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SUMMARY

The timing of commitment and cell-cycle exit within
progenitor populations during neurogenesis is a
fundamental decision that impacts both the number
and identity of neurons produced during develop-
ment. We show here that microRNA-9 plays a key
role in this process through the direct inhibition of
targets with antagonistic functions. Across the
ventricular zone of the developing zebrafish hind-
brain, miR-9 expression occurs at a range of commit-
ment stages. Abrogating miR-9 function transiently
delays cell-cycle exit, leading to the increased
generation of late-born neuronal populations. Target
protection analyses in vivo identify the progenitor-
promoting genes her6 and zic5 and the cell-cycle
exit-promoting gene elavi3/HuC as sequential tar-
gets of miR-9 as neurogenesis proceeds. We
propose that miR-9 activity generates an ambivalent
progenitor state poised to respond to both progen-
itor maintenance and commitment cues, which may
be necessary to adjust neuronal production to local
extrinsic signals during late embryogenesis.

INTRODUCTION

During nervous system development a balance between
progenitor cell proliferation and differentiation ensures that
the appropriate number of each neuronal subtype is produced.
The timing at which progenitors undergo their final division
must therefore be tightly controlled and coordinated. In
Drosophila, a programmed series of transcription factor expres-
sion can schedule the end of divisions of the neuroblast

(Maurange et al., 2008). In vertebrates, a link between chromatin
remodeling complexes or cell-cycle parameters and the
outcome of progenitor divisions has been proposed (Salomoni
and Calegari, 2010; Yoo and Crabtree, 2009). Extrinsic cues,
including major signaling pathways or cell-cell contacts, also
play a predominant role in balancing progenitor proliferation
versus differentiation (Kageyama et al., 2009; Michaelidis and
Lie, 2008; Miyata et al., 2010).

MicroRNAs (miRNAs) are small regulatory RNAs that play
important roles in animal development (Stefani and Slack,
2008). miRNAs repress the expression of target mRNAs via
specific complementary binding to their 3'UTR. Computational
and experimental approaches have demonstrated that a single
microRNA can regulate the expression of hundreds of mRNA
targets (for review see Bartel, 2009). However, despite their large
spectrum of action, loss of microRNA function often results in
subtle phenotypes, at times only apparent in sensitized genomic
or environmental contexts. Consequently, microRNAs are not
generally considered as master regulators of cell fate choice,
but rather as buffering agents, that suppress harmful effects of
transcriptional noise or sharpen the transition between develop-
mental states (Bartel, 2009; Herranz and Cohen, 2010; Hornstein
and Shomron, 2006). Numerous microRNAs are expressed in
a temporally and spatially restricted manner in the developing
vertebrate central nervous system (Darnell et al., 2006; Kapsimali
et al., 2007; Krichevsky et al., 2003; Sempere et al., 2004;
Wienholds et al., 2005) and reduced activity of the enzyme Dicer,
which is required for the biogenesis of all microRNAs, impairs
brain development (De Pietri Tonelli et al., 2008; Giraldez et al.,
2005). However, the function of only a few of these microRNAs
has been analyzed to date and the biological relevance of each
predicted miRNA-mRNA interaction has rarely been assessed
(Coolen and Bally-Cuif, 2009).

miR-9 is an ancient microRNA, whose mature sequence is
100% conserved across Bilateria. In Drosophila embryos and
wing imaginal discs, miR-9a is expressed in epidermal cells
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where it inhibits the neuronal fate, ensuring the balance of
epidermal versus neuronal precursors (Li et al., 2006). In verte-
brates, miR-9 is a prominent regulator of neurogenesis, although
it appears to rather promote neurogenesis in most cases. Thus
miR-9 is abundantly expressed in neurogenic regions of the
developing and adult nervous system (Deo et al., 2006; Kapsi-
mali et al., 2007; Krichevsky et al., 2006; Leucht et al., 2008;
Walker and Harland, 2008), and tends to favor neuronal differen-
tiation over progenitor proliferation (Bonev et al., 2011; Leucht
et al., 2008; Packer et al., 2008; Shibata et al., 2008, 2011; Yoo
et al.,, 2009; Zhao et al., 2009). However, a recent study demon-
strated that miR-9 promotes proliferation of human neural
precursors (Delaloy et al., 2010), suggesting that miR-9 function
is context-dependent (Gao, 2010). Moreover the double miR-
9-2/miR-9-3 knock-out in mice leads to an equivocal phenotype,
characterized by an early increase in progenitor proliferation fol-
lowed by a decrease at later stages (Shibata et al., 2011). Overall,
the complex dynamics and mechanisms of miR-9 action remain
incompletely understood. A hypothesis that may reconcile the
above observations is that miR-9 exerts distinct actions at
different stages of progenitor commitment along the neurogene-
sis cascade; however this hypothesis has not been directly
tested.

In this study, we use zebrafish to decipher the function and
mechanism of action of miR-9 during late neurogenesis in the
hindbrain. miR-9 expression covers a range of progenitor
commitment stages across the hindbrain ventricular zone. We
demonstrate that miR-9 initially drives progenitor commitment
through its direct inhibition of her6 and zic5, but concomitantly
exerts an opposite effect on neurogenesis progression, via its
direct inhibition of elavi3. As a result, blocking miR-9 function
in vivo only transiently prevents progenitors from entering their
terminal division. Such targeting of antagonistic genes may
explain the subtle and context-dependent effects of miR-9. In
addition, we propose that miR-9 amplifies an ambivalent
progenitor state that may help fine-tune neurogenesis after the
early phase of neuronal production.

RESULTS

miR-9 Expression in the Developing Hindbrain

Highlights Both Neural Progenitors and Committed
Neuronal Precursors

miR-9 expression in the hindbrain was previously associated
with the ventricular progenitor zone (VZ) as opposed to the
HuC/D-positive, postmitotic mantle zone (Leucht et al., 2008).
To determine the exact identity, state of commitment and fate
of miR-9-expressing cells, we used a transgenic line expressing
gfp under control of a conserved enhancer of the miR-9-2 gene
(T.S.B., unpublished data). The overall pattern of GFP transgene
expression is highly reminiscent of the endogenous miR-9
pattern: expression is first seen in the telencephalon at 24 hours
postfertilization (hpf) (not shown) and, starting around 30 hpf,
expands into other brain territories including the hindbrain
(Figures S1A and S1B available online). In the hindbrain, gfp
expression does not fully recapitulate miR-9 expression (see
Figures S1C-S1F), leaving a defined lateral ventricular stripe
devoid of GFP-positive cells although it expresses miR-9 tran-
scripts (Figures S1C-S1F, orange brackets). Expression of
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miR-9 in miR-9-2-GFP-negative cells must therefore be
controlled by other regulatory elements, either of the miR-9-2
gene or of the six other miR-9-encoding genes of the zebrafish
genome (Chen et al., 2005). Nevertheless, this line can help char-
acterize the morphology and identity of miR-9-expressing cells
(Figures 1A-1D).

We observed GFP-positive cells harboring a radial glia-like
morphology, with a cell body close to the ventricle (Figures
1E-1G) and a cellular extension toward the pial surface, both
labeled with an anti-GFAP antibody (Figures 1B-1D, white
arrowhead, 1F, and 1G). Radial glial cells behave like neural
progenitors at these stages (Kim et al., 2008; Lyons et al.,
2003), suggesting that the most ventricular row of miR-9 expres-
sion highlights this progenitor state. However, other GFP-
positive/miR-9-positive cells were located further away from
the ventricle (Figure 1D’, white arrows), suggesting that miR-9
expression also includes cells in a later commitment stage that
start to exit the ventricular area. To confirm this hypothesis, we
compared the expression of miR-9 with that of proneural
markers. miR-9 expression in the hindbrain appears segmentally
patterned, being stronger adjacent to rhombomere boundaries
(Figures 1H and 1l), reminiscent of neurogenic areas (Amoyel
et al., 2005). Indeed, comparison with GFP expression in the
-8.4neurog1:GFP transgenic line (Blader et al., 2004) showed
that miR-9 stripes coincide with the GFP transgene (Figures
1J-1L). On cross sections, miR-9-expressing cells invading the
mantle zone (Figure 1N, purple arrows) overlap with neurog1-
GFP-positive columns, which highlight streams of newly born
neurons exiting from the ventricular area. This interpretation is
further confirmed by the analysis of miR-9-2:GFP animals, where
some GFP-positive cells are detected deep in the neural tube
where differentiated neurons reside (see Figure 1D, asterisks,
and Figures S1G-S1l, asterisks). These cells express neither
miR-9 (Figure 1D’, white asterisks) nor the gfp transcript (Fig-
ure S1l, asterisks) and are likely the progeny of miR-9-express-
ing cells that inherited the stable GFP protein, demonstrating
the neuronal fate of miR-9-positive precursors.

Altogether these data highlight a complex expression for
miR-9, which encompasses graded maturation stages within
the ventricular zone (summarized in Figure 1P).

miR-9 Knockdown Transiently Delays Cell-Cycle EXxit
within the Population of Hindbrain Progenitors
To assess the role of miR-9 during neurogenesis in the zebrafish
hindbrain, we performed knockdown experiments using morpho-
lino oligonucleotides (MO). The efficiency of miR-9 knockdown
can be verified by performing an in situ hybridization with a miR-
9 antisense probe (Leucht et al., 2008; Figures S2A and S2B).
Considering the segmented expression pattern of miR-9, we first
checked whether segmental patterning was affected in miR-9
morphant embryos. We analyzed expression of etvbb, marking
rhombomere centers (Esain et al., 2010; Gonzalez-Quevedo
et al., 2010), and genes involved in the Notch signaling cascade
(notchia, deltaA, ascl1a, and neurog1) that highlight ongoing
neurogenesis and its segmental pattern (Amoyel et al., 2005).
The overall expression of these markers along the anteroposterior
axis was not modified in miR-9 morphants (Figures S2C-S2L).
Our previous data showed that the relative size of the VZ was
increased in the absence of miR-9 in the zebrafish embryonic
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Figure 1. miR-9 Expression Encompasses Different Progenitor
Commitment Stages across the Hindbrain Ventricular Zone

(A-G) Comparison of the endogenous expression of miR-9 along the hindbrain
ventricular zone (purple) with the miR-9-2:GFP line (green) and GFAP (light
blue), seen in a transverse section. (D) is a higher magnification of the region
boxed in (D). Some GFP-positive cells display a long cellular extension
reaching the pial surface and stained with the GFAP antibody (B-D, white
arrowhead). (D) GFP-positive cells can be distinguished in the brainstem,
some of them expressing endogenous miR-9 (white arrows) and some not
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hindbrain (Leucht et al., 2008); we thus analyzed the impact of
miR-9 knockdown on progenitor cycling. We performed short
BrdU pulses at 30, 35, 48, and 72 hpf in embryos injected with
miR-9MO or a control morpholino (a shuffled version of miR-
9MO) (Figure 2A). Quantification of the number of BrdU-positive
cells in hindbrain cross sections at 30 hpf, a stage just preceding
the induction of miR-9 endogenous expression, revealed no
significant difference between control and morphant embryos
(Figures 2A and 2B). In contrast, at later stages, the number of
BrdU-positive cells was increased in morphant embryos (Figures
2A and 2B). Confirming this phenotype, expression of the cyclin
gene ccna2 was strongly upregulated in the ventricular area in
morphant embryos (Figures S2M-S2N’), where miR-9 is nor-
mally expressed.

A higher number of BrdU-positive cells could either reflect an
increase in the number of cycling progenitors or a change in cell-
cycle speed. To discriminate between these two possibilities, we
combined BrdU pulse analyses with labeling for PCNA (prolifer-
ative nuclear antigen, Figure 2C), which is detectable in all prolif-
erating cells. However, because of its stability, this marker can
only be used reliably after 72 hpf. As shown in Figure 2D, the total
number of PCNA-positive cells is significantly higher in morphant
embryos; however, the percentage of BrdU-positive cells among
PCNA-positive cells was not significantly different between
control and miR-9MO-injected embryos (Figure 2E). Thus, cell-
cycle speed is not majorly affected in the absence of miR-9
function. Rather, the increased number of dividing progenitors
following miR-9 knockdown likely results from a blockade or
a delay of cell-cycle exit from 35 hpf onward.

Like in the wild-type situation, the number of BrdU-positive
cells decreases over time in miR-9 morphants, dividing cells
being maintained in discrete lateral and medial VZ patches
(Figures 2A and 2B). This likely reflects the fact that most neural
progenitors undergo their last division at these stages (Lyons
et al.,, 2003) and suggests that miR-9 knockdown does not
completely block cell-cycle exit, but instead delays it. To validate
this hypothesis, we pulse-labeled dividing progenitors with BrdU
at 30 hpf and followed their fate at 48 hpf (Figures 3A and 3B),
a stage at which miR-9 knockdown is still complete (Figure S2B).
Neuronal fate was determined by the expression of HUC-GFP, an
early marker of differentiation (Lyons et al., 2003; Park et al.,
2000b). As expected, the total number of BrdU-positive cells at
48hpf was higher in miR-9 morphants (Figure 3C). However
progenitors differentiated into HuC-GFP-positive neurons during

(asterisks). A GFAP signal can also be detected in cell bodies of GFP-ex-
pressing cells along the ventricle (E-G, orange arrowheads).

(H and I) miR-9 endogenous expression in the hindbrain at 48 hpf (blue) in
dorsal view (H) and sagittal section (l). Vertical dotted lines indicate rhombo-
mere boundaries.

(J-O’) Endogenous expression of miR-9 (purple), compared to GFP in the
neurog1:GFP line (green). (J-L) Dorsal views. (M-O) Transverse section.
(M’-0Q’) Higher magnifications of the region in the white square indicated in
(M-0). White arrows in (J-L) indicate stripes of miR-9/GFP expression on both
sides of a rhombomere boundary. Purple arrows in (N) highlight columns of
miR-9-expressing cells in the mantle zone.

(P) Schematized summary of miR-9 expression (orange), which encompasses
radial glia progenitors (blue) and committed precursors (green), but excludes
differentiated neurons (red). MHB, midbrain-hindbrain boundary.

See also Figure S1.
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this period in miR-9 morphants, as indicated by the presence of
numerous BrdU/GFP double positive cells within the mantle
layer (Figure 3B). Thus, miR-9 deficient neuronal progenitors
resume neurogenesis progression and neuronal differentiation
after some supernumerary divisions, even in the complete
absence of miR-9. This results in a concomitant increase in the
numbers of both dividing progenitors (Figure 2B) and newborn
neurons generated in the hindbrain at any time point (Figure 3C).

miR-9 Knockdown Leads to an Amplification of Some
Late-Born Neuronal Populations

The late expression of miR-9 in the hindbrain and the corre-
spondingly late onset of its effect on progenitor proliferation
(Figures 2A and 2B) suggest that depleting miR-9 activity would
amplify late-born neuronal populations. To test this, we analyzed
the effect of miR-9 depletion on the development of different
hindbrain neuronal identities. We found that the population ex-
pressing the transcription factor Barhl2 (Colombo et al., 2006)
was conspicuously expanded in miR-9 morphants at 48 hpf
(Figures 3D, 3E, and S3C-S3D'). barhl2 expression starts after
36 hpf in the dorsal-most portion of the hindbrain (Figure 3D)
and was not modified at its onset upon abrogation of miR-9
activity (Figures S3A and S3B). The barhl2 mRNA also does

Developmental Cell 22, 1052-1064, May 15, 2012 ©2012 Elsevier Inc.

A) Transverse sections showing short pulse BrdU labeling of control and miR-9 MO-injected embryos at 30 hpf, 35 hpf, and 48 hpf.
) Number of BrdU-positive cells per 5-um section at 30 (n = 4 embryos per condition), 35 (n = 6), 48 (n = 9), 72 hpf (n = 9) in control or injected embryos.
C) Transverse sections showing BrdU (green) and PCNA (purple) immunostaining after short pulse labeling at 72 hpf (n = 9).

E) Proportion of BrdU-positive cells among PCNA-positive cells. The VZ is highlighted with a dotted line. *p < 0.01. Values are presented as mean + SEM.

not harbor any putative miR-9 binding site, arguing against its
simple derepression in morphants. Enlargement of the barh/2
population could occur at the expense of adjacent neuronal
identities. However, we could not detect any obvious changes
in the expression pattern of pou4f1 (brn3a), pax2, dbx1a, or
nkx6.1 (Figures S3E-S3L), which label adjacent neuronal popula-
tions in the hindbrain at these stages (Figures S3M-S3P). Like-
wise, we could not observe any difference between control
and morphant embryos in the proportion of cells differentiating
into barhl2- or pou4f1-positive neurons between 30 hpf and 48
hpf, as assessed by a BrdU pulse chase experiment (Figure S3Q).
This suggests that miR-9 depletion does not directly affect the
identity of neurons born after 30 hpf, but rather leads to an
expansion of late neuronal populations, such as commissural
neurons, because they are mostly born after the onset of
miR-9 expression (Figure S3R).

miR-9 Inhibits Proliferation via Its Action on her6

and zic5 3'UTRs

We next searched in silico prediction databases for putative
miR-9 targets that could modulate progenitor proliferation. We
identified two putative targets, her6 (a Hes1 ortholog) and zic5,
which harbor highly conserved binding sites for miR-9 in their
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Figure 3. miR-9 Knockdown Delays Cell-Cycle Exit, Leading to the
Ampilification of Late-Born Neuronal Populations

(A) Scheme illustrating the experimental procedure.

(B) Transverse sections showing immunohistochemical detection of BrdU
(purple) and GFP in the HuC:GFP line in a pulse chase experiment between
30 and 48 hpf.

(C) Comparison of the number of BrdU-positive cells that are also HuC-GFP-
positive (green bars) or not (purple bars), or the total number of BrdU-positive
cells per section (gray and black bars) between control (light colors) and
morphant embryos (dark colors) (n = 7).

(D) Expression of barhl2 in control and miR-9 MO injected embryos at 48 hpf.
The left panels are lateral views, the middle panels are dorsal views, and the
right panels are higher magnification of the latter, in the anterior hindbrain.
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3'UTR (Figures S4A and S4B). her6, the direct ortholog of the
mammalian gene Hes1, is a member of the hairy/enhancer-of-
split family of transcription factors-encoding genes, among
which we previously identified two other targets of miR-9, her5
and her9 (Leucht et al., 2008). Hes7 genes prevent precocious
differentiation of progenitors through the direct inhibition of pro-
neural factors (Kageyama et al., 2008). Zic5 belongs to the Zic
family of zinc finger transcription factors, which also favor prolif-
eration of neural progenitors and repress proneural factors
expression (Aruga, 2004; Nyholm et al., 2007; Toyama et al.,
2004). Accordingly, her6 and zic5 are both strongly expressed
in two areas of the zebrafish hindbrain VZ, dorsally and medially,
where high levels of proliferation will be maintained at late
embryogenesis (Figure 4A). Fitting the miR-9 binding prediction,
miR-9 was able to inhibit luciferase reporters harboring the
full-length her6 or zic5 3'UTRs in an in vivo sensor assay
(Figure S4C).

To unravel the biological relevance of miR-9 interactions with
the her6 and zic6 UTRs, we designed target protector MOs
(TP) specific for these two targets (Figures S4A and S4B). TPs
bind the predicted microRNA site on the 3'UTR region of a given
targeted mRNA (Choi et al., 2007). In sensor assays, both her6TP
and zic5TP efficiently and specifically prevented the inhibition of
the respective luciferase reporters by miR-9 (Figure S4D), as well
as the inhibition of the respective fluorescent sensors in endog-
enous conditions (Figure S4F). When injected at the one-cell
stage, they did not induce drastic changes to the level of their
respective transcripts, as assessed by in situ hybridization
(Figure S4G). We analyzed their impact on the proliferation of
hindbrain progenitors by using BrdU pulse labeling (Figure 4B).
Injection of either her6TP or zic5TP resulted in a significant
increase in the number of BrdU-positive cells at 48 hpf, thus
phenocopying the miR-9 knockdown phenotype (Figure 4C).
No difference in proliferation could be observed at 30 hpf,
a stage preceding the onset of miR-9 expression (Figure 4C).
As a control, injection of a her5TP did not induce any change
in proliferation in the hindbrain (Figure 4C), in agreement with
the restricted expression of her5 at the midbrain-hindbrain
boundary. her6TP, but not zic6TP, also induces some apoptosis
in the VZ area (Figure S4H). However, rescuing apoptosis excess
by coinjection of a tp53 antisense morpholino did not modify the
increased proliferation induced by her6TP (Figure S4H). This and
the localization of apoptotic cells suggest that her6TP-induced
apoptosis is not due to a nonspecific effect of her6TP, but rather
secondarily results from excessive proliferation. Altogether
these data demonstrate that relieving her6 or zic5 from miR-9
inhibition is sufficient to increase proliferation in the hindbrain
VZ, implicating these mRNAs as major miR-9 targets in the
control of progenitor proliferation in this area.

Interestingly, we also observed that injection of her6TP, and
not zic5TP, induced a major decrease in miR-9 expression (Fig-
ure 4E). This was prominent only after 48 hpf (compare Figures
4E and S4H), and did not affect miR-9 expression in differenti-
ated neurons of the telencephalon, which are devoid of her6
expression (Leucht et al., 2008). The expression of miR-9-2

(E) Number of Barhl2-positive cells per 5-um section at 48 hpf (n =5). *p < 0.01.
Values are presented as mean + SEM.
See also Figure S3.
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Figure 4. miR-9 Inhibits Proliferation through Direct Inhibition of her6 and zic5

(A) Expression of her6 and zic5 at 35 hpf and 48 hpf in the zebrafish hindbrain (upper panels: dorsal views; lower panels: transverse sections).

(B) Transverse sections after a short pulse BrdU labeling (green) at 30 hpf or 48 hpf.

(C) Number of BrdU-positive cells per 5-um section at the indicated stages (n = 8).

(D) Increase in the number of BrdU™ cells represented as fold changes from control injected embryos. Note that both her6 TP morpholinos lead to a significantly

stronger increase in proliferation than miR-9 morpholino.

(E) Expression of miR-9, miR-9-2 in control, and her6TP-injected embryos at 48 hpf. The yellow asterisk indicates remaining miR-9 expression in the

telencephalon. Values are presented as mean + SEM.
See also Figure S4.

primary transcript (Figure 4E), as well as the gfp transgene in the
miR-9-2-GFP line (not shown), was also downregulated, arguing
for a transcriptional effect. This suggested a negative feedback
of Her6 on miR-9 expression. Altogether our data reveal a mutual
inhibition between her6 and miR-9 expression, which may insure
a sharper extinction of Her6 expression during the transition from
the progenitor state to the differentiating neuronal precursor.
Such double-negative feedback motifs involving a microRNA
appear to be a recurrent theme in regulatory networks (Herranz
and Cohen, 2010).

miR-9 Exerts an Antagonistic Neurogenesis-Promoting
Action through Its Direct Regulation of the Neuronal
Differentiation Factor Elavi3

Surprisingly, the increase of proliferation caused by target
protectors was more prominent than that observed in miR-9
morphants: it showed a trend excess for zic6TP, and was signif-
icantly higher for her6TP (Figure 4D). The latter observation was
confirmed using a second morpholino, her6TP’ (Figures 4D and

Developmental Cell 22, 1052-1064, May 15, 2012 ©2012 Elsevier Inc.

S4A). Thus, we hypothesized that miR-9 might also regulate
factors having an antagonistic effect on proliferation. In miR-9
morphant embryos, both the factors promoting proliferation
(such as Her6 and Zic5) and those driving differentiation would
thus be upregulated, buffering the phenotype compared to
embryos injected with TPs alone. This hypothesis would also
be in line with our initial observation that miR-9 expression is
maintained in committed cells exiting from the ventricular zone
(Figures 1J-1P), suggesting it might also play a role in a later
step of neurogenesis progression.

We searched in silico for potential miR-9 targets among
factors that promote neuronal differentiation and identified
elavi3/HuC as a candidate gene. elav genes are expressed in
neuronal cells soon after their birth, in mouse (three genes:
elavi2/HuB, elavi3/HuC, and elavi4/HuD; Okano and Darnell,
1997) and in zebrafish (two genes: elavi3 and elavi4; Kim et al.,
1996; Park et al., 2000a). Hu proteins promote neuronal matura-
tion by increasing the stability and/or translation of target
mRNAs encoding neuron specific factors (Antic et al., 1999;
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Aranda-Abreu et al., 1999). Overexpression of Hu proteins can
also promote cell-cycle arrest and precocious neuronal differen-
tiation (Akamatsu et al., 1999; Yano et al., 2005).

The 3'UTR of zebrafish elavi3 harbors a miR-9 binding site that
is highly conserved among fish species (Figure S5A). Confirming
our silico prediction, we found that overexpression of miR-9 in
zebrafish embryos could repress a luciferase reporter construct
containing elavi3 3'UTR sequences in a sensor assay (Fig-
ure S5B). To lend support to the regulation of elavi3 translation
by miR-9, we compared the expression of miR-9 with the
expression of elavi3/HuC transcripts and protein (Figures 5A,
5B, 5A/, and 5B'). elavi3 transcripts are detected in the mantle
zone, being excluded from the more apical side of the ventricular
zone (Figure 5A). Within this domain, the anti-HuC antibody
labels a more restricted cell population, located in the deeper
part of the brainstem (Figures 5B-5A" and 5B’), highlighting
a visible delay between transcriptional activation of elavi3 and
the translation of the HuUC protein. The strictly complementary
expression of miR-9 and HuC protein may account for this delay
(Figures 5C-5E). To test this hypothesis we designed a TP MO
against the miR-9 binding site on elavi3 3'UTR (elavi3TP). This
MO prevented the action of miR-9 on the reporter construct
carrying the elavi3 3'UTR in the sensor assay (Figure S5B). In
embryos injected with elavi3TP, the expression boundaries of
elavi3 transcripts and HuC protein completely overlapped
(Figures 5F-5I'), demonstrating that miR-9 delays translation of
HuC during normal hindbrain development.

We next assessed the biological effect of this regulation on
neurogenesis progression. In contrast to her6TP or zic5TP, we
first observed that injection of elavi3TP induced a decrease in
progenitor proliferation at 35 hpf (Figure 5J). In embryos injected
with elavi3TP, we also found that a larger proportion of BrdU-
positive cells pulsed at 30 hpf have differentiated at 48 hpf
compared to the wild-type situation, as assessed by the expres-
sion of HUC or another neuronal marker, MAP2 (Figure 5K).
Together, these results validate elavi3 as a direct miR-9 target
in a later step of neurogenesis progression, and demonstrate
that a major function of miR-9 is to delay the onset of effective
neuronal differentiation.

Notch Signaling Participates in miR-9 Regulation

To better position miR-9 in the neurogenesis cascade, we tested
the potential regulation of miR-9 by Notch signaling. We inhibited
Notch signaling using the y-secretase inhibitor LY411575 (LY),
a potent derivative of DAPT (Fauq et al., 2007). A 2 hr treatment
with LY, sufficient to induce ectopic expression of the proneural
gene neurogl, also reduces the expression of miR-9-2 (Fig-
ure 6A). Similarly, blocking Notch signaling via a heat-shock
induction of a dominant form of Su(H) (Latimer et al., 2005)
reduced miR-9-2 expression, concomitantly increasing neurog1
expression (Figure 6B). In both cases, the expression of the
mature miR-9 does not seem to be reduced after short treat-
ments (Figures 6A and 6B middle panels), suggesting a relative
stability of the mature microRNA form. In longer LY treatments,
we did observe a downregulation of mature miR-9, associated
with the completion of neuronal differentiation (Figure S6A).
Interestingly the miR-9-2 regulatory element of the miR-9-
2:GFP line contains highly conserved Su(H) binding sites, orga-
nized in a characteristic head-to-head orientation (Figure S6B),
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similarly to known direct Notch targets such as Hes7 (Ong
et al., 2006). gfp expression in this line is also downregulated by
a short treatment with LY411575 (Figure S6C). Next, we induced
ectopically the intracellular fragment of Notch (NICD) at 24 hpf
and 48 hpf (Figures 6C and 6D) (Scheer et al., 2001). At 24 hpf,
there was no ectopic miR-9 expression although we could
detect a strong repression of neurog? and an induction of the
direct Notch target her4 (Figure 6C). At 48 hpf, miR-9 expression
was increased, whereas neurog1 expression was decreased
(Figure 6D). However, miR-9 was not induced ectopically. Thus,
Notch signaling is necessary but not sufficient for miR-9 ex-
pression. This is in agreement with the late induction of miR-9
expression compared to Notch signaling pathway genes, and
suggests that other factors are responsible for miR-9 induction.
Together, miR-9 appears both positively regulated by Notch
and negatively regulated by the Notch target Her6 (Figure 6E).

Modeling miR-9 Activity Highlights the Generation

of an Ambivalent Progenitor State

miR-9 activity is sequential along progenitor commitment,
dampening first the activity of Her6/Zic5 and then Elavi3/HuC,
as summarized in Figure 7A. This suggests that an ambivalent
progenitor state, intermediate between the Her6/Zic5 and HuC
status could be generated by miR-9 action. To challenge this
interpretation, we developed a dynamic model of the interaction
network revealed by our study. As we have mainly qualitative
data at hand, we used a qualitative, logical framework, which
associates a logical variable and a logical function with each
component of the network (see Supplemental Experimental
Procedures). To define the model and perform systematic simu-
lations, we used the logical modeling software GINsim (Naldi
et al.,, 2009). A graphical representation of the interaction
network is shown in Figure 7B, whereas the results of represen-
tative simulations are summarized in Figure 7C (see also Supple-
mental Experimental Procedures and Figure S7). In the absence
of miR-9, our Boolean model produces two stable states, the
cycling progenitor state (P), characterized by Her6 and Zic5
expression, and the neural precursor state (N), characterized
by HuC expression. The transition between the progenitor and
the neuronal precursor states is possible upon her6 or zic5
extinction or upon HuC induction (Figure 7C, row 1). Strikingly,
in the presence of miR-9, an intermediate stable state appears,
that we termed the “ambivalent state” (A) (Figure 7C, row 2).
This does not occur when miR-9 action on her6 or zic5 is blocked
(Figure 7C, row 3). The ambivalence of this state is attested by
the opposite phenotypes observed upon blocking specific
miR-9 interactions, pushing cells forward or backward in the
neurogenesis cascade (Figure 7C, rows 5 and 6). Interestingly,
according to this model, the outcome of blocking miR9 interac-
tion on her6 (her6TP, row 5) and of blocking miR9 function (miR9
extinction, row 4) might be distinct: miROMO, but not her6TP,
allows reaching the N state. This likely reflects the fact that the
regulation of progenitor- and commitment-promoting genes by
miR9 are not concomitant but successive events.

DISCUSSION

Our loss-of-function analyses reveal that miR-9 promotes cell-
cycle exit of progenitors in the late embryonic hindbrain in
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Figure 5. miR-9 Inhibits the Neuronal Differentiation Promoting Factor elav/3

(A-B’) Comparison of elav/3 transcripts distribution (A, purple) with a HuC expression (B, green) in a cross section through the hindbrain at 36 hpf. (A") and (B') are
higher magnifications of the pictures shown in (A) and (B).

(C-E) Comparison of miR-9 expression (purple) with HuC (green).

(F-1 and F'-I') Comparison of elav/3 transcript (purple) and HuC/D protein (green) distribution between control (F, G, F', G’) and elavi3TP injected embryos
(H, 1, H', I'). Purple and green arrowheads (B', F’, G/, H', I') point to the limits of respectively elavi3 transcripts and HuC protein expression domains.

(J) Number of BrdU-positive cells per section after a short BrdU pulse at 35 hpf (n = 5) and 48 hpf (n = 4).

(K) Proportion of HuC-positive or MAP2-positive cells among BrdU-positive cells in a BrdU pulse-chase experiment between 30 hpf and 48 hpf, in control and
elavi3TP-injected embryos (n = 5 and n = 8). Values are presented as mean + SEM.

See also Figure S5.
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(A) Expression of neurog1, miR-9, and miR-9-2 in 48 hpf embryos after a 2 h DMSO (left panels) or 10 uM LY411575 treatment (right panels).
(B) Expression of neurog1, miR-9, and miR-9-2 in Tg(hsp70:XdnSu(H)) embryos following a heat-shock induction at 48 hpf (HS, right panels) or without any

induction (no HS, left panels).

(C) Expression of neurog1, miR-9, and her4 in Tg(hsp70l:Gal4)/+;Tg(UAS:myc-NICD)/+ embryos following a heat-shock induction at 24 hpf (HS, right panels) or

without any induction (no HS, left panels).

(D) Expression of neurog1 and miR-9 in Tg(hsp70l:Gal4)/+; Tg(UAS:myc-NICD)/+ embryos following a heat-shock induction at 48 hpf (HS, right panels) or without

any induction (no HS, left panels).
(E) Model of regulation of miR-9 by Notch signaling.
See also Figure S6.

zebrafish. An inhibitory effect of miR-9 on neural progenitor
proliferation has also been observed in other vertebrate embryos
or cell culture systems, showing that this is a fundamental func-
tion of miR-9 in vertebrates (Bonev et al., 2011; Laneve et al.,
2007; Leucht et al., 2008; Shibata et al., 2008, 2011; Zhao
et al.,, 2009). However, we show here that miR-9 knockdown

only induces a transient delay in cell-cycle exit, because progen-
itors complete their terminal division at later stages, even in total
absence of miR-9 function. These results are consistent with
those obtained in mouse miR-9-2/3 double mutants embryos,
where, upon a decrease of miR-9 levels, some neurons of the
different cortical layers do differentiate, despite increased
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Figure 7. Model of miR-9 Action

(A) Summary of the results obtained in this study. High levels of Her6 and Zic5 maintain the early progenitor state (blue), whereas high levels of ElavI3/HuC drive
cell-cycle exit followed by neuronal differentiation (red). miR-9 activity, through its inhibition of these functionally antagonistic targets, sharpens transitional states,
and leads to the amplification of an intermediate ambivalent progenitor state (orange).

(B) Graphical representation of miR-9 interaction network. Green arrows represent positive regulations, and red arrows inhibitory interactions. The node
P denotes a proliferating progenitor state (p = 1, N = 0). It is defined by the expression of Her6 and/or Zic5. The node N denotes the commitment of a progenitor
into a neural precursor (p = 0, N = 1). By inhibiting genes with opposite effect on neural differentiation, miR-9 activity generates an ambivalent state (p =0, N = 0)
poised for responding to both progenitor maintenance and commitment cues.

(C) Selected simulations using the implemented model. The left column indicates the initial states considered, the middle column states the conditions and events
simulated, while the last column lists the stable final outcomes of these simulations. Note that the introduction of miR9 in the neurogenesis cascade leads to the

appearance of a stable ambivalent state (state A, second row).
See also Figure S7.

progenitor proliferation at earlier stages (Shibata et al., 2011).
Altogether these data suggest that miR-9 does not act as a devel-
opmental switch, but rather facilitates the transition of progeni-
tors toward cell-cycle exit at late stages of embryogenesis,
when massive neuronal production occurs (Lyons et al., 2003).
In line with this conclusion miR-9 is not expressed at early stages
of neurogenesis and is thus dispensable for cell-cycle exit per se.
We further illustrate that one crucial consequence of this function
of miR-9 is to ensure the production of appropriate numbers of
different neuronal subtypes. Indeed, the delayed cell-cycle exit
of progenitors observed in miR-9 morphants leads to amplifica-
tion of late neuronal populations, such as the barh/2 population
of commissural neurons.

Our work further identifies three direct miR-9 targets, her6,
zic5, and elavi3/HuC, which mediate its fine-tuned control of
neurogenesis timing in the embryonic hindbrain. Specifically,
our target protection assays show that inhibiting miR-9 interac-

Developmental Cell 22, 1052-1064, May 15, 2012 ©2012 Elsevier Inc.

tion with either her6 or zic5 is sufficient to elicit a strong increase
in progenitor proliferation, whereas blocking miR-9 activity on
elavi3/HuC leads to precocious neuronal maturation. Because
Her6/Zic5 generally promote the progenitor state (Nyholm
et al., 2007; Scholpp et al., 2009) whereas Elavi3/HuC drives
differentiation (Akamatsu et al., 1999; Yano et al., 2005), we
propose that the balancing effect of miR-9 on such antagonistic
targets could explain why the miR-9 knockdown phenotype
appears subtle and transient. Analogous antagonistic interac-
tions were uncovered during zebrafish early development,
whereby miR-430 inhibits both an agonist of Nodal signaling,
squint, and an antagonist, lefty (Choi et al., 2007). Such a mech-
anism could explain why microRNA loss-of-function phenotypes
appear generally subtle, and how they can have opposite effects
depending on the cellular context (Gao, 2010).

miR-9 binding sites are highly conserved among vertebrates
on her6 and zic5 3'UTRs and are present on other members of
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the Hes and Zic families (not shown). In Xenopus miR-9 was
recently shown to regulate hairy1, a Hes1 ortholog, arguing in
favor of a functional conservation of the miR-9 binding site on
Hes1 genes (Bonev et al., 2011). The miR-9 binding site identified
on the 3'UTR of zebrafish elav/3 is highly conserved among fish
species, but not in other vertebrates. However, in mammals,
a conserved miR-9 binding site is present on the paralog tran-
script elavi2/HuB, which is not expressed in zebrafish embryos
during hindbrain neurogenesis (not shown). Thus, the modula-
tion of Elavi/Hu activity by miR-9 may be evolutionarily
conserved through interaction with different family members in
different vertebrate species, as reported for Fgf signaling
pathway genes (Leucht et al., 2008). Altogether this suggests
an old evolutionary relationship between miR-9 and Zic, Hes,
and Elavl gene families for the antagonistic regulation of neural
progenitor proliferation and commitment, predating the origin
of jawed vertebrates.

miR-9 activity on its targets is sequential throughout progen-
itor commitment, dampening first the activity of Her6/Zic5 and
then ElavI3/HuC. Our model analysis of these interactions led
us to propose that this schedule promotes the emergence of
an ambivalent progenitor state (Figure 7). How the differential
levels of Her6/Zic5 and Elavl genes translate into cell fate choice
remains to be assessed. Hes1 can inhibit cell-cycle exit via
a direct transcriptional inhibition of the cyclin-dependent kinase
inhibitor genes p21/cdknia, p27/cdknib, and p57/cdknic
(Castella et al., 2000; Georgia et al., 2006; Murata et al., 2005),
whereas Hu proteins upregulate the expression of these same
factors posttranscriptionally (Millard et al., 2000; Yano et al.,
2005; Ziegeler et al., 2010). This raises the possibility that
miR-9 regulation of her6 and elavi3 might converge on fine-
tuning the amount of cell-cycle inhibitors in the progenitor cell
which, when maintained at intermediate levels, would ensure
responsiveness to cues delaying or driving cell-cycle exit. We
note that miR-9 expression is induced after a first neurogenesis
wave is completed. The establishment of an intermediary ambiv-
alent state during the late neurogenesis cascade might enhance
neurogenic plasticity and be especially relevant to adjust
neuronal production to local extrinsic cues.

EXPERIMENTAL PROCEDURES

Zebrafish Lines

Embryos obtained from wild-type (AB), Tg(—8.4neurog1:GFP) (Blader et al.,
2004), Tg(elavi3:EGFP) (Park et al., 2000b), miR-9-2:GFP (T.S.B., unpublished
data), Tg(hsp70l:Gal4) x Tg(UAS:myc-Notch1a-intra) (Scheer et al., 2001) and
Tg(hsp70:XdnSu(H)myc) (Latimer et al., 2005) were staged according to hpf
and morphological criteria (Kimmel et al., 1995). Adult zebrafish were main-
tained using standard fish-keeping protocols and in accordance with Institute
Guidelines for Animal Welfare.

Heat Shock Induction and LY411575 Treatments

For heat shock inductions, embryos were placed in 1.5 ml tubes in a 39°C
water bath for 30 min and then incubated at 28.5°C for 2 hr in fresh embryo
medium. For LY411575 treatments, embryos were placed in embryo medium
containing 10 uM LY. Control embryos were incubated in embryo medium
containing 0.04% DMSO.

Morpholino Oligonucleotides
All morpholinos were purchased from Gene Tools. miR-9MO (TCATACAGCTA
GATAACCAAAGA), controlMO (a shuffled sequence of miROMO: CACCAAAC
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CATATAGAAGTGATA), and her5TP (ATCTTT GGCATCTACTGTACAAAAT)
were used at 1 mM. tp53MO (Robu et al., 2007) was injected at 0.5 mM. her6 TP
(TCTTTGGCATCACAACGTGGAAAAG), her6TP' (GCGCATTCAACATATCTTT
GGCATC), zic5TP (TCTTTGGTGTATCTGTACTTCCAGA), and elavi3TP (TCT
TTGGCTAACACAGCGTTATTTA) were designed according to Choi et al.
(2007) and used at 0.25, 1, and 2 mM, respectively. TUNEL analysis, using
the Neurotacs Il kit (Trevigen), showed no nonspecific increase in apoptosis
following morpholino injection unless stated.

BrdU Labeling

Embryos were dechorionated and soaked in 10 mM BrdU, 15% DMSO in
embryo medium for 20 min on ice. Embryos were then washed three times
in embryo medium, left to recover for 20 min at 28°C, fixed, and processed
for immunohistochemistry.

In Situ Hybridization

Probe synthesis and in situ hybridization were carried out as previously
described (Ninkovic et al., 2005). The probes used in this study are presented
in Table S2. ccna2, pou4f1, dbx1a sequences were amplified by RT-PCR and
cloned using the strataclone cloning kit (Clontech) (see Table S1 for primers).
miR-9-2 probe was amplified by 3" RACE-PCR using a primer specific for
miR-9-2 loop region. miR-9 ISH was performed using an antisense LNA probe
(Exigon) as previously described (Leucht et al., 2008). In situ signals were
revealed with NBT/BCIP (Roche) or with Fast Red (Sigma) for fluorescent
visualization.

Immunohistochemistry

Immunohistochemistry was performed as previously described (Ninkovic
et al., 2005). For whole-mount, embryos were treated with proteinase K
(10 pg/ml; Sigma). For sections, embryos were embedded in gelatin/sucrose
and cryosectioned. The following primary antibodies were used: rat anti-
BrdU (1/200; Abcam), chicken anti-GFP (1/500, Aves Labs), mouse anti-
HuC/D (1/500; 16A11 Invitrogen), rabbit anti-GFAP (1/500; DAKO), mouse
anti-PCNA (1/200; Santa Cruz), zn-8 (1/50; DHSB), mouse anti-MAP2 (1/250;
Abcam). Goat antibodies coupled to AlexaFluor dyes (488, 555, or 647; Invitro-
gen) were used as secondary antibodies. BrdU immunodetection required
a pretreatment of the slides in 2 N HCI for 30 min at room temperature. Images
were taken using a confocal microscope (LSM700, Zeiss).

Cell Counting and Statistics

BrdU positive cells were counted on 5 pM cryosections in the hindbrain at the
level of rhombomeres r3 to r5 using a fluorescent microscope (Leica) or
a confocal microscope (LSM700). Cells were counted on three nonconsecu-
tive sections per embryo. Significance of observed differences was calculated
using an independent Student’s t test. When percentages were compared as
raw data, an arcsin transformation was performed as a correction. Values are
presented as mean + SEM.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, two tables, and Supple-
mental Experimental Procedures and can be found with this article online at
doi:10.1016/j.devcel.2012.03.003.
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