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Abstract 

The discovery of constitutive nuclear factor-κB (NF-κB) activation in Hodgkin lymphoma tumor cells 

almost two decades ago was one of the first reports that directly connected deregulated NF-κB 

signaling to human cancer. Subsequent studies demonstrated that enhanced NF-κB signaling is a 

common hallmark of many lymphoid malignancies, including Hodgkin lymphoma, mucosa associated 

lymphoid tissue (MALT) lymphoma, diffuse large B cell lymphoma (DLBCL) and multiple myeloma. 

By inducing an anti-apoptotic and pro-proliferative gene program, NF-κB is involved in the initiation 

of lymphomagenesis as well as maintenance of lymphoma survival and growth. Identification of 

somatic mutations that led to activation of oncogenes and inactivation of tumor suppressor genes in 

the pathway revealed that specific pathogenic mechanisms are responsible for constitutive NF-κB 

activation in different lymphoma entities. Thus, the identification of distinct oncogenic events is 

reflecting the diverse cellular origins of the different lymphomas. Further, elucidation of the 

mechanisms that drive NF-κB in lymphoma is of high clinical relevance, as it will allow the design of 

target-directed precision therapy. Indeed, a number of drugs that impair constitutive NF-κB activation 

in lymphoid malignancies are currently in preclinical or clinical development.  
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Introduction 

The nuclear factor (NF-)κB transcription factor family consist of five mammalian family members, 

namely p65 (RelA), c-Rel, RelB, p105/p50 (NF-κB1) and p100/p52 (NF-κB2). They share an N-

terminal conserved REL homology domain, which allows dimerization, nuclear translocation and 

recruitment to κB DNA binding sites in the vicinity of many target genes. p65, c-Rel and RelB also 

contain transactivation domains and by forming various homo- or heterodimeric complexes, NF-κB 

proteins have been shown to either induce (e.g. p50/p65, p50/c-Rel, p52/RelB complexes) or repress 

(e.g. p50/p50 complexes) transcription. p50 and p52 are generated by an internal processing event 

from the larger precursor molecules NF-κB1/p105 and NF-κB2/p100, respectively. Activation of NF-

κB is tightly controlled primarily on the post-translational level by the prototypical IκB (inhibitors of 

NF-κB) proteins IκBα, IκBβ and IκBε, as well as the precursors NF-κB1/p105 and NF-κB2/p100 that 

sequester NF-κB complexes in the cytoplasm. Cytosolic IκBs are degraded in response to external or 

internal stimulation leading to NF-κB release and nuclear uptake. The very large number of NF-κB 

activating stimuli as well as NF-κB target genes underscores that the NF-κB system serves key 

functions in many biological processes including immune and stress responses, apoptosis, 

proliferation, differentiation and development 1, 2, 3, 4. 

NF-κB activation in response to extracellular stimulation is mainly controlled by the canonical 

(classical) and non-canonical (alternative) signaling pathways. The IκB kinase (IKK) complex 

consisting of the two catalytic subunits IKKα (IKK1) and IKKβ (IKK2) and the regulatory component 

NEMO (NF-κB essential modulator; IKKγ) acts as the gatekeeper of the canonical pathway 5. 

Inflammatory cytokines, bacterial or viral agents, antigenic peptides, chemicals or radiation trigger 

IKK activation, which subsequently catalyzes the phosphorylation of cytosolic IκBs. Phosphorylated 

IκBs are recognized and rapidly removed by the ubiquitin proteasome system to allow nuclear 

translocation of canonical NF-κB, mainly consisting of p50/p65 and p50/c-Rel complexes. Canonical 

NF-κB signaling is transient and transcriptional responses are limited by auto-regulatory feed-back 

mechanisms that involve the NF-κB-dependent induction of negative regulators like IκBα or the 
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ubiquitin-editing enzyme A20 that counteracts IKK activation 6. The non-canonical NF-κB pathway is 

strongly induced only by a subset of TNF receptor (TNFR) family member ligands, such as CD40 

ligand, lymphotoxin β (Ltβ) and B cell activating factor (BAFF). Non-canonical NF-κB signaling 

involves the NIK (NF-κB inducing kinase)-dependent activation of IKKα, which in turn 

phosphorylates the NF-κB2/p100 precursor leading to its proteolytic processing by the proteasome and 

primarily nuclear accumulation of p52/RelB heterodimers. NIK itself is a highly unstable protein and 

degradation is mediated by an ubiquitin ligase complex consisting of TRAF2 (TNF receptor activating 

factor2) and c-IAP1/2 (inhibitor of apoptosis 1/2). TRAF3 works as a bridging factor that couples the 

TRAF2 and c-IAP1/2 complex to NIK to enhance its degradation. Only upon recruitment of TRAF2/c-

IAP1/2 to the CD40 or BAFF receptor, TRAF3 is polyubiquitinated and degraded leading to a 

stabilization and activation of NIK, IKKα phosphorylation and non-canonical NF-κB activation 7. In 

contrast to the canonical pathway, non-canonical signaling in general promotes a delayed and 

sustained response and is often controlling developmental processes, such as B cell maturation. 

In normal cells NF-κB activation is tightly regulated to control its strong anti-apoptotic and pro-

proliferative activity. Especially B lymphocytes rely on NF-κB activation during different stages of 

their life cycle, such as development, maturation and activation. Thus, it is not surprising that 

deregulations in the NF-κB pathway are frequent in human lymphoid malignancies. In fact the 

mechanisms of NF-κB deregulation often reflect the cellular origin of the aberrant lymphoma cells and 

a detailed understanding of pathogenic processes uncovers options for specific therapeutic 

interventions.  

 

Control of NF-κB by cell intrinsic and extrinsic mechanisms in classical Hodgkin lymphoma  

 

With an annual incidence rate of almost 3 cases per 100.000 persons, Hodgkin lymphoma is one of the 

most frequent types of lymphoma 8. Based on histology and immunohistochemistry two major 

subclasses can be discriminated, namely classical Hodgkin lymphoma and nodular lymphocyte 
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predominant Hodgkin lymphoma (NLPHL). Hodgkin lymphoma is an unusual type of lymphoid 

malignancy, because only very few cells – often less than 1% –represent the malignant tumor cells in 

the affected lymph nodes. In Hodgkin lymphoma these large mononucleated Hodgkin cells or 

multinucleated Hodgkin-Reed Sternberg (HRS) cells are surrounded by many inflammatory cells, such 

as activated B and T cells, macrophages and granulocytes. The identification of clonal rearrangements 

and somatic mutations in Ig heavy- and light-chain genes clearly demonstrated the B cell lineage 

derivation and clonal origin of HRS cells. Most likely, the tumor cells derive from germinal center 

(GC) B cells that acquired unfavorable Ig mutations or lost Ig transcription during the germinal center 

reaction 9-11. Additional transforming events in the course of Hodgkin lymphoma development are 

apparently preventing negative selection by impairing the induction of apoptosis in these aberrant GC 

B cells. In line with this model, Hodgkin lymphoma derived cell lines as well as primary HRS cells 

display high constitutive activity of IKK/NF-κB, which triggers cell survival and growth by inducing 

an anti-apoptotic and pro-proliferative gene program 12-15.  

The causes of constitutive NF-κB activity have not yet been completely resolved, but canonical and 

non-canonical NF-κB signaling is enhanced in HRS cells (Figure 1). Cell-extrinsic as well as cell-

intrinsic mechanisms seem to contribute to NF-κB activation in the tumor cells. HRS cells express 

several TNF receptor (TNFR) family members on the surface, including CD40, RANK and CD30 that 

can stimulate the canonical and non-canonical NF-κB signaling pathways 16. Further, HRS cells 

themselves as well as the surrounding inflammatory cells produce high amounts of the respective 

ligands that can lead to a situation of chronic stimulation in either an autocrine or paracrine fashion 14, 

15. Since NF-κB itself is controlling expression of many of these cytokines, constitutive NF-κB in 

Hodgkin lymphoma may at least partially be explained by a vicious feed-forward cycle. However, 

high constitutive NF-κB activity in affected lymph nodes is largely confined to the malignant HRS 

cells and not seen in the surrounding inflammatory environment 13, 17. Thus, also cell-autonomous 

deregulations like the inactivation of negative feedback mechanisms that normally restrict cellular NF-

κB activity must account for the constitutive NF-κB activation in Hodgkin lymphoma tumor cells.  
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Approximately 40% of classical Hodgkin lymphomas are infected with Epstein-Barr virus (EBV) and 

several lines of evidence underscore that EBV is of pathogenic relevance through enhancing NF-κB 

activity. On the molecular level, the cytosolic domains of the EBV encoded latent membrane protein 1 

(LMP1) and LMP2A mimic a constitutively active CD40 receptor and BCR, respectively 18, 19. Indeed, 

LMP1 can induce canonical and non-canonical NF-κB signaling independent of ligand stimulation 

(Figure 1) and transgenic expression of LMP1 can promote B cell lymphomas in mice 20-24. For 

LMP2A it was initially shown that its expression counteracts BCR signaling 25, but transgenic LMP2A 

expression also promotes B cell survival and proliferation 26-28. However, the function of LMP2A in 

enhancing NF-κB signaling in Hodgkin lymphoma is less clear, because HRS cells have lost 

expression of many downstream BCR signaling adaptors. Nevertheless, LMP2A triggered NF-κB 

activation may be involved in preventing apoptosis in the initial phase of Hodgkin lymphoma 

pathogenesis. 

The detection and the proof of a functional relevance of constitutive NF-κB activity in classical 

Hodgkin lymphoma 13 encouraged the search for mutations in the pathway. Indeed, HRS cells carry 

several somatic alterations that lead to a gain or loss of function of positive or negative NF-κB 

regulators, respectively (Table 1). As a result, both the canonical and non-canonical NF-κB pathways 

are constitutively turned on in HRS cells (Figure 1). Copy number gains of the REL locus are found in 

more than 30 % of classical Hodgkin lymphoma and correlate with the presence of nuclear c-Rel 

staining in primary Hodgkin lymphoma cells 29-31. Also, elevated expression of the proto-oncogene 

BCL3 is a common feature of HRS cells 32. The atypical nuclear IκB protein BCL3 can enhance 

canonical NF-κB transcription and target gene expression by binding to p50 homodimers 33. BCL3 

copy number gains or juxtaposition of BCL3 to the IGH locus have been reported in HRS cells 32, 34, 

but it remains unclear if IGH translocations actually contribute to BCL3 overexpression, as Ig 

transcription is usually silenced in HRS cells 10. 

Besides these activating events several negative regulators of canonical NF-κB are prone to frequent 

mutations in Hodgkin lymphoma. 10-20% of primary Hodgkin lymphoma cells carry inactivating 

point mutations in NFKBIA and NFKBIE coding for the cytosolic NF-κB inhibitors IκBα and IκBε 17, 
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35-37. With approximately 40% the TNFAIP3/A20 gene is even more frequently mutated in classical 

Hodgkin lymphoma 38, 39. TNFAIP3 codes for the ubiquitin editing enzyme A20, which terminates 

upstream IKK activation in response to various stimuli 40. Re-introduction of A20 counteracts NF-κB 

activation and impairs survival of HRS cell lines underscoring its potential as a tumor suppressor 

activity in Hodgkin lymphoma 38, 39. Interestingly, an HRS cell line that carries inactivating mutations 

in IκBα or IκBε is largely independent of NF-κB upstream signaling events and resistant to A20 

overexpression revealing the functional relevance of the individual mutations 14, 39.  

HRS cells are also characterized by high nuclear levels of p52 and RelB, indicative of aberrant non-

canonical NF-κB signaling 41, 42. Recurrent copy number gains in the MAP3K14 gene that codes for 

NIK and rare mono-allelic deletions of TRAF3, two key regulators of non-canonical NF-κB signaling, 

have been found in classical Hodgkin lymphoma 43. NIK is stabilized in HRS cell lines and in primary 

Hodgkin lymphoma cells and its knock-down impairs viability of Hodgkin lymphoma cell lines 42. 

Further, just like for p65 or c-Rel, elimination of RelB expression is toxic to HRS cell lines, 

suggesting that parallel activation of canonical and non-canonical NF-κB is critical for survival of 

Hodgkin lymphoma cells. Future results will need to resolve how these pathways may cooperate in 

pathogenesis of classical Hodgkin lymphoma. 

Hodgkin lymphoma is a cancer with a favorable diagnosis and current radiation therapy and 

chemotherapy achieve cure rates of more than 85% even in late stage patients 44. However, Hodgkin 

lymphoma patients are often diagnosed at a relatively young age and precision therapies that target 

NF-κB pro-survival signaling could help to avoid or at least reduce chemotherapy and reduce long-

term adverse effects.  

 

Translocation of BCR signaling mediators in MALT lymphoma  

 

MALT lymphoma, a variant of marginal zone B cell lymphoma, is the most common extranodal 

lymphoma and accounts for up to 8% of non-Hodgkin lymphoma (NHL) 45. Commonly, it occurs in 

the stomach but can also develop in other mucosal surfaces, e.g. the lung and the liver 46. The 
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development of gastric MALT lymphoma initially emerges from a persistent infection with 

Helicobacter pylori. In these early stages of gastric MALT lymphoma, proliferation of the neoplastic 

B cells depends on an inflammatory environment that is likely driven by antigen-stimulated T cells 47. 

MALT lymphomas are often characterized by a strong NF-κB activation that is driven by three 

independent chromosomal translocations involving the BCL10 (B cell lymphoma/leukemia), MALT1 

and c-IAP2/API2 (inhibitor of apoptosis2) genes (Table 1) 46, 48.  

The translocation t(1;14)(p22;q32), which brings the BCL10 gene under the control of the IGH 

enhancer, is a rare genetic aberration of MALT lymphomas. It promotes an overexpression and a 

nuclear localization of the BCL10 protein 49, 50. BCL10 is part of the CARMA1/CARD11-BCL10-

MALT1 (CBM) complex that mediates IKK-NF-κB activation upon antigen receptor ligation in B and 

T cells 51. Interestingly, transgenic mice expressing BCL10 in B cells display enhanced activity of 

canonical and non-canonical NF-κB signaling and develop splenic marginal zone hyperplasia 52, 

suggesting that the translocation and overexpression can facilitate lymphomagenesis. However, the 

nuclear function of BCL10, its role in constitutive NF-κB activity and MALT lymphomagenesis is 

unclear 53. 

The second chromosomal translocation t(14;18)(q32;q21) is a more frequent aberration in MALT 

lymphoma (up to 18%), but it is not found in gastric MALT1 lymphoma 54. It juxtaposes the MALT1 

gene next to the Ig heavy chain enhancer (IGH-MALT1) leading to overexpression of MALT1 55. 

Within the CBM complex, MALT1 controls antigen dependent lymphocyte activation downstream of 

BCL10 and it therefore acts as a key regulator of adaptive immunity 51. It serves a dual role by 

functioning as a NF-κB signaling adapter within the CBM signaling complex and as a protease, 

supporting lymphocyte activation by cleaving a set of negative regulators 56-59. Due to its structural 

similarity to caspases, MALT1 has also been termed paracaspase 60. Both scaffolding and enzymatic 

function of MALT1 are critical for the adaptive immune response but also for survival and 

proliferation of different B cell malignancies 61-63. As a consequence of MALT1 overexpression 

canonical NF-κB signaling in t(14;18) MALT lymphoma is increased 64. However, the exact 

molecular mechanism how overexpression of MALT1 enhances NF-κB and promotes 

lymphomagenesis has not been resolved. Interestingly a human-like MALT lymphoma can be induced 
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in mice by overexpression of MALT1 in hematopoietic stem/progenitor cells, demonstrating the 

oncogenic potential of MALT1 65. Further deletion of p53 accelerated tumor development and induced 

a transformation from MALT to a DLBCL-type tumor, providing a molecular link between these two 

lymphoma entities. 

The common translocation t(11;18)(q21;q21) in MALT lymphoma localizes the c-IAP2/API2 gene in 

proximity to the MALT1 gene resulting in an oncogenic fusion protein that links the N-terminus of c-

IAP2/API2 to the MALT1 C-terminus, including the intact paracaspase domain 66, 67. 

T(11;18)(q21;q21) is present in ~16% of all MALT1 lymphomas, but with a frequency between 23-

48% it is enriched in gastric MALT lymphomas 68, 69. Transgenic expression of the API2-MALT1 

fusion protein alone can induce expansion of marginal zone B cells, but it is not sufficient to induce 

development of B cell lymphomas 70. Interestingly, due to the deletion of the RING finger, the c-IAP2 

ligase activity is lost in the API2-MALT1 fusion protein and the expression of ligase defective c-IAP2 

alone is inducing abnormalities reminiscent to MALT lymphoma 71. Thus, loss of tumor suppressing 

c-IAP2 ligase activity may contribute the oncogenic effect of API2-MALT1 in vivo. It will be 

interesting to see whether the stabilization of typical c-IAP2 substrates in t(11;18) positive MALT 

lymphoma contributes to tumorigenicity. 

Mechanistically, API2-MALT1 oligomerizes to activate both canonical and non-canonical NF-κB 

signaling autonomously from upstream signals 71, 72. The oligomerization of the fusion protein may 

provide a platform for the recruitment of downstream signaling factors. Whereas the baculovirus IAP 

repeats (BIR) domains of API2 are associating with RIP1 (receptor interacting protein 1) and the E3 

ubiquitin ligase TRAF2, the E3 ubiquitin ligase TRAF6 is recruited to the MALT1 moiety of the 

fusion (Figure 2). Deletion of the corresponding interaction sites within API2-MALT1 disrupts NF-

κB activity, proving an involvement of these regulators for API2-MALT1 mediated canonical NF-κB 

signaling 72-75. Recent data suggest that canonical NF-κB signaling involves TRAF2-dependent RIP1 

ubiquitination to recruit NEMO to API2-MALT1 as well as TRAF6 catalyzed ubiquitination of 

NEMO to activate the IKK complex 75. As API2-MALT1 contains the catalytically active paracaspase, 

it is able to cleave and inactivate the NF-κB negative regulator A20, thereby further enhancing 
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canonical NF-κB activation 57. Just like in many other lymphoma entities, TNFAIP3/A20 itself is prone 

to inactivating mutation in MALT lymphoma 38. 

Paracaspase activity of API2-MALT1 is also critical for the engagement of the non-canonical NF-κB 

pathway. In normal B cells NIK is continuously degraded by TRAF3 to prevent NIK from IKKα 

phosphorylation and subsequent processing of NF-κB2/p100 precursor to activate p52/RelB 

heterodimers. The API2-MALT1 fusion protein bypasses BAFF or CD40 triggered NIK stabilization 

by cleaving the N-terminal inhibitory TRAF3 binding domain on NIK generating a stable truncated 

NIK fragment that acts as a potent oncoprotein through uncontrolled activation of non-canonical NF-

κB (Figure 2) 76. NIK is not a physiological substrate of MALT1 and only the binding to the API2 

part of the fusion protein localizes NIK in close proximity to the paracaspase domain 76. Thus, API2-

MALT1 serves as an example how an oncogenic fusion is not only increasing enzyme activity, but 

also alters substrate specificity. Of note, API2-MALT1 can also catalyze the cleavage of CYLD, 

another negative regulatory DUB in the NF-κB signaling pathway. However, MALT1 dependent 

cleavage of CYLD is apparently primarily affecting JNK activation and a functional relevance for 

pathogenesis of MALT lymphoma is currently unclear 77. Future analysis will need to resolve whether 

other potentially selective API2-MALT1 cleavage substrates exist that contribute to 

lymphomagenesis. 

Therapeutically, MALT lymphomas are often treated by H. pylori eradication and a mild 

chemotherapy can be added in case of more advanced stages 61. However, late stage antibiotic resistant 

cases that acquired chromosomal alterations may benefit from treatment with MALT1 inhibitory 

compounds that have been identified and shown to be active on MALT1 dependent DLBCL tumors 78, 

79. In addition, NIK may represent a promising candidate for a target-directed therapy of MALT 

lymphoma characterized by the API2-MALT1 fusion. 

 

Chronic BCR signaling nucleates NF-κB in an aggressive subset of diffuse large B cell 

lymphoma 

 

With an incidence rate of more than 7 patients per 100.000 persons, diffuse large B cell lymphoma 
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(DLBCL) is the most prevalent lymphoid neoplasm in adults 8. Gene expression profiling of patient 

derived tumor cells revealed a high grade of heterogeneity within this lymphoma entity 80. Gene 

cluster analysis led to the identification of three subclasses of DLBCL, namely the germinal center B-

cell like (GCB) DLBCL, the activated B cell like (ABC) DLBCL and the primary mediastinal B cell 

lymphoma (PMBL). ABC DLBCL and PBML exhibit high expression of an NF-κB target gene 

signature. More importantly, the molecular classification is also linked to significantly different 

clinical responses to current therapy and ABC DLBCL patients have a clearly inferior prognosis when 

compared to GCB DLBCL and PMBL subtypes 81-83. 

PMBL represent the smallest class of DLBCL that most likely arises from a rare B cell population 

within the thymus 84, 85. Interestingly, the NF-κB gene signature of PMBL highly resembles the 

signature of HRS cells derived from Hodgkin lymphoma 82, 86. The molecular similarities between 

PMBL and Hodgkin lymphoma further extend to common genetic alterations that drive constitutive 

NF-κB activity, such as nuclear accumulation of c-Rel protein as a result of REL amplification that is 

found in 75% of PMBL (Table 1) 87. However, the functional consequences of c-Rel overexpression 

are not fully understood, because REL gains have also been found in NF-κB-independent GCB 

DLBCL 88. IKKβ inhibitors are toxic to PMBL cells revealing that the tumor cells rely on activation of 

upstream signaling pathways 89. The exact mechanisms of IKK activation still need to be elucidated, 

but similar to many other NF-κB-driven lymphomas, PBML patients often harbor inactivating 

mutations and deletions in TNFAIP3 coding for the IKK inhibitor A20 39.  

Consistent with the high gene signature similarities to an antigen-activated B cell, ABC DLBCL tumor 

cells depend on constitutive activation of canonical NF-κB 90. The critical role of the canonical 

IKK/NF-κB pathway in ABC DLBCL is supported by the fact that specific small molecule IKKβ 

inhibitors are killing ABC, but not the GCB DLBCL cells 89. Further, B cell specific expression of 

constitutively active IKKβ in conjunction with inactivation of the tumor suppressor BLIMP1, a 

regulator of plasma cell differentiation, induces the development of ABC DLBCL-like tumors in mice 

91, 92. Constitutive IKK activation in ABC DLBCL cells is driven by chronic BCR signaling (Figure 3) 

93. Accordingly, essential mediators of BCR signaling, like the adaptor CD79A/B, the tyrosine kinases 

SYK (spleen tyrosine kinase) and BTK (Bruton’s tyrosine kinase), protein kinaseβ (PKCβ) and the 
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components of the CARMA1-BCL10-MALT1 (CBM) signaling complex are indispensable for 

survival of ABC DLBCL cells 93-95.  

The key role of chronic BCR signaling for ABC DLBCL survival is supported by recurrent somatic 

mutations in downstream mediators that drive oncogenic activation of canonical NF-κB (Table 1). 

Approximately 20% of all ABC DLBCL patients harbor activating mutations in the ITAM (immune 

tyrosine activating motif) of either CD79B or, less common, CD79A 93, 96. Upon antigen binding, the 

Src kinase LYN phosphorylates the ITAM of CD79, a membrane anchored adaptor that recruits SYK 

to the immunoglobulin chains 97. However, LYN is also involved in shutting off BCR signaling and 

BCR internalization. ITAM mutations in CD79A and CD79B seem to render the ABC DLBCL cells 

more resistant towards this negative feed-back 93, 98, 99. In line with this, immunoglobulin 

downregulation is toxic to ABC DLBCL cells carrying CD79B mutations revealing that survival still 

relies on a functional BCR 93. Whether BCR ligation is still required is not yet resolved, but it is 

conceivable that ABC DLBCL derive from autoreactive B cells that are protected from anergy through 

chronic BCR signaling and subsequently acquire further downstream mutations. Of note, activating 

CD79B mutations have also been identified in GCB DLBCL patients (~3%) indicating that oncogenic 

BCR signaling may not be entirely restricted to the ABC subtype 93.  

About 10 % of ABC DLBCL patients carry gain of function mutations within the coiled-coil domain 

of the CARD11/CARMA1 gene 100, 101. Expression of CARMA1 coiled coil mutants in GCB DLBCL 

cells is able to induce canonical NF-κB signaling and an ABC-like gene signature underscoring the 

oncogenic potency of the mutations. Again, CARD11 mutations have been identified in some GCB 

DLBCL patients (~4%) and these tumor cells retain the GCB-type gene signature, but in addition 

exhibit high expression of NF-κB target genes 100. Mechanistically, coiled-coil mutations exert an 

activating effect, presumably by changing the conformation of the CARMA1 scaffold. In resting 

lymphocytes CARMA1 adopts an auto-inhibited conformation that is restrictive to the interaction of 

downstream signaling factors, like BCL10 and MALT1 102. ABC DLBCL derived coiled-coil 

mutations render the CARMA1 scaffold constitutively active independent of upstream signaling and 

NF-κB activation in CARMA1 mutant cells is completely resistant to downregulation or inhibition of 

upstream kinases SYK, BTK or PKCβ 93, 103-105. Thus, quite in contrast to the oncogenic CD79B 
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mutants, growth of CARMA1 mutated ABC DLBCL cells is not dependent on a functional BCR 93. 

Indeed, introduction of oncogenic CARMA1 mutant alleles into antigen-activated B cells is sufficient 

to block self-antigen induced cell death and promote B cell proliferation in vivo 106. Moreover, like the 

somatic mutations in DLBCL, human germline mutations in the CARMA1 coiled-coil domain 

selectively induce B cell expansion 107. These results suggest that autoreactive antigen receptors 

arising from hypermutations in activated B cells may cooperate with oncogenic CARMA1 missense 

mutations in the onset of ABC DLBCL development. 

As a consequence of chronic BCR signaling and/or oncogenic driver mutations, the CBM complex is 

persistently assembled in all ABC DLBCL tumor cells 63. Apart from its scaffolding function within 

the CBM complex, MALT1 proteolytic activity is strongly enhanced and essential for growth and 

survival of ABC DLBCL cells 63, 108, 109. A constitutive mono-ubiquitination drives MALT1 activity in 

ABC DLBCL cells 109. Further, PI3K-PDK1 signaling has been shown as a critical link in CD79B 

mutated ABC DLBCL cells 110. Functionally, inhibition of MALT1 activity causes accumulation of 

the IKK negative regulator A20 and the nuclear NF-κB subunit RelB, which are both cleaved by 

MALT1 (Figure 3) 58, 63, 108. Like in most other NF-κB driven lymphomas, the TNFAIP3/A20 gene is 

often inactivated by point mutations, deletions or epigenetic silencing in ABC DLBCL 38, 111. Thus, 

MALT1 dependent cleavage may be an alternative mechanism to release the cells from the negative 

impact of A20. More unexpected, cleavage of the non-canonical RelB subunit enhances activation of 

canonical NF-κB target genes, suggesting that in contrast to all other lymphoma entities activation of 

non-canonical NF-κB may counteract lymphomagenesis 58. Clearly, the nuclear events that contribute 

to the oncogenic potential of NF-κB in ABC DLBCL but also in other lymphoma are not understood 

in detail. Recently, the atypical nuclear IκBζ was shown to be highly expressed in ABC DLBCL, but 

not in Hodgkin lymphoma or multiple myeloma 112. IκBζ is critical for ABC DLBCL survival and 

induces target gene expression selectively by associating with p50 or p52 homodimers. Future studies 

will need to address the complexity of nuclear pathogenic NF-κB regulation and whether IκBζ 

expression is linked to the opposing functions of RelB in different lymphoma entities.  

Not only BCR signaling mediators are prone to frequent aberrations, but also the innate immune 

receptor adaptor MYD88 is somatically mutated in almost 40% of ABC patients 113. Interestingly, 
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~30% of the ABC DLBCL cases carry a MYD88 gain of function mutation that leads to the amino acid 

substitution L265P within the Toll-interleukin receptor (TIR) domain and thereby accelerates binding 

and activation of the downstream kinases IRAK4 (Interleukin-1 receptor-associated kinase 4) and 

IRAK1. Similar to coiled-coil mutations in CARMA1, the TIR mutation presumably alters MYD88 

conformation to promote IRAK4/1-IKK-NF-κB signaling 96, 113-115. Notably, 65% of the patients with 

MYD88 mutations also harbor either CD79 or CARD11 mutations, revealing an extensive overlap 

between the two signaling pathways and suggesting a cooperation in driving survival of the tumors 113. 

However, chronic BCR signaling may exert a dominant effect over MYD88 signaling, as CARMA1 

depletion was shown to be toxic to exclusively MYD88 mutated cells. Nevertheless, a parallel 

knockdown of CD79A and MYD88 further decreased the viability of ABC DLBCL cells, suggesting 

that combinatorial treatment protocols with compounds that target both pathways may be beneficial 

over a single agent therapy 113. Interestingly, the MYD88 L265P mutation is not restricted to ABC 

DLBCL, but is also a recurrent oncogenic aberration in other lymphoid malignancies, e.g. 

Waldenstrom macroglobulinemia (90%), a rare lymphoid malignancy that is also driven by 

constitutive NF-κB activity, MALT lymphoma (~9%) and GCB DLBCL (~10%) 113, 116, 117. 

Given the key survival function of chronic BCR signaling in ABC DLBCL, a number of selective 

inhibitors that target the pathway are currently evaluated in preclinical studies and clinical trials. 

Especially the kinases SYK, BTK and PKCβ that link the BCR to the CBM-IKK-NF-κB signaling 

axis are attractive candidates 96, 104, 118. For instance the irreversible BTK inhibitor Ibrutinib shows first 

promising effects in a phase II clinical trial on refractory/relapsed ABC DLBCL patients 119. Small 

molecule inhibitors of MALT1 paracaspase have been shown to partially block NF-κB target gene 

expression and thereby selectively kill MALT1 dependent ABC DLBCL tumors cells in preclinical 

models 78, 79. As oncogenic MYD88 mutations are present in almost one third of ABC DLBCL 

patients, the MYD88 pathway and especially the protein kinase IRAK4 is an attractive target. 

 

Enhanced canonical and non-canonical NF-κB pathways in multiple myeloma 
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With incidence rate of more than 5 patients per 100.000 persons multiple myeloma constitutes by far 

the most frequent form of plasma cell neoplasms 8. The heterogeneous tumor entity is characterized by 

long-lived plasmacytic B cells in the bone marrow. Multiple myeloma is a nearly incurable disease 

and constitutive NF-κB activity is thought to critically contribute to survival and proliferation as well 

as therapy resistance of the tumor cells. High amounts of the canonical NF-κB p65 subunit are present 

in almost 80% of multiple myeloma biopsies and these correlate with enhanced expression of anti-

apoptotic NF-κB target genes 120, 121. In addition, strong nuclear accumulation of NF-κB p52 and RelB 

points to a key role of the non-canonical pathway as well. Constitutive RelB DNA-binding is found in 

many primary multiple myeloma samples (~40%) and it also confers a clear pro-survival activity to 

multiple myeloma cells 122. Cell intrinsic and extrinsic processes seem to add to the sustained NF-κB 

activation in multiple myeloma. In fact, multiple myeloma survival seems to heavily rely on tumor 

microenvironment and signals from the stroma are essential especially during the onset of the disease. 

The TNF family ligands BAFF and APRIL (a proliferation inducing ligand) activate the NF-κB 

pathway by binding to their highly abundant cognate BAFFR and TACI/BCMA receptors, 

respectively (Figure 4). These cell extrinsic factors are not only required to maintain survival of 

normal plasma cells, but also of the pre-malignant cells found in a condition called monoclonal 

gammopathy of undetermined significance that often precedes multiple myeloma 123-125. 

Besides the contribution of these extracellular factors multiple myeloma tumor cells acquire several 

NF-κB pathway mutations that apparently render the cells more independent of ligand-mediated NF-

κB signaling 126. Mutations in positive and negative NF-κB regulators have been identified in ~9-17 % 

of primary multiple myeloma tumors (Table 1). Interestingly, only a small subset of these lesions 

leading to activation of TACI or inactivation of CYLD and NFKB1 are directly affecting canonical NF-

κB. The majority of mutations are primarily associated with non-canonical NF-κB signaling, e.g. gain 

of function mutations in MAP3K14/NIK, CD40 and LTβR and loss of function mutations in TRAF2/3, 

cIAP1/2, and NFKB2 120, 121, 127. Even though the abundance of mutations would argue for a prominent 

role of non-canonical NF-κB signaling in the pathogenesis of multiple myeloma, selective IKKβ 

inhibition is highly toxic for multiple myeloma cells demonstrating that also canonical NF-κB 

activation is crucial for cancer cell survival 120, 128, 129. 
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The protein kinase NIK serves a key role as most genetic aberrations in multiple myeloma affect NIK 

activity (Figure 4). To prevent constitutive NF-κB activation, NIK is inherently instable and degraded 

by the TRAF2/c-IAP1/2 E3 ligase complex in unstimulated cells. TRAF3 serves as a bridging factor to 

recruit TRAF2/c-IAP1/2 to NIK 7. Whereas NIK overexpression can be directly achieved by 

amplifications or translocations of the NIK locus, NIK amounts are also often increased indirectly by 

inactivation of the negative regulator TRAF3 and c-IAP1/2 or in rare cases by activating mutations in 

LTβR (Table 1) 120, 121. Roughly 50% of all mutations in multiple myeloma involve the inactivation or 

deletion of the TRAF3 gene. In most of these cases the NIK binding region on TRAF3 is deleted, 

resulting in a failure to recruit the TRAF2/c-IAP1/2 E3 ligase complex. In addition, biallelic deletions 

affecting TRAF2 or c-IAP1/2 genes have been identified in rare cases of multiple myeloma. Multiple 

myeloma cells with c-IAP1/2 losses express high TRAF3 and NIK amounts and congruently strong 

NF-κB activation is caused by destruction of the degradation machinery 120, 121. Interestingly, even 

though NIK is not directly involved in the canonical NF-κB pathway, its overexpression can directly 

promote IKKβ activation and thus induction of canonical NF-κB signaling, which may explain the 

enhancement of both pathways 130. Acting downstream of NIK, a C-terminal truncation product of NF-

κB2/p100 has been detected in rare cases of multiple myeloma cells. Loss of the inhibitory ankyrin 

repeats of p100 promotes the generation of a constitutively nuclear p52 that can activate non-canonical 

NF-κB target gene expression 127. Similar to NIK overexpression, loss of the inhibitory p100 C-

terminus can also enhance nuclear p65 accumulation, revealing that mutations in the non-canonical 

pathway may well affect canonical NF-κB signaling 131-133. 

Given the key role of constitutive NF-κB activation for multiple myeloma survival, pharmaceutical 

interference represents a promising therapeutic approach. The introduction of proteasome inhibitors 

like bortezomib has delivered some improvements for multiple myeloma therapy and the blockage 

NF-κB activation is thought to make a substantial contribution to the positive effects of proteasomal 

inhibitors 134, 135. However, proteasomal inhibition does certainly not represent a highly selective 

strategy to interfere with NF-κB and adverse effects may limit the applicability of this therapeutic 

approach. More specific approaches are currently developed. Given the central role of TRAF3 and 
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NIK for the activation of both, the canonical and non-canonical NF-κB pathway, pharmacological 

inactivation of NIK is certainly an interesting therapeutic option. Currently there are several efforts to 

generate potent NIK inhibitors 136, 137, but it may also be feasible to reduce NIK amounts. Moreover, 

recent results indicate that dual inhibition of the canonical and non-canonical NF-κB pathways may 

accelerate antitumor activity and overcome the proliferative and anti-apoptotic effects of the tumor 

microenvironment 138. 

 

Conclusions and perspectives 

 

Since the initial discoveries of constitutive NF-κB activation in different lymphomas, tremendous 

progress has been made in our understanding of the genetic and molecular mechanisms as well as 

functional consequences of deregulated NF-κB signaling in lymphoid malignancies. Even though 

canonical IKK/NF-κB signaling is essential for survival of these lymphomas, severe adverse effects by 

the usage of IKKβ inhibitors seem to prevent targeting of the core pathway for cancer therapy. The 

hunt for genetic alterations and the molecular characterization of NF-κB signaling in lymphoma cells 

revealed the existence of some common aberrations, like the inactivation of the NF-κB negative 

regulator A20 in many different lymphomas. More importantly, other oncogenic events are more 

restricted to specific lymphoma entities, e.g. the API2-MALT1 fusion in gastric MALT lymphoma, 

CD79B or CARMA1 mutations in ABC DLBCL, or NIK stabilization in multiple myeloma. Certainly, 

additional genetic lesions will be identified, but future analysis will also need to focus on the 

molecular mechanisms how these aberrations are promoting NF-κB and lymphoma survival. Based on 

these results, it will be possible to design target-directed treatment approaches that more specifically 

interfere with deregulated NF-κB pathways in the tumor cells. First promising preclinical results have 

been obtained using BTK, PKCβ or MALT1 inhibitors to treat ABC DLBCL. Combinatorial treatment 

protocols that hit essential oncogenic processes in parallel may be envisioned to increase efficacy and 

to reduce the risk of drug resistance in highly malignant lymphomas. 
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Table and Figure legends 

 

Table 1: Common NF-κB pathway mutations in lymphoid malignancies 

 

NF-κB 
pathway 

mutationsa 

Hodgkin Lymphoma 
(HL) 

Activated B cell-
like diffuse large 
B-cell Lymphoma

(ABC DLBCL) 

Primary 
mediastinal B-
cell Lymphoma 

(PMBL) 

Mucosa-associated 
lymphoid tissue 

Lymphoma 
(MALT)  

Multiple 
Myeloma 

(MM) 
Ref. 

ga
in

 o
f f

un
ct

io
n 

CD79A   GM ITAM (2/68)       93 

CD79B   GM ITAM (34/161)           93 

CARD11   
GM CC (7/73)       
GM (4/37) 

      100;111 

MYD88   
GM TIR (68/174)  
TIR-L265P (45/155) 

  GM TIR-L265P (5/56)    113 

BCL10     
CNG 1p22 (BCL10) 
(rare)b6 

CHT (1;14)(p22;q32)  
BCL10-IGH (rareb) 

  50;139d 

MALT1     
CNG 18q21 
(MALT1 & BCL2 
loci) (9/376) 

CHT (11;18)(q21;q21)  
cIAP2-MALT1 (67/417)      
CHT (14;18)(q32;q21)   
MALT1-IGH (12/66) 

  68;54;139d 

REL CNG (11/31)   CNG (15/20)      29;87 

MAP3K14/NIK CNG (5/16)       
CHT NIK-IGH/IGL 
(rareb)                    

43;120;121

BCL3 
CHT (14;19)(q32;q13)  
IGH-BCL3 (1/20) 
CNG (3/20) 

        34 

LTβR         CNG (MD 1/125) 121 

lo
ss

 o
f f

un
ct

io
n 

NFKBIA (IκBα) GM (1/10)  GM (1/10)                         17 

NFKBIE (IκBε) GM (1/6)         37;142d 

TNFAIP3 (A20) 
GM (12/30)  
CNL 6q23-24 (9/21) 

GM 6q23.3 (9/37)       
CNL (5/64)  

GM (5/14) 
CNL 6q23-24 
(frequent)c 

GM/CNL (3/23)   39;38;141d 

TRAF3 CNL (MD 3/20)       
CNL (BD 6/158); 
(MD 19/158) 

43;121 

CYLD CNL (BD 1/29); (MD 10/29)       
CNL (BD 1/62); 
(MD 11/62) 

121;140d 

TRAF2   GM (1/37)     
CNL (BD 1/62); 
(MD 1/62) 

111;121 

cIAP1/2         
CNL (BD 1/62); 
(MD 1/62) 

121 

Abbreviations: GM, gene mutation; CHT, chromosomal translocation; CNG/CNL, copy number 
gain/loss; MD, monoallelic deletion; BD, biallelic deletion 
a Only mutations from primary patient samples are listed; b rare stands for less than 5% of mutations c 
frequent stands for more than 5% of mutations;d References 139-142 are only cited in Table 1. 
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Figure 1: Constitutive canonical and non-canonical NF-κB activation in Hodgkin lymphoma. 

Genetic lesions comprising loss of function mutations (blue stars) in TNFAIP3 (A20), CYLD and 

NFKBIA/E or gain of function alterations (red stars) in REL are the major cause for the constitutive 

activity of the canonical NF-κB pathway. Activation of CD30/CD40 or RANK can contribute to 

canonical NF-κB activity in Hodgkin lymphoma. The non-canonical pathway in HRS cells is 

primarily driven by activation of CD40 or via aberrations of TRAF3 or MAP3K14 (NIK) genes. 

Signaling via the EBV-encoded latent membrane protein 1 (LMP1) in EBV-positive cases of Hodgkin 

lymphoma promotes both NF-κB pathways. 

 

Figure 2: The API2-MALT1 fusion protein drives canonical and non-canonical NF-κB activity 

in late stage MALT lymphoma. 

The oncogenic translocation (red star) t(11;18)(q21;q21) involving MALT1 and c-IAP2/API2 in 

MALT lymphoma results in the production of the chimeric fusion protein API2-MALT1. The fusion 

protein promotes canonical NF-κB activity via oligomerization mediated recruitment of RIP1 and 

TRAF2 to the c-IAP2 part of the fusion protein. TRAF2-dependent ubiquitination of RIP1 recruits the 

IKK complex. TRAF6 is recruited to the MALT1 moiety to ubiquitinate NEMO. MALT1-dependent 

cleavage of the negative regulator A20 further enhances the canonical NF-κB activity. Additionally, 

cleavage of NIK by the MALT1 paracaspase results in the constitutive activation of NF-κB via the 

non-canonical pathway. The C-terminal part of NIK that emerges from the cleavage reaction is 

constitutively active and phosphorylates IKKα to induce NF-κB2/p100 processing. 

 

Figure 3: Chronic BCR signaling and MYD88 mutations promote canonical NF-κB in ABC 

DLBCL  

Several genetic lesions drive canonical NF-κB activity in ABC DLBCL via chronic BCR signaling 

involving several critical signaling mediators, e.g. SYK, BTK, PKCβ and the CBM complex. Many 

ABC DLBCL cases harbor somatic gain of function (red stars) mutations in CD79A/B or CARD11 
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genes, respectively, which promote high NF-κB activity. Further oncogenic mechanisms contribute to 

canonical NF-κB result from mutations of MYD88 and inactivation (blue stars) of TNFAIP3/A20. An 

interference with the NF-κB negative activity of A20 or RelB is additionally achieved via constitutive 

MALT1-dependent cleavage.  

 

Figure 4: Stabilization of the NIK protein directs constitutive NF-κB activation in multiple 

myeloma. 

In early multiple myeloma the non-canonical NF-κB activity is activated through induction of BAFF 

receptor. TACI/BCMA receptor promotes canonical NF-κB pathway. Most genetic lesions identified 

in multiple myeloma patient biopsies contribute to the non-canonical NF-κB activation. The main 

mechanism involves the stabilization of NIK that activates IKKα and the subsequent processing of 

p100. NIK stabilization in multiple myeloma is achieved via several mechanisms: Loss of function 

mutation (blue stars) in TRAF3 or cIAP1/2 by deletion/inactivation or gain of function (red stars) by 

amplification/overexpression of MAP3K14/NIK, CD40 or LTβR. In addition, high levels of NIK can 

also trigger canonical IKK/NF-κB activation.  
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