCaMP6f-expressing 

brain along the transverse, sagittal and coronal planes with high resolution (Figs. 1C and 1E; 

n=4 brains imaged), providing a stark qualitative improvement over diffuse, surface-weighted 

2D wide-field fluorescence image lacking depth resolution (Fig. 1D). A range of gross 

anatomical features can be identified in the excised brains, such as the cortices, cerebellum, 
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medulla, thalamus, and hippocampus (Figs. 1E and 1F), demonstrating the system’s ability 

to volumetrically capture information from the entire brain.  

OA measurements of purified GCaMP6f proteins (Fig. 2A) rendered spectrally specific 

calcium-dependent absorption changes, suggesting that calcium concentration changes 

should be optoacoustically detectable in addition to their fluorescence signature. We 

therefore used the new system to acquire activity videos in isolated GCaMP6f mouse brains 

resulting from frontal-cortical injection of PTZ (n=4). This neuro-activating agent is assumed 

to interfere with GABAergic signaling and actuates fast seizure-like activity in the nervous 

system23. Large OA responses of up to 150% were readily observed following the injection 

(Fig. 2B), appearing to spatially propagate around the injection site (see the location of glass 

capillary in Fig. 1D) and into the uninjected hemisphere (Figs. 2E and 2F). This is consistent 

with previous observations of PTZ-induced brain-wide propagating calcium waves24, 

putatively indicating the preservation of inter-hemispheric communication in this in vitro 

model. Similar changes were also observed in the simultaneously acquired wide-field planar 

fluorescence images (Suppl. Figs. 5A, C), independently validating that the detected OA 

signals directly correspond to neuronal calcium dynamics. These responses were abolished 

during concurrent injections of the sodium channel blocker tetrodotoxin (TTX), a potent 

suppressor of neuronal activity25 (Fig. 2B). PTZ injection into control CD-1 mouse brains that 

did not express GCaMP6f resulted in no detectable OA or fluorescence signal increases 

(n=3, Fig. 2C and Suppl. Figs. 5B, D) and neither did control PBS injections into GCaMP6f-

labeled brains (n=3, Fig. 2D and Suppl. Fig. 5E). Notably, the observed relative fluorescence 

changes were an order of magnitude smaller (only up to 30% above baseline), most likely 

due to the diffuse nature and higher background noise of the wide-field fluorescence 

modality. 

 

Non-invasive 3D optoacoustic imaging of the whole mouse brain in vivo 

We next explored non-invasive (through intact skin and skull) volumetric in vivo OA 

recordings from the whole mouse brain using a customized experimental arrangement. Here, 
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the ultrasound array’s orientation was reversed and fluorescence versus OA imaging were 

performed sequentially due to geometrical constraints of the in vivo measurement setup (Fig. 

3A and Suppl. Fig. 6). GCaMP6f expression was clearly visible in the somatosensory cortex 

of the transgenic mice in vivo (Fig. 3B). The 3D OA images mainly exhibit vascular contrast 

related to the strong light absorption by hemoglobin (Fig. 3C). In addition, the limited light 

penetration at the peak excitation wavelength of GCaMP6f (488nm) is evident: at 488nm 

clear contrast is preserved up to ~1.5mm in depth (Fig. 3C), while images at the 650nm 

wavelength, where blood absorption diminishes significantly, clearly show visible absorption 

contrast across the entire brain down to ~7mm depth (Fig. 3D). The fluorescence signal 

photo-bleaches at a moderate rate of ~5% signal loss per 100 seconds of imaging (Fig. 3E, 

left) under experimental illumination conditions (~3 mJ/cm2 excitation light fluence reaching 

the scalp surface). This rate is consistent with the bleaching rate of the OA signal (Fig. 3E, 

right) and with earlier observations26. The fluorescence also recovered to pre-imaging levels 

within 24 hours due to protein recycling (data not shown). In order to further minimize protein 

bleaching, the laser beam could potentially be blocked for time intervals when no activity is 

expected. 

 

Brain-wide optoacoustic imaging of stimulus-locked calcium responses in vivo 

The in vivo imaging setup was then used to explore volumetric recordings of somatosensory-

evoked rapid calcium transients in GCaMP6f/6s-expressing mice. To detect stimulus-locked 

fluorescence and OA calcium-signals (Figs. 4A-B) while minimizing background 

hemodynamic responses,27 brief 50ms electrical stimulation pulses were repeatedly delivered 

to the hind-paw every 20s (Fig. 4C). The time lapse OA recordings imaging were carried out 

at 25Hz and fluorescence images were acquired at a lower 6.25Hz rate. Clearly resolvable 

stimulus-locked OA responses to each stimulus were readily observed in GCaMP6f mice 

(n=4 experiments in 3 mice), with typical average traces reaching a peak at ~360ms post 

stimulation, then rapidly decaying and reaching the baseline level at ~0.8s post stimulation 

(Figs. 4B-C), paralleling the temporal patterns of the observed fluorescence responses. 
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Interestingly, the normalized OA signal transients (ΔOA/OA) in the activated brain area were 

spatially correlated with and generally stronger than the separately measured normalized 

ΔF/F fluorescence responses (Fig. 4D), despite the very high blood background absorption 

levels inherently reflected in the OA signals. This difference is presumably attributable to 

intrinsic differences between these modalities, where the fluorescence signal traces 

effectively average calcium responses from a larger volume - such differences can be 

particularly prominent at deep locations, as also observed in the isolated brain experiments 

where OA and fluorescence responses were measured concurrently. Additionally, the in vivo 

OA recordings from deeper slices (Fig. 4B) exhibit distinct activation patterns not resolvable 

in the surface-weighted mesoscopic fluorescence images affected by the strong light 

scattering in the scalp, skull and the brain. Thus, OA imaging provides the additional depth 

information without sacrificing speed, allowing it to resolve neuronal activity in 3D with 

unparalleled spatio-temporal resolution (Suppl. Figs. 4D-F). Note that signal averaging 

across repeated responses results in a better rejection of noise and a clearer distinction of 

the activation peaks (Fig. 4E-F). No OA signal changes were detected in wild-type mice 

under the same brief 50ms electrical stimulation paradigm (Fig. 4G), confirming that this 

particular paradigm does not induce detectable hemodynamic changes. 

We further analyzed the functional OA signals of different voxels located in the 

somatosensory cortex and a major vessel (superior sagittal sinus, SSS). Clear bilateral 

activations can be seen in both planar fluorescence (Fig. 4E) and OA traces recorded from 

the somatosensory cortex areas outside major vessels at approximately 1mm depths (Fig. 

4F), and also in the stimulus-locked 4D spatio-temporal OA image sequences (Fig. 4B), 

which is consistent with previous reports of bilateral somatosensory cortical activations28,29. 

Bilateral activations were also consistently observed in control experiments using different 

strengths of the stimulation pulse, a different breathing gas and after using analgesia prior to 

stimulation experiments (Suppl. Fig. 7). To further corroborate that the detected signals 

correspond to calcium transients rather than to hemodynamic changes, we imaged GCaMP-

negative (wild-type) mice as controls using the same stimulation paradigm, observing no 
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signal spikes (Fig. 4G). On the other hand, when changing the stimulation paradigm to a 

longer stimulation pulse train, known to induce robust bilateral hemodynamic responses in 

blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI)30, OA 

signal changes could be clearly observed using multi-spectral measurements (Supp. Fig. 8). 

These findings show that both fast calcium-related activity and slow hemodynamic responses 

can be effectively measured optoacoustically. 

We also compared the OA responses of mice expressing fast GCaMP6f and slow 

GCaMP6s protein variants (Fig. 5A) and subjected both to the same hind-paw stimulation 

paradigm. Similar brain activation patterns and relative OA signal increases were observed 

for both mouse strains (cortical layers at ~1mm depth shown in Fig. 5B). The peak responses 

for GCaMP6f and GCaMP6s signals were produced at approximately the same time point 

following the stimulation pulse, while a slower decay was clearly observed in the GCaMP6s 

signals (Figs. 5C, left panel, and 5D, left panel). These observations are consistent with the 

time constants measured in fluorescence measurements (Figs. 5C, right panel, and 5D, right 

panel, images not shown) and with previously reported protein dynamics31. 

 

DISCUSSION 

 

Extensive efforts in optical neuroimaging are directed towards increasing the effective field of 

view and volumetric imaging rates of functional microscopy techniques, but the inherent 

advantages of OA approaches may allow the mapping of brain activity at depths and spatio-

temporal scales not achievable by other modalities. Our study examines fast OA signatures 

of GECIs in the densely vascularized and light-scattering mammalian brain, further showing 

that changes in their fluorescence are directly related to the OA responses, both in vitro and 

in vivo. We found that despite strong background hemoglobin absorption at the effective 

imaging wavelengths of GCaMP-type calcium indicators, the OA modality is sensitive enough 

to record sensory-evoked brain activity via GCaMP6f and GCaMP6s calcium-related signal 

changes that were in fact stronger than the corresponding fluorescence responses. This 
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represents an important milestone for direct OA neuroimaging, which is further empowered 

by its deep tissue real-time 3D imaging performance and the capacity to sense multiple 

cerebral oxygenation and hemodynamic parameters deep in the living rodent brain11,17, thus 

enabling direct investigations into mechanisms of neurovascular coupling32. 

Calcium transients and hemodynamic responses occur at significantly different time 

scales and hence can be distinguished using high-resolution temporal as well as auxiliary 

multi-spectral OA information (Supp. Fig. 8). Moreover, the capacity to potentially distinguish 

brain-wide time profiles associated with specific GECIs, further empowers OA with unique 

capabilities for assessing normal and dysregulated neural network interactions as well as for 

investigating the roles of other CNS cell types. Future work therefore includes 

implementation of the common neural network analysis strategies employed in mesoscopic 

fluorescence imaging and other functional neuroimaging techniques, such as resting-state 

networks, dynamic causal modelling and stimulus encoding-decoding analyses33. 

The imaging system was designed to capture neuronal dynamics in real time as true 3D 

information across effective fields of view of ~2cm3 covering an entire mouse brain at a 

spatial resolution of 150µm. In contrast, imaging a whole rodent brain with an advanced 

optical microscopy technique like OCT still requires slicing it to ~200µm thick layers34. To 

demonstrate this capability, we first tracked whole-brain calcium dynamics in a blood-free 

isolated-brain preparation. The isolated whole-brain has clear advantages for studying large-

scale recording capacity over conventional in vitro preparations like neuronal cultures2 or 

brain slices35, realistically capturing both long-range, whole-brain neural network interactions 

and overcoming the brain’s light-scattering properties. Multiple aspects of our method can be 

further improved. Imaging scalability can readily be achieved using high-frequency matrix 

array probes for better spatial resolution, but at the expense of a smaller FOV11, and of 

increased skull-mediated distortions of the high-frequency ultrasound wave components36. In 

the current implementation, the mouse’s head is fixed during the acquisition to prevent 

motion. Ultrasound arrays with a relatively low number of elements attached to a rodent’s 

head in order to acquire ultrasound echoes and OA signals13,37 have recently been designed. 
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Thus, our proposed technique can potentially be adapted to study freely behaving animals. 

GCaMP6f, the fastest GCaMP6-family indicator31, was chosen here since the system’s rapid 

acquisition time (10ms) dictated that the indicator dynamics limit the effective temporal 

resolution. Slower indicator variants can be imaged instead for improved signal 

characteristics, while other major advances can arise from the development and use of new 

activity indicators by leveraging the wide tunability of the lasers used in our technology. Other 

options include the newer generations of GCaMP-type38,39 and red-shifted probes like 

RGECO40, although their peak extinction still falls within the range of strong absorption by 

hemoglobin. The long-anticipated development of far-red and near-infrared calcium 

indicators41 with absorption peak above 650nm may eventually enable OA imaging in the 

presence of a significantly lower blood absorption background, reaching deeper brain regions 

in vivo thus potentially enabling non-invasive monitoring of activity across the entire living 

rodent brain (Fig. 3D).  
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METHODS 

 

Isolated Brain Preparation 

Brains of female CD-1 as well as GCaMP6f-expressing mice aged 8 to 12 weeks were used 

in these experiments. This animal experiment was carried out in full compliance with the 

institutional guidelines of the Institute for Biological and Medical Imaging along with approval 

from the Government District of Upper Bavaria. Mice were injected intraperitoneally with a 

lethal dose of Ketamine/Xylazine. Subsequently, intracardiac perfusion with ice-cold PBS 

was performed in order to remove blood from the brain. For this, once the animal was 

completely anaesthetized, as determined by the absence of a toe-pinch reflex, surgery 

began with an incision from the mid abdomen to the sternum. The ventral part of the rib cage 

was removed to allow access to the heart. The intracardiac perfusion was then carried out 

after inserting a 25G butterfly needle into the left ventricle of the heart followed by an incision 

into the right atrium. The heart was perfused until both liver and lungs turned white, at which 

stage decapitation was performed. Next, all tissue and skin surrounding the skull was 

removed and the skull was rinsed with ice-cold PBS to remove any remaining debris. A cut 

was then made between the skull and the first cervical vertebra exposing the brain stem. 

Using bone scissors, a second cut was made on both sides of the skull, which extended from 

the foramen magnum to the external auditory meatus, and then from the molar process up to 

the lachrymal dorsal aspect of the skull (Suppl. Fig. 1B). Using forceps, the upper skull plate 

together with the brain was separated from the lower skull and placed into a Petri dish filled 

with ice-cold, oxygenated artificial cerebrospinal fluid (ACSF). The brain was then carefully 

separated from the skull using forceps and placed in a second petri dish filled with fresh 

ACSF. Any remaining hair, debris and blood vessels were removed using fine forceps and a 

pipette.  
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Dextran tracing 

Axonal tracer transport requires intact, functioning neurons and dextran-amines coupled to 

fluorescent molecules are known for being transported in both the anterograde and 

retrograde direction21. 10 kDa dextran coupled to Texas-red (ThermoFisher Scientific Inc., 

Waltham, MA, USA) was injected directly into the cortex of the excised brains preparations in 

order to validate the functionality of axonal transport. The experimental setup is illustrated in 

Suppl. Fig. 2A. Freshly excised brains were placed in a custom-made chamber filled with 

ACSF and with a constant supply of carbogen (95% O2, 5% CO2) to keep the solution 

oxygenized and the pH stable at physiological conditions. For intra-brain injection at a depth 

of ~1 mm inside the cortex, a wireless robotic injection system (Neurostar, Tuebingen, 

Germany) using a 15 to 25 µm diameter glass microcapillary was utilized. As controls, either 

PBS or Texas red (without Dextran) were injected under the same conditions. Afterwards, 

the brains were fixated in paraformaldehyde either immediately after injection, or after being 

kept in oxygenized ACSF at 4°C in the dark for 1 h. Fixated brains were then sliced into 

50 µm-thick sections to evaluate axonal transport. For this, the brains were first dehydrated 

in a solution of 30% sucrose at 4°C for 48 h to remove water and prevent ice-crystal 

formation during cryo-slicing. Subsequently, the brains were embedded in optimal cutting 

temperature compound (Tissue-Tek® O.C.T. compound, VWR, Darmstadt, Germany) and 

sliced into 50 µm-thick sections along the coronal plane using a CM 1950 cryo-slicer (Leica 

Biosystems, Wetzlar, Germany). These cryo-sections were mounted onto microscope slides 

and air-dried for 20 min in the dark. A coverslip was placed on top of the slices and sealed 

with Vectashield containing DAPI (Vector Laboratories Inc, Burlingame, CA, USA). DAPI 

stains the DNA and RNA of cells, hence outlining cellular anatomy. Compound brain slice 

images were captured using an Imager.M2 microscope fitted with shift-free DAPI and Texas 

red filter sets (Carl Zeiss AG, Oberkochen, Germany). Image acquisition was done using the 

Zen 2 microscope software (Carl Zeiss AG, Oberkochen, Germany). 
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Electroencephalography recording 

The experimental setup for electroencephalography (EEG) recordings from the isolated 

brains is depicted in Suppl. Fig. 2B. The excised brains were placed in the custom-made 

chamber filled with oxygenized ACSF at room temperature (RT). To induce neuronal activity, 

5 µL of pentylenetetrazol (PTZ; 100 mg/ml in PBS) was directly injected into the cortex using 

a glass capillary and a robotic injection system (Neurostar, Tuebingen, Germany). EEG-

signals were recorded via two custom-made needle electrodes, connected to a DP-311 

differential amplifier (Warner Instruments, LLC, Hamden, CT, USA). The amplified signals 

were digitized by means of a PowerLab26T data acquisition module (AD Instruments, 

Sydney, Australia) controlled through a host PC running the Labchart 8 software (AD 

Instruments, Sydney, Australia). The amplifier gain value was set to 100 due to relatively low 

signal strengths for EEG-recordings in isolated brains. For comparison, in vivo EEG of a CD-

1 mouse was also recorded, as described previously12. This animal experiment was 

performed in full compliance with the institutional guidelines of the Institute for Biological and 

Medical Imaging and with approval from the Government District of Upper Bavaria. In order 

to induce widespread brain activity, the epileptic drug PTZ was injected intraperitoneally24. 

For in vivo EEG-recording, the amplifier was set to a high pass of 10 Hz, a low pass of 

100 Hz and a gain of 100. After baseline recording, 100 µL of PTZ (25 mg/ml in PBS) was 

injected intraperitoneally and EEG-signals were recorded for at least 25 minutes. At the end 

of the experiment, the mouse was euthanized while still under anesthesia. The recorded 

EEG signals were processed using MatLab (MathWorks, Natick, United States) to identify 

periods of neuronal activity. For this, the spectrograms of the EEG signals were calculated as 

the short-time Fourier transform with a window of 20 seconds, which is sufficient to detect 

higher frequency components in the range of 10-20 Hz corresponding to seizure-like activity 

caused by PTZ. 

 

In vivo animal handling  
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Eight- to twelve-week-old female C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim/J and C57BL/6J-

Tg(Thy1-GCaMP6s)GP4.12Dkim/J (The Jackson Laboratory, Bar Harbor, ME, USA; stock 

numbers 024276 and 025776, respectively) along with six- to twelve-week-old athymic 

female nude mice (Envigo, New Jersey, USA; stock number Foxn1nu 069) were used for the 

in vivo experimentation in full compliance with the institutional guidelines of the Institute for 

Biological and Medical Imaging and with approval from the Government District of Upper 

Bavaria. Mice were anesthetized with isoflurane (2.5% v/v for induction) in 100% O2, and 

when necessary, any fur on the head of the mouse was removed using consumer hair-

removal cream prior to experiments. To avoid motion artifacts during imaging, the head of 

the mouse was fixed into a custom designed stereotactic mouse head holder, which was 

coupled to an anesthetic breathing mask (Narishige International Limited, London, United 

Kingdom). During experiments the animals were maintained under isoflurane anesthesia with 

1.0% to 1.5% v/v in 100% O2 with a flow rate of ~0.7 L/min and the physiological parameters 

(blood oxygenation, heart rate, and body temperature) of the animals were continuously 

monitored using a PhysioSuite™ physiological monitor (Kent Scientific, Torrington, 

Connecticut). The core body temperature was tracked and maintained at ~36°C using a 

homeothermic temperature controller coupled to a heating pad, both being controlled by the 

PhysioSuite™. For analgesia, a single drop of 125mg/mL metamizole was given orally prior 

to experiments (Novalgin®, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, 

Germany). 

 

Hindpaw Electrical Stimulation 

For GCaMP imaging hindpaw stimulation was applied by inserting thin stainless steel needle 

electrodes under the skin of the paw in isoflurane-anesthetized mice. Electrical stimulation 

with 50 ms-duration pulses at a constant current of 1 mA was employed using a constant 

current stimulus isolator (Model A365R, World Precision Instruments, Sarasota, FL, USA). 

The block stimulation paradigm consisted of repeating the pulses every 20 seconds (Fig. 

4C). For the induction and imaging of hemodynamic responses, the following stimulation 
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paradigm was carried out instead: one hundred 500μs duration pulses were applied at 0.5mA 

every 200ms for 20s. Stimulation began 30s into the imaging cycle to allow baseline activity 

approximation. The optoacoustic (OA) or fluorescence data acquisitions were synchronized 

with the start of the first cycle.   

 

Imaging set-up 

The OA tomography system used for real-time volumetric acquisition of data consists of a 

custom-made spherical transducer array (Imasonic SaS, Voray, France). The spherical 

surface has a 40 mm radius and consists of 512 piezocomposite elements covering an angle 

of 140° (1.32€ solid angle). The elements have a diameter of 2.5 mm, 5 MHz central 

frequency and approximately 100% -6 dB detection bandwidth, providing a nearly isotropic 

resolution of 150 µm around the center of the spherical geometry and an effective field of 

view of approximately 2 cm3. The imaging resolution and field of view were characterized 

with an agar phantom containing sparsely distributed ~50 μm diameter polyethylene 

absorbing spheres (Cospheric LLC, Santa Barbara, USA). The image of the phantom (top 

maximum intensity projection) rendered with the system is displayed in Suppl. Fig. 4. The 

resolution at the center of the spherical array was estimated as the mean square difference 

between the measured sphere’s full width at half maximum and its actual diameter. The field 

of view was estimated as the size of the region containing particles reconstructed with an 

amplitude higher than 50% of the maximum signal in the images. 

 

Isolated brain imaging 

For imaging of the isolated brains, the array was held pointing upwards by a custom-made 

3D-printed holder attached to a X-Y positioning platform. The holder further allowed for 

superfusion of ACSF around the excised brain via an inlet and an outlet, thus establishing a 

physiological environment supporting brain vitality (Fig. 1A). Excised brains were placed at 

approximately the center of the spherical geometry lying upon a ~10 µm thin transparent 

polyethylene foil. Illumination was provided via a self-made fiber bundle consisting of seven 
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fibers, each with a core diameter of 600 µm. One of the fibers was inserted into a cylindrical 

cavity of the spherical array to illuminate the bottom part of the brain while the other 6 fibers 

were inserted into the holder and equally spaced at 120° in azimuthal direction and with polar 

angles of 5.7° and 37° (Fig. 1A). The illumination source was an optical parametric oscillator 

(OPO)-based laser (Innolas GmbH, Krailling, Germany) providing short (<10 ns) pulses at 

repetition frequency of 100 Hz whose optical wavelength is freely tunable between 420 to 

680 nm. The 512 OA signals detected by the matrix array elements were simultaneously 

digitized with a custom-made data acquisition system (Falkenstein Microsysteme GmbH, 

Taufkirchen, Germany) triggered with the Q-switch output of the laser. The digitized signals 

were transferred to a computer via 1 Gbit/s Ethernet connection. To record fluorescence 

signals, a high speed scientific complementary metal-oxide semiconductor (sCMOS) camera 

(Andor Technology Ltd, Belfast, UK) was positioned on top of the holder pointing downwards 

and synchronized with the pulsed laser source. The camera was equipped with a manually 

focusing 105 mm Nikon F mount objective (Nikon, Chiyoda, Tokio, Japan) and a one-inch 

bandpass filter (525 nm center wavelength and 39 nm bandwidth; MF525-39, Thorlabs Inc, 

Newton, USA). The acquisition time of the camera was set to 160 ms, corresponding to the 

integration of 4 laser pulses.  

 

In vivo imaging experiments 

For the in vivo imaging experiments, the OA tomography system was used in a reversed 

orientation (Suppl. Fig. 6B) The wide-field fluorescence recordings were not performed 

concurrently due to the lack of access to the imaged area in the in vivo setting. Also, the 

laser light beam was guided differently from the isolated brain setup, i.e. a single custom-

made silica fused-end fiber bundle (CeramOptics GmbH, Bonn, Germany) was used to 

broadly illuminate the imaged area from a single direction. At the peak absorption 

wavelength of calcium-saturated GCaMP6f/6s of 488 nm, the light fluence at the sample was 

measured to be ~3 mJ/cm2, i.e. below safe exposure limits for pulsed laser radiation42. The 

same fiber bundle was used to illuminate the shaved mouse head. However, fluorescence 
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imaging was performed separately with the mouse head illuminated laterally to avoid blinding 

the camera, as indicated in Suppl. Fig. 6A. 

Imaging of GCaMP-responses were done at 25 Hz laser repetition frequency and a single 

excitation wavelength of 488 nm. Optoacoustic imaging of hemodynamic imaging was 

carried out instead at 20 Hz with five wavelengths (530,540,560,575 and 585 nm). This 

resulted in an imaging rate of 4 Hz per wavelength and allowed for the unmixing of two blood 

components: oxygenated hemoglobin (HbO) and reduced hemoglobin (HbR). Total 

hemoglobin (HbT) was estimated as the sum of these two components. A 100µm black 

microsphere (BKPMS-1.2 90-106um, Cospheric, USA) was placed in the field of view, right 

above the skin of the mouse and used to normalize the optoacoustic images with the per-

pulse laser energy variations (assumed to be proportional to the optoacoustic signal of the 

sphere).  

 

Isolated protein measurements 

The optoacoustic spectrum of the isolated proteins was measured with the same system by 

injecting the proteins (~50µM concentration) in a polyethylene tubing with 0.57mm inner 

diameter. The laser was tuned between 420 and 580 nm with 5 nm step on a per pulse basis 

and averaging of 50 multi-spectral datasets was performed. For the measurements, the 

proteins were first diluted in a buffer containing 30mM 4-Morpholinepropanesulfonic acid 

(MOPS), 100mM KCl (pH 7.2) and 1mM MgCl2 was subsequently added to mimic 

physiological conditions. Calcium-free and calcium-saturated protein-solutions were rendered 

by adding 10mM EGTA orn100µM CaCl2, respectively, to the solution. 

 

Imaging data analysis and processing 

Volumetric (3D) OA images were reconstructed from the acquired signals with a graphics 

processing unit (GPU)-based implementation of a back-projection formula43. Prior to 

reconstruction, the signals were deconvolved with the impulse response of the transducer 

array elements and band-pass filtered with cut-off frequencies of 0.1 and 6 MHz. 



Nature Biomedical Engineering, 2019, in press 

- 19 - 

 

Reconstruction was performed on a grid of 150x150x100 voxels3 (FOV of 15x15x10 mm3) to 

better match the 150µm spatial resolution of the system. The reconstructed images were 

normalized with the estimated light fluence distribution Φ(𝑟, 𝑡) to compensate for light 

attenuation within the sample according to the light diffusion equation with no transient 

effects and no internal light sources44 

𝜇𝑎Φ(𝑟, 𝑡) − 𝐷∇2Φ(𝑟, 𝑡) = 0,                                         (1) 

where 𝐷 = 1/3(𝜇𝑎 + 𝜇′𝑠), 𝜇𝑎 and 𝜇′𝑠 are the optical absorption and reduced scattering 

coefficient, respectively. The solution of (1) for a uniformly illuminated spherical target is 

given by a modified spherical Bessel function45 via 

Φ(𝑟, 𝑡) =
Φ0

sinh(𝑘𝑅)

𝑘𝑅

sinh(𝑘𝑟)

𝑘𝑟
                            (2) 

where 𝑅 is the radius of the sphere, 𝑟 is the distance from its center, Φ0 is the fluence at the 

surface and 𝑘 = √𝜇𝑎/𝐷. A predictive Kalman filter was further applied on a per-slice basis to 

the time domain of the sequence of reconstructed OA images for noise removal46.  

The effect of bleaching in OA signal decay during the stimulation-evoked activity 

experiment was estimated as follows. A Kalman filter with gain 0.75 was applied to the 

individual time profiles of the OA signal intensity for a location in the brain having a clear 

activation peak. The average time profile for all cycles was taken as reference. All profiles 

were windowed to the initial 4 s following the hind paw stimuli. The OA signal intensity 

associated to GCaMP as a function of time was estimated by cross-correlation of the 

individual profiles and the reference profile. A 10-point moving average filter was applied to 

the calculated cross-correlation values, which were subsequently normalized to the 

maximum value. An exponential decay function was eventually fitted to these values. 

The onset time for the appearance of activity after PTZ injection in the isolated brain 

experiments was estimated as follows. First, the standard deviation of the background OA 

signal intensity for each voxel of the reconstructed image was calculated for a window of 300 

consecutive frames (40ms per frame) where no PTZ-related activity occurred. The onset time 

was estimated by considering the time point at which the OA signal exceeds the standard 
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deviation of the background signal by a factor of 3. It was assumed that no activation was 

produced at voxels for which the OA signal intensity did not reach this value.  

For analysis of the hemodynamics-related optoacoustic signal changes, the multi-spectral 

optoacoustic data was first reconstructed as outlined above on a per-wavelength basis. A 

spatial moving average of 3x3 voxels and a temporal forward moving average of 10 frames 

(2.5s) was applied to the time-lapse volumetric data sets. The images were then unmixed for 

HbO, HbR and HbT on a per-voxel basis according to their absorption spectrum at the five 

excitation wavelengths by assuming a linear unmixing model12,17. Delta calculations were 

performed for each component using the first 9 frames before stimulation as a baseline 

estimation. Lastly a low pass filter with a cutoff frequency of 0.05Hz was used to smoothen 

the resulting temporal profiles.  
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Figure 1. Bi-modal optoacoustic and fluorescence imaging of isolated brains. (A) 3D-

rendering of the imaging setup featuring a 512-element spherical matrix transducer array 

inserted into a custom-made 3D-printed holder. The holder features an inlet and outlet to 

facilitate perfusion with ACSF while the excised brain is placed on top of a transparent 

polyethylene foil that is attached to the submerged sample mount. The brain is evenly 

illuminated via seven light guides (fibers) and a sensitive sCMOS camera is positioned at the 

top for concurrent wide-field fluorescence imaging. (B) The distribution of detection elements 

on the spherical array with its effective volumetric imaging field of view indicated by the red 

bounding box. (C) Representative volumetric optoacoustic data recorded from an excised 

GCaMP6f-brain at 488 nm excitation wavelength. (D) The corresponding planar fluorescence 

image. The glass capillary visible on top of the right cortex was used for intracortical 

injections. (E) Maximum intensity projections (axial, sagittal and coronal) of the 3D 

optoacoustic dataset shown in C. (F) Representative coronal, sagittal and transverse 

orthoslices (top to bottom) of the 3D optoacoustic image acquired at 590 nm. Au: auditory 

cortex; Cb: cerebellum; Cc: corpus callosum; D3V: dorsal third ventricle; Hip: hippocampus; 

Hy: hypothalamus; M: medulla; MB: mid brain; M1,M2: primary and secondary motor cortex; 

Ob: olfactory bulbs; P: pons; R/LC: right/left cortex; R/LV: right/left ventricle; S1,S2: primary 

and secondary somatosensory cortex; SSS: superior sagittal sinus; Str: striatum; Th: 

thalamus; V1: primary visual cortex. n=4 independent experiments for panels C-F. 
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Figure 2. Whole-brain volumetric optoacoustic imaging of neuronal activation in the isolated 

brain model. (A) Optoacoustically measured absorption spectrum of purified calcium-

saturated (blue) and calcium-free (red) GCaMP6f-proteins. The dotted line indicates 

maximum difference in optoacoustic signal at 488 nm between the two protein states (n=2 

independent experiments). (B) Time-traces of the normalized optoacoustic data along with 

the moving averages over 50 image frames (solid lines 1,2 and 3) are shown from individual 

voxels whose position is indicated in panel E. Notably, the activation first occurs in the red 

voxel located close to the injection site (see the glass capillary location in Fig. 1D), slowly 

propagating into the rest of the brain (purple and green voxels). Gray traces: Tetrodotoxin 

(TTX) was injected 180s prior to pentylenetetrazol (PTZ), abolishing the activation (n=4 

independent experiments for PTZ injection and n=3 for TTX + PTZ). (C) Optoacoustic 

recordings from a control experiment with an isolated CD-1 mouse brain not expressing 

GCaMP6f proteins. No changes due to PTZ-injection are detected (n=3 independent 

experiments). (D) Results of an additional control experiment where an isolated GCaMP6f-

expressing brain was injected with a phosphate buffered saline, resulting in no optoacoustic 

signal changes (n=3 independent experiments). (E) Temporal evolution of the relative 
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optoacoustic signal changes (∆OA/OA) in two representative slices located at depths of 0.7 

mm and 1.1 mm in a GCaMP6f-expressing brain (the slice locations are indicated in Fig. 1E). 

Injection of the PTZ neurostimulant was done at t=0s. The indicated voxels 1,2 and 3 

correspond to the solid lines in panel B (n=4 independent experiments). (F) Onset activation 

map for the experiment shown in (A), generated for each image voxel by calculating the time 

point (tonset) when the relative optoacoustic signal change (∆OA/OA) exceeded 3 times the 

standard deviation of the background signal (before the PTZ injection). The white color 

represents inactivated voxels (n=4 independent experiments). 
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Figure 3. Non-invasive imaging of the GCaMP6f-brain in vivo. (A) Experimental schematic of 

hind paw electrical stimulation experiment with alternate imaging in either optoacoustic or 

fluorescence mode. (B) Representative planar fluorescence image of a GCaMP6f mouse 

brain. OL: olfactory bulb; LC/RC: left/right cortex; CB: cerebellum; M1,M2: primary and 

secondary motor cortex; S1,S2: primary and secondary somatosensory cortex; Au: auditory 

cortex; V1: primary visual cortex. The approximate bregma- and lambda skull-landmarks (red 

asterisks, B and L) are also indicated (n=3 biologically independent animals). (C) Maximum 

intensity projections of the representative volumetric optoacoustic image recorded non-

invasively from a GCaMP6f-expressing mouse brain at 488 nm. Note the shallow penetration 

depth of 1-2mm at this wavelength (n=3 biologically independent animals). (D) Maximum 

intensity projections of the volumetric optoacoustic images recorded non-invasively at 650nm 
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in vivo, demonstrating the whole-brain recording capacity of the system down to ~7mm 

depth. Bregma- and lambda skull-landmarks are indicated (white asterisks, B and L). Major 

veins are visible and have been labeled accordingly. RRV: rostral rhinal vein; SSS: superior 

sagittal sinus; CS: confluence of sinuses; TS: transverse sinus; LHV: longitudinal 

hippocampal vein. (n=3 biologically independent animals). (E) The GCaMP6f-protein is prone 

to bleaching over the course of the imaging experiment. The normalized average 

fluorescence signal of the whole brain area is plotted (left panel). For optoacoustic (OA) 

signal decay, the averages of each stimulus cycle (blue diamonds) and a linear fit (blue line) 

are plotted (n=3 biologically independent animals). 
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Figure 4. Non-invasive imaging of somatosensory-evoked rapid calcium transients in the 

GCaMP6f-brain in vivo. (A) Temporal sequence of fluorescence-recorded brain activation 

maps (∆F/F) in response to the current stimulus at t=0 at the right hindpaw. Functional 

regions of the brain are indicated as dashed white lines. (B) 4D optoacoustically-recorded 

brain activation maps (∆OA/OA) in response to the stimulus at t=0. Slices across the entire 

brain are shown located at different depths from the brain surface. Functional regions of the 
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brain are indicated as dashed white lines. (C) Schematic of the electrical paw stimulation 

paradigm. One 50 ms long stimulus was repeated every 20 seconds (top panel). Below, 

representative single-voxel optoacoustic and single-pixel fluorescence time traces are 

shown. Note that the volumetric optoacoustic recordings (blue) were carried out at a 25Hz 

rate versus 6.25Hz for planar fluorescence (green). rise is defined as the time required for the 

optoacoustic signal to rise from 20% to 80% of its maximum. (D) Relative optoacoustic signal 

increase versus relative fluorescence signal increase for a set of points in the region 

indicated in red in (A) and for three different time points (160ms, 320ms and 640ms). The 

maximum of all slices is taken for calculating the relative optoacoustic signal increase. The 

dashed line of the best fit was determined using a least square method - its slope and 

coefficient of determination are denoted by m and R2, respectively. (E) Background-

subtracted and normalized (∆F/F) fluorescence signal traces following the stimulus in three 

pixels located in the primary somatosensory cortex on each hemisphere (1 and 2) and inside 

the superior sagittal sinus (3). (F) Background-subtracted and normalized (∆OA/OA) 

optoacoustic signal response traces for single voxels located bilaterally in the primary 

somatosensory cortex outside major vessels (voxels 1 and 2, approx. 1mm depth) and inside 

the superior sagittal sinus (voxel 3). (G) Background-subtracted and normalized (∆OA/OA) 

optoacoustic signal traces following the stimulus in control wild-type mice are shown for 

single voxels at similar locations as in (F). n=4 independent experiments in n=3 biologically 

independent animals for all panels. 

 

  



Nature Biomedical Engineering, 2019, in press 

- 31 - 

 

Figure 5. Comparison of GCaMP6f and GCaMP6s responses to electrical stimulation of the 

right or left hind paw for n=2 independent animal experiments, respectively. (A) Maximum 

intensity projection along the depth direction of the three-dimensional images of GCaMP6f- 

(top) and GCaMP6s-expressing (bottom) mice. P1 and P2 indicate locations for the time 

profiles shown in (C). (B) Relative increase in optoacoustic signal with respect to the 

baseline for a slice at approximately 1 mm depth at different time points following the 

stimulation pulse. The baseline is defined as the average of 250 frames from 10 to 20 

seconds after the stimulations pulse. (C) Fitted time profiles of the relative increase in 

optoacoustic and fluorescence signals corresponding to the P1 and P2 positions in (A) for 

the GCaMP6f (blue) and GCaMP6s (violet) mice. (D) Boxplots of the statistical distribution of 

the estimated signal time-to-peak (tpeak) and decays (tdecay) values within the cortex. Data 

points (10 independent pixels/voxels for each boxplot) are also shown as black circles. The 

maximum, minimum, median, 25th and 75th percentiles for each plot are, respectively, 

tpeak,OA(6f) – 0.3198s, 0.2001s, 0.2806s, 0.2413s, 0.2806s; tpeak,OA(6s) – 0.4202s, 0.1609s, 

0.3002s, 0.2413s, 0.3610s; tdecay,OA(6f) – 0.7083s, 0.2766s, 0.4513s, 0.3021s, 0.6318s; 

tdecay,OA(6s) – 1.2145s, 0.5749s, 0.9153s, 0.7809s, 1.0320s; tpeak,F(6f) – 0.3993s, 0.2205s, 

0.2566s, 0.2395s, 0.3183s; tpeak,F(6s) – 1.0010s, 0.2912s, 0.4295s, 0.3114s, 0.5005s; 
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tdecay,F(6f) – 1.0841s, 0.2830s, 0.7029s, 0.4412s, 1.0118s, tdecay,F(6s) – 2.8850s, 0.8673s, 

1.1777s, 1.0681s, 1.2842s. 
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LINKS TO ORIGINAL FIGURE FILES: 

Figure1: 

https://drive.google.com/file/d/1TM7JXlng4jE4oTmPr8lukcgKAH8gmo8W/view?usp=sharing 

Figure2: 

https://drive.google.com/file/d/1aCOs1xQItDtjbw8sy6pQtUPe3Qpz_9ol/view?usp=sharing 

Figure3: 

https://drive.google.com/file/d/14NjnwT6i58-UsvsVUAn0cYN85MrUhdtE/view?usp=sharing 

Figure4: 

https://drive.google.com/file/d/1fR0UUTi_5-WUzmdWU6Is5Bq-zgbuS3tR/view?usp=sharing 

Figure5: 

https://drive.google.com/file/d/1fKKCfaJ2bdut3i7U0LT45mCc-xhDq2LE/view?usp=sharing 

Suppl. Figure 1: 

https://drive.google.com/file/d/18twgmhPafCY4CMDO0rCb_UA515noiRox/view?usp=sharing 

Suppl. Figure 2: 

https://drive.google.com/file/d/183IIVYQwKcGZKo6h7XSRm3klmqF48Wjn/view?usp=sharing 

Suppl. Figure 3: 

https://drive.google.com/file/d/1h6ssbvKLgnDzQj2fYUbvCx5Z_j4tbCsL/view?usp=sharing 

Suppl. Figure 4: 

https://drive.google.com/file/d/1T1wxMw7mKDS_q33XITb_J-sQ30r8YKyy/view?usp=sharing 

Suppl. Figure5: 

https://drive.google.com/file/d/10TgepufnjcvVAmLr8OLStKLoYCf7VlWz/view?usp=sharing 

Suppl. Figure6: 

https://drive.google.com/file/d/1lfkqIuaUwsuKuJNL9ZwLM5JjXLzwTtJS/view?usp=sharing 

Suppl. Figure 7: 

https://drive.google.com/file/d/1v4_SoAdqRm6-KiABehZtM4svBOiao2j1/view?usp=sharing 

Suppl. Figure 8: 

https://drive.google.com/file/d/1eGtICJnEFvUulugZovlB_EcG27Omzf1I/view?usp=sharing 
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https://drive.google.com/file/d/1aCOs1xQItDtjbw8sy6pQtUPe3Qpz_9ol/view?usp=sharing
https://drive.google.com/file/d/14NjnwT6i58-UsvsVUAn0cYN85MrUhdtE/view?usp=sharing
https://drive.google.com/file/d/14NjnwT6i58-UsvsVUAn0cYN85MrUhdtE/view?usp=sharing
https://drive.google.com/file/d/1fR0UUTi_5-WUzmdWU6Is5Bq-zgbuS3tR/view?usp=sharing
https://drive.google.com/file/d/1fR0UUTi_5-WUzmdWU6Is5Bq-zgbuS3tR/view?usp=sharing
https://drive.google.com/file/d/1fKKCfaJ2bdut3i7U0LT45mCc-xhDq2LE/view?usp=sharing
https://drive.google.com/file/d/1fKKCfaJ2bdut3i7U0LT45mCc-xhDq2LE/view?usp=sharing
https://drive.google.com/file/d/18twgmhPafCY4CMDO0rCb_UA515noiRox/view?usp=sharing
https://drive.google.com/file/d/18twgmhPafCY4CMDO0rCb_UA515noiRox/view?usp=sharing
https://drive.google.com/file/d/183IIVYQwKcGZKo6h7XSRm3klmqF48Wjn/view?usp=sharing
https://drive.google.com/file/d/183IIVYQwKcGZKo6h7XSRm3klmqF48Wjn/view?usp=sharing
https://drive.google.com/file/d/1h6ssbvKLgnDzQj2fYUbvCx5Z_j4tbCsL/view?usp=sharing
https://drive.google.com/file/d/1h6ssbvKLgnDzQj2fYUbvCx5Z_j4tbCsL/view?usp=sharing
https://drive.google.com/file/d/1T1wxMw7mKDS_q33XITb_J-sQ30r8YKyy/view?usp=sharing
https://drive.google.com/file/d/1T1wxMw7mKDS_q33XITb_J-sQ30r8YKyy/view?usp=sharing
https://drive.google.com/file/d/10TgepufnjcvVAmLr8OLStKLoYCf7VlWz/view?usp=sharing
https://drive.google.com/file/d/10TgepufnjcvVAmLr8OLStKLoYCf7VlWz/view?usp=sharing
https://drive.google.com/file/d/1lfkqIuaUwsuKuJNL9ZwLM5JjXLzwTtJS/view?usp=sharing
https://drive.google.com/file/d/1lfkqIuaUwsuKuJNL9ZwLM5JjXLzwTtJS/view?usp=sharing
https://drive.google.com/file/d/1v4_SoAdqRm6-KiABehZtM4svBOiao2j1/view?usp=sharing
https://drive.google.com/file/d/1v4_SoAdqRm6-KiABehZtM4svBOiao2j1/view?usp=sharing
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https://drive.google.com/file/d/1eGtICJnEFvUulugZovlB_EcG27Omzf1I/view?usp=sharing
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SUPPLEMENTARY FIGURES AND VIDEOS 

 

Supplementary Figure 1. The isolated mouse brain preparation. 

Supplementary Figure 2. Experimental set-ups for validation experiments in the excised 

mouse brain preparation. 

Supplementary Figure 3. Assessment of neuronal activity in the isolated mouse brain 

preparation. 

Supplementary Figure 4. Characterization of the spatio-temporal resolution performance of the 

volumetric optoacoustic (OA) imaging system. 

Supplementary Figure 5. Fluorescence imaging of neuronal activation in the excised mouse 

brain model. 

Supplementary Figure 6. Lay-out of the optoacoustic and epifluorescence imaging setups for 

in vivo experiments. 

Supplementary Figure 7. Non-invasive in vivo fluorescence imaging of neuronal activation in 

GCaMP6f-expressing mouse brains under different stimulation current and experimental 

conditions. 

Supplementary Figure 8. Optoacoustic imaging of hemodynamic responses in the mouse 

brain induced by prolonged (20s) current stimulation pulses. 

Supplementary Movie 1. OA calcium activity map in a single 2D slice located at an 

approximate depth of 1 mm in the mouse brain. 

Supplementary Movie 2. OA calcium activity in a single 2D slice located at an approximate 

depth of 0.5 mm in the mouse brain. 

Supplementary Movie 3. Hemodynamic responses across the entire mouse cortex in response 

to paw stimulation. 
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Supplementary Figure 1. The isolated mouse brain preparation. (A) Photograph of a representative 

blood-free excised mouse brain. (B) The skull was cut on both sides in order to be able to swiftly remove 

the upper skull plate together with the brain, which was immediately placed into oxygenated artificial 

cerebrospinal fluid (ACSF). Skull image from www.digimorph.org was adapted with permission from T.B. 

Rowe. (C) Compound microscopic images of a 50 µm-thick coronal mouse brain slice at the location of 

the tracer injection (~Bregma 0 mm). To demonstrate brain viability and functionality of axonal transport, 

10 kDa dextran coupled to Texas-red was injected into the cortex of the excised brain. Labeled neurons 

were detected more than 1 mm away from the injection site. Approximate locations of some major mouse 

brain anatomical structures are indicated. Cg: cingulate cortex; CC: corpus callosum; LV: lateral ventricle 

(n=3 independent experiments). (D) Compound microscopic images of a 50 µm-thick coronal slice after 

intracortical injection of the same tracer into the cortex of a non-vital control brain. No labeled neurons 

were detected (n=3 independent experiments). (E) Compound microscopic images of a 50 µm-thick 

coronal slice after intracortical injection of Texas-red (without dextran) into the cortex of an excised mouse 

brain. No labeled neurons could be detected. Squares in C-E indicate the probe sites examined, >1mm 

away from the injection sites (n=3 independent experiments).  
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Supplementary Figure 2. Experimental set-ups for validation experiments in the excised mouse brain 

preparation. (A) Intracortical injection of the neuronal tracers. Freshly excised mouse brain is submerged 

into artificial cerebrospinal fluid (ACSF) constantly supplied with a mix of 95% O2 / 5 % CO2 to keep the 

solution oxygenized and to maintain a stable and physiological pH. A wireless robotic stereotactic 

injection system was used for the injection. (B) Electroencephalogram(EEG)-recordings were performed 

in a similar setup. Two custom-made needle electrodes connected to a differential amplifier were inserted 

into the cortex of the isolated mouse brain using a micromanipulator. Pentylenetetrazol (PTZ) was 

injected intracortically in the vicinity of the electrodes. EEG-signals were recorded using an acquisition 

module connected to an amplifier and a laptop computer. 
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Supplementary Figure 3. Evaluation of neuronal activity in the isolated mouse brain preparation. (A) 

Time-course of the Electroencephalogram (EEG) (left panels) shows stable EEG-signals in the brain of 

anesthetized CD-1 mice (In Vivo) before the injection of pentylenetetrazol (PTZ), while EEG-signals 

become increasingly variable shortly after PTZ-injection. The time-frequency representation (right panels) 

shows the frequency-spectrum and amplitude of the EEG-signals, revealing strong high-frequency 

neuronal activity at a rate of up to 20 Hz after PTZ-injection in vivo. Similarly, stable EEG-signals are 

initially measured in excised brains (Isolated) with the PTZ injection leading to both variable EEG-signals 

and strong high-frequency content in the time-frequency spectrum. No effects on the recorded EEG 

signals can be observed in control brains (Control) upon PTZ-injection. (B) Statistical analysis of the 

EEG signal changes, measured as the ratio of the root-mean-square (RMS) of the temporal EEG signal 

profiles before and after PTZ injection. A significant increase in the EEG signal was observed for both the 

In Vivo and the Isolated mouse brains when compared to Control brains. In contrast, the injection of a 

lower amount of PTZ (10 times lower concentration as compared to (A)) did not cause a significant EEG 

signal increase. Black dots - individual experiments, black lines - mean value, grey and red bars - 

standard deviation. P-values were calculated using F-test based on a one-way analysis of variance 

(ANOVA), where p-values < 0.05 were considered statistically significant with n=3 (Isolated low/high 

PTZ, In Vivo) and n=5 (Control) biologically independent samples. 
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Supplementary Figure 4. Characterization of the spatio-temporal resolution performance of the 

volumetric optoacoustic (OA) imaging system. (A) Diagram of the spherical matrix array transducer. The 

red box corresponds to the reconstructed volume, that approximately matches the effective field of view 

of the system. (B) The reconstructed volumetric image (top view) of an agar phantom containing sparsely 

distributed 50 µm diameter absorbing microspheres. (C) Representative one-dimensional profiles through 

a single microsphere. (D) Spatio-temporal resolution characterization in in vivo GCaMP6f experiments. 

The relative increase in the OA signal for a slice at a depth of 0.5 mm is shown. (E) Spatio-temporal 

signal profile along a black line indicated in (D). (F) The corresponding fitted spatial and temporal profiles. 

n=4 independent experiments in (C) and n=3 biologically independent animals for panels D-F. 
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Supplementary Figure 5. Fluorescence imaging of neuronal activation in the excised mouse brain 

model. (A) Fluorescence image of an isolated GCaMP6f-expressing brain. PTZ was injected into the right 

cortex of the brain with the glass capillary used for injection visible in the image (n=4 independent 



Nature Biomedical Engineering – in press 

- 41 - 

 

experiments). (B) Fluorescence image of an excised CD-1 brain recorded under the same conditions as 

in A (n=3 independent experiments). (C) Time-traces of the fluorescence signal from regions of interest 

close to the injection side (RC: right cortex, blue) and from the opposite side of the cortex (LC: left cortex, 

red) are plotted. The dots represent raw data whilst the solid line is a moving average over 50 

consecutive frames. A clear increase in neuronal activity, as represented by increased GCaMP6f-

fluorescence, can be observed in both hemispheres in response to PTZ (n=4 independent experiments). 

(D) Control experiment with PTZ-injection into an excised CD-1-brain showing no increase in 

fluorescence signal (n=3 independent experiments). (E) Likewise, injection of phosphate buffered saline 

(PBS) into an excised GCaMP6f-brain resulted in no effect on the fluorescence signal (n=3 independent 

experiments).  
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Supplementary Figure 6. Lay-out of the (A) optoacoustic and (B) epifluorescence imaging setups for in 

vivo experiments. Abbreviations: AM: Anesthesia mask; AU: Anesthesia unit; C: Camera; DAQ: Data 

acquisition; FB: Fiber bundle; FR: Fluorescence response; HP: Heating pad; LB: Laser beam; M: Mouse; 

OPO: Optical parametric oscillator (laser); PMD: Physiological monitoring device; PC: Personal computer; 

T: Trigger; TA: Transducer array; SI: Stimulus isolator; UR: Ultrasound response. 
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Supplementary Figure 7. Non-invasive in vivo fluorescence imaging of neuronal activation in GCaMP6f-

expressing mouse brains under different stimulation current and experimental conditions (n=2 biologically 

independent animals for each experiment). Air: In this case, the animal was breathing normal air instead 

of 100% O2. Analgesia: The animal received analgesic treatment before the stimulation experiment.   
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Supplementary Figure 8. Optoacoustic imaging of hemodynamic responses in the mouse brain induced 

by prolonged (20s) current stimulation pulses. (A) Volumetric optoacoustic image of the unmixed 

oxygenized (HbO) and deoxygenized (HbR) hemoglobin components (n=4 biologically independent 

animals). Three volumes of interest (VOI) were selected to analyze the hemodynamic response in terms 

of the relative optoacoustic signal changes ΔOA/OA0, where OA0 is the mean value before stimulation. 

VOI 1 is contralateral to the stimulated paw. Both VOI 1 and 2 are located in opposing 

somatosensoricortical regions. VOI 3 is located close to the confluence of sinuses and outside of the 

cortex. The corresponding hemodynamic response for each VOI is plotted in (B) for both HbO and HbR 

and also for total hemoglobin (HbT). In contralateral cortical areas, the HbO value increases by up to 30% 

whilst the HbR decreases by 5%. VOI 3, located outside of the cortex shows little to no response. The 

total blood volume also increases in areas of activation as shown by HbT. The data is the mean response 

of four electrical paw stimulation cycles (125s each). In order to extract the hemodynamic response 
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numerous changes were made to the experimental protocol in comparison to those used to elucidate the 

GCaMP response. These changes required a longer stimulation time (20s) with numerous stimuli - one 

hundred 500μs duration pulses were applied at 0.5mA every 200ms for 20s as opposed to a single paw 

stimulus for 50ms at 1mA, a longer cycle length in order to see the response (120s), multiple wavelength 

imaging to unmix for HbO and HbR and was carried out in FoxN1 nude mice as opposed to transgenic 

GCaMP BL6 mice.Notably, the duration of the activation is longer than that seen in GCaMP (approx. 80s 

versus 2s) and has a much higher delta when comparing HbO to GCaMP, 40% versus 6% in vivo.  Each 

arrow corresponds to 1 mm in its respective direction. 
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SUPPLEMENTARY MOVIE CAPTIONS 

  

Supplementary Movie 1. Optoacoustic calcium activity map (∆OA/OA) in a single 2D slice located at an 

approximate depth of 1 mm in the brain in response to the stimulus at t=0. The colormap, scalebar and 

functional brain regions are illustrated in Fig. 4. 

 

LINK TO VIDEO 1: 

https://drive.google.com/file/d/1QdFtN-YP3wl-lsQqKXLtUmjwkHHJvn-9/view?usp=sharing 

  

Supplementary Movie 2. Optoacoustic calcium activity map (∆OA/OA) in a single 2D slice located at an 

approximate depth of 0.5 mm in the brain in response to the stimulus at t=0. The colormap, scalebar and 

functional brain regions are illustrated in Fig. 4. 

 

LINK TO VIDEO 2: 

https://drive.google.com/file/d/1Gocj3AKJFS-Og7DWfzDkqGv4rh0-zW2z/view?usp=sharing 

 

Supplementary Movie 3. Relative optoacoustic signal changes (∆OA/OA) representing total hemoglobin 

(HbO) across the entire mouse cortex in response to paw stimulation, as outlined in the methods. The 

video is based on the data presented in Supplemental Figure 8.  

 

 

LINK TO VIDEO 3: 

https://drive.google.com/file/d/16lQRBwdyvkZVHpSHSqiglf5_VCwiKtvz/view?usp=sharing 

 

https://drive.google.com/file/d/1QdFtN-YP3wl-lsQqKXLtUmjwkHHJvn-9/view?usp=sharing
https://drive.google.com/file/d/1Gocj3AKJFS-Og7DWfzDkqGv4rh0-zW2z/view?usp=sharing
https://drive.google.com/file/d/16lQRBwdyvkZVHpSHSqiglf5_VCwiKtvz/view?usp=sharing

