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(Abstract) 

Recent single-cell RNA-sequencing studies have suggested that cells follow continuous 

transcriptomic trajectories in an asynchronous fashion during development. However, 

observations of cell flux along trajectories are confounded with population size effects in 

snapshot experiments and are therefore hard to interpret. In particular, changes in proliferation 

and death rates can be mistaken for cell flux. Here, we present pseudodynamics, a 

mathematical framework that reconciles population dynamics with the concepts underlying 

developmental trajectories inferred from time­series single-cell data. Pseudodynamics models 

population distribution shifts across trajectories to quantify selection pressure, population 

expansion, and developmental potentials. Applying this model to time-resolved single-cell 

RNA-sequencing of T-cell and pancreatic β-cell maturation, we characterize proliferation and 

apoptosis rates and identify key developmental checkpoints, inaccessible to existing 

approaches. 
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Single-cell experiments, such as single-cell RNA-sequencing (scRNA-seq)1, single-cell 

qPCR2, mass cytometry3 and flow cytometry enable the study of heterogeneity of cell 

populations. In development, this often corresponds to the distribution of asynchronously4,5 

developing cells across intermediate cellular states. Pseudotemporal ordering methods, which 

describe development as a transition in transcriptomic state (i.e. a ‘trajectory’) rather than a 

transition in real time4,5, have been devised to capture such trajectories. These trajectory-

learning approaches are complemented by methods which learn the overall topology of the 

data set and thereby infer the connectivity between trajectories: monocle26, graph 

abstraction7, and others4,8. One can merge overlapping snapshots from multiple time points 

across a developmental process to learn a trajectory that covers the full range of cell states 

accessible in this process; this is however still a static description. Accordingly, a trajectory 

does not uncover the dynamic behavior of individual cells in state space and time - this 

dynamic information is lost in population snap-shot experiments. Hence pseudotime does not 

directly correspond to real time but is rather a cell state space metric4. In contrast, one can 

recover population dynamics, such as developmental potentials and source and sink 

positions, from a time-series of snapshot experiments. Population dynamics govern 

distributional shifts in cellular systems and are key to understand how cell type frequencies 

change in response to developmental and environmental cues which underlie physiological 

mechanisms of health and disease. An example scenario with such a frequency change is as 

follows: The relative proportion of a given cell type A may decrease during a process because 

its proliferation rate decreases, its death rate increases or because A differentiates to other 

cell types. It is crucial to understand the nature of this shift if a frequency shift in A is associated 

with a disease, such as a decrease in pancreatic β-cell frequency is associated with diabetes. 

  

Population dynamics have been previously modeled in the context of cell cycle transitions9,10, 

and in the context of scRNA-seq under steady state assumptions11. The problem of 

developmental trajectory estimation from time series data is typically non-stationary (Fig. 1a) 

as recently addressed via an optimal transport framework for discrete transitions12, and 

secondly from a dynamic point of view for low dimensional systems13. However, it remains 

difficult to disentangle the effects of population sources and sinks and effects of directed 

development which both contribute to the observed distribution in a snapshot experiment11. 

  

Here, we present pseudodynamics, a mathematical framework that uses population size and 

single-cell snapshot data in an integrated model of development which can distinguish 

population size and differentiation effects (Fig. 1a-c). Pseudodynamics adds layers of 

information to developmental graphs, in particular state-resolved proliferation and death and 

developmental potentials, an approximation of Waddington’s landscape. Firstly, we apply our 
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model to T-cell maturation and uncover the population dynamics of beta-selection. Secondly, 

we apply our model to maturation of pancreatic β-cells in neonatal mice and we find that there 

is no evidence for extracellular regulation of proliferation. 

 

Results 

Pseudodynamics models single-cell time series measurements along developmental 

trajectories 

A population of cells observed in a single-cell experiment is a sample from a probability 

distribution on the molecular space (such as transcriptome or proteome). During development, 

this distribution changes as a function of time (Fig. 1a). The molecular space is high-

dimensional and typically transformed for interpretation, such as through space discretization 

or dimension reduction (Fig 1b). Pseudodynamics describes the population dynamics in such 

a low-dimensional space which we denote the cellular state s.  

 

The time-dependence of a distribution of cells of a population, u(s,t), across discrete 

bins s with known connectivity has been traditionally described by a system of ordinary 

differential equations14 (Fig. 1b). We propose to describe the time-dependence of the number 

density u(s,t) across a set of continuous states s by a partial differential equation model. We 

model the dynamic process as a reaction-diffusion-advection partial differential equation, a 

population balance model11,15 (online methods eq. 1): The diffusion term represents undirected 

or stochastic movement of cells on the trajectory. The advection (‘drift’) parameter models 

directed movement across the trajectory. Weinreb et al. refer to the drift as the gradient of the 

development potential function11. The reaction term describes proliferation and death.   

 

 We allow all parameters to depend on the cell state (online methods eq. 1) and 

therefore define diffusion, drift and birth-death rates as continuous functions (splines) of state 

s. The cell state-dependent parameters encode local characteristics of the system in the cell 

state space such as proliferative compartments (high birth-death rates) or regions of increased 

cell death (negative birth-death rate). One can also introduce a time-dependence of the 

parameters to model changes in regulation over time (Supp. Note 1 eq. SN1.3). 

 

  We estimate the cell state-dependent parameters by maximizing a likelihood function 

that contains terms for developmental progress and total population size (online methods eq. 

11). As inputs, the model takes a) time-resolved, normalized samples of the population 

obtained through a single-cell method and b) separate time-resolved measurements of the 

total number of cells in the entire system (Fig. 1c). Such total population size estimates can 

be approximated based on flow cytometry counts or cell counting in tissue sections. By 

https://paperpile.com/c/sR54Wx/3mbmn
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integrating total population size measurements, pseudodynamics can infer state-specific birth-

death parameters. It is necessary to forward simulate a dynamical  system at each iteration of 

the parameter estimation to evaluate the likelihood function given a set of parameters. We 

achieved numerical stability and accuracy of the forward simulations of the partial differential 

equation system with the finite volumes method (online methods) and validated the robustness 

of the parameter estimation in multiple simulation studies (Supp. Note 2). Moreover, we 

showed that cell type sampling bias correction is possible within pseudodynamics16,17 (Supp. 

Note 2 sec. SN2.2.3). 

 

We fit the continuous pseudodynamics model to a pseudotemporal ordering of scRNA-

seq observations from four time points along mouse embryonic stem cell differentiation1,4 (Fig. 

1d, online methods) without population size observations. Pseudodynamics was able to fit the 

samples along this transcriptomic trajectory and allowed imputation of unobserved time points 

(Fig. 1e,f, Supp. video 1). With lower regularization parameters, the model fit is better but has 

worse predictive power as  shown by leave-one-time-point-out cross-validation (Fig. 1e,f). 

 

Pseudodynamics extends previous models of T-cell maturation 

T-cell maturation has been previously described as a sequence of transitions between cell 

states defined based on surface marker protein expression18. Here, we propose a trajectory 

model for T-cell maturation (Fig. 2), and show that pseudodynamics yields a comprehensive 

description of the T-cell maturation process. This includes quantitative analyses of the size of 

the proliferative burst after beta-selection, magnitude of selection on double-positive T-cells 

and position of beta-selection on the trajectory (Fig. 3,4).  

 

Pseudotime inference identifies continuous states in T-cell maturation. We constructed 

a cell state trajectory for T-cell maturation based on 19 scRNA-seq thymus samples (Drop-

seq protocol1) from mouse embryos at eight different time points spanning 12.5 to 19.5 days 

after fertilization (E12.5-P0)19 (Fig. 2a,b). The data set contains clusters of putative myleloid 

and dendritic cells19 (Supp. Fig. 1-3), T-cells (Supp. Fig. 3,4) and innate lymphoid cells and 

γδ-T-cells (Supp. Fig. 5). The set of innate lymphoid cells and γδ-T-cells was previously 

grouped as non-conventional lymphocytes (NCLs)19. We filtered a branch of putative myeloid 

or dendritic cells from the set of all lymphocytes (Supp. Fig. 6a, online methods) to generate  

a data set consisting of T-cells and NCLs only (online methods). The diffusion map20 of this 

gated data set uncovers one branching region between the T-cell lineage and the NCL lineage 

(Fig. 2b,c, Supp. Fig. 6b). This branching is also found by partition-based graph abstraction7 

(Supp. Fig. 1i) and has been discussed in detail recently19. The branching is consistent with 

the previous result that T-cells and NCLs are derived from the same progenitor in the 

https://paperpile.com/c/sR54Wx/srI2D
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thymus21,22,23. We used diffusion pseudotime as a one dimensional cell state coordinate with 

the tip cell of the progenitor branch as a root cell. The cell state therefore captures 

transcriptomic progression along the T-cell and the NCL lineages. We performed a linear 

partition in the branching region to distinguish the T-cell and the NCL trajectories (Supp. Fig. 

6c). The expression profiles along the T-cell lineage recapitulate the previously established 

sequence of developmental stages from double negative to double positive cells which are 

defined based on surface marker proteins18 (Fig. 2d, Supp. Fig. 7a-c) and transcription 

factors18 (Supp. Fig. 7d,e). TCRα (Tcra) and TCRβ (Tcrb) expression together with surface 

marker expression suggest that the T-cell lineage trajectory in the diffusion map corresponds 

to the αβ-T-cell lineage (Fig. 2d, Supp. Fig. 7a, Supp. Fig. 8a,b). We found TCRγ (Tcrg)- and 

TCRδ (Tcrd)-expressing cells on this T-cell lineage before the upregulation of double-positive 

stage markers (Fig. 2d) which could correspond to γδ-T-cells or to temporary expression of 

TCRγ and TCRδ on the αβ-T-cell lineage. Expression profiles across the trajectory have a 

higher resolution than across previously used discrete cell stages and highlight the order of 

activity of gene regulatory modules of interest (Supp. Fig. 7d). Moreover, expression profiles 

along the trajectory can be used to suggest putative surface marker proteins for particular 

developmental stages (Supp. Fig. 7b,c). 

 

Pseudodynamics identifies a proliferative burst and selection pressure during T-cell 

maturation. We fit the continuous pseudodynamics model to the developmental tree with a 

single branching region between the T-cell and putative NCL lineages (Supp. Note 3 sec. 

SN3.2.2). Population size observations of the total number of lymphocytes per thymus were 

collected separately24. The model provides a continuous interpolation of the density across 

cell state in time and predicts the time-resolved flux of cells through the cell state space (Fig. 

3a,b): The normalized distribution across bins reaches a steady state during the last three 

observed time points (Fig. 2d), while the overall population size is still increasing (Fig. 3a,b).  

We found the predictive power of pseudodynamics to impute missing time points (Supp. video 

2) to depend on the sampling density (Supp. Fig. 9). 

 

We extended the continuous cell state description of T-cell development by annotating the cell 

states with the parameter fits from the pseudodynamics model. The T-cell lineage drift 

parameter fit (Fig. 3c) uncovers two intervals of rapid transcriptomic development (high drift 

parameter) which peak at cell states 0.13 and 0.35. They correspond to transcriptomic states 

in which transcription factors are sequentially regulated, for example Notch1 and Notch3 in 

interval one, and Id3 and Rorc in interval two. This sequential regulation leads to directed 

transcriptomic development and to deterministic behavior of individual cells. Indeed, we 

observed global changes in transcription factor activity at these stages (Fig. 2d, Supp. Fig. 

https://paperpile.com/c/sR54Wx/WuBNP
https://paperpile.com/c/sR54Wx/Qvieq
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7e). Downregulation of Bcl2 and Mcl1, up-regulation of Bcl-xL (Bcl2l1)18 and double-positive 

stage markers (Fig. 2d, Supp. Fig. 8c) suggest that the developmental checkpoint is beta-

selection and lies around cell state 0.23. Pseudodynamic parameter fits capture this 

checkpoint as an area of non-deterministic development with low drift and non-zero diffusion. 

This is a saddle point of the developmental potential function (Fig. 4b). 

 

T-cells that pass beta-selection divide rapidly and then undergo positive and negative 

selection18. The cell state-specific division and death rates are captured as a high birth-death 

rate after the putative point of beta-selection, which then monotonically decreases with cell 

state and eventually becomes negative (Fig. 3c). The parameter trends are qualitatively similar 

across a range of regularization hyperparameters (Supp. Fig. 10). We fit a single-trajectory 

pseudodynamics model without branching to a pseudotemporal ordering inferred with 

monocle26 (Supp. Fig. 11, Supp. Fig. 12a-c, Supp. Note 3 sec. SN3.2.2.5). The inferred peak 

of the birth-death parameter at beta-selection and the negative interval during selection are 

robust with respect to the underlying state space (Supp. Fig. 12d-f, Supp. Note 3 sec. 

SN3.2.2.6). Transcriptome-derived M- and G2.M-phase scores (online methods) were 

increased in the cell states with negative birth-death rates (Fig. 3d). The transcriptome-derived 

scores reflect expansion of the cells that survive selection as only these surviving cells are 

observed in scRNA-seq. These scores do not capture the global population size effect of 

selection, which the pseudodynamics framework can recover. 

 

Pseudodynamics can map developmental check-points based on knock-out data. Rag1 

and Rag2 knockout (KO) mice produce T-cells that cannot overcome beta-selection as they 

are unable to rearrange the T-cell receptor genes25. We took scRNA-seq samples from these 

knockout mice to validate the prediction of the position of beta-selection in cell state space. 

We fit a diffusion map to the union of all wild-type samples, an E14.5 Rag2KO at and two 

E16.5 Rag1KO samples (Supp. Fig. 13, online methods). The T-cell populations in the knock-

out mice are significantly delayed in transcriptomic development along the αβ-T-cell trajectory 

compared to age-matched wild-type samples, and lack high cell state outliers at these time 

points (Fig. 4a, Supp. Fig. 14a,b). Beyond trends in cell state space, we also observed a 

reduced mean expression of double-positive stage markers in the knock-out animals 

compared to age-matched wild-type mice (Supp. Fig. 14c,d). We trained the pseudodynamics 

model on wild-type samples and adapted the inferred parameters to account for the arrest 

expected at beta-selection with the position of beta-selection as a free parameter (online 

methods). Then, we computed a least squares cost profile (Supp. Note 1 sec. SN1.6) of the 

mutant data across the beta-selection position (Fig. 4a). The resulting estimator of the beta-

selection point at cell state 0.27 is in agreement with the Bcl-xL expression profile and lies at 

https://paperpile.com/c/sR54Wx/ztJLo
https://paperpile.com/c/sR54Wx/ztJLo
https://paperpile.com/c/sR54Wx/gSY4G
https://paperpile.com/c/sR54Wx/dDFO7
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the end of the low drift parameter interval in cell state (Fig. 4b). We obtained similar beta-

selection estimates for multiple regularization parameters (Supp. Fig. 14e,f). This probabilistic 

model for the position of beta-selection is better defined than a model based on marker gene 

changes and is not as sensitive to resampling as the maximal pseudotime coordinate in the 

knock-out cells would be. 

 

Pseudodynamics attributes variation in proliferation rates of pancreatic β-cells across 

time to a state-dependent effect  

Pancreatic β-cell proliferation in young mice was previously observed as the fraction of cycling 

cells in tissue sections and was shown to decrease with age26,27. Above, we showed that 

average cell state often changes during development (Fig. 1e, 2d). Hence, both state- and 

time-dependent birth parameters induce variation in proliferation rates across time. State-

dependent birth parameters may occur if there are proliferative stages along a developmental 

trajectory, such as in the T-cell system. In contrast, cell state-invariant time-dependence of 

parameters requires extracellular regulators (Fig. 5a) if the cell state variable captures the full 

molecular state of the cell. To inform hypotheses about extracellular cues, it is important to 

distinguish the state-dependent from time-dependent regulation.   

 

State- and time-dependence of proliferation have been previously analyzed based on 

a two-stage compartment model of β-cell maturation with the marker Flattop (Fltp, Cfap126): 

The proliferation rate was measured as the fraction of cycling cells in the Fltp- (immature) and 

Fltp+ (mature) compartment at multiple time points and was found to vary with age in both 

compartments27. We modeled such a discrete state space using the pseudodynamics 

likelihood with a two-state ordinary differential equation model. For input data, we collected 

pancreatic β-cell population size measurements28 (Supp. Note 3 sec. SN3.2.3) and measured 

the distribution of the population across two maturation compartments based on the marker 

Ucn3 by counting cells in stained sections (Fig. 5d). Likelihood-based model selection 

between models with different parameterizations suggests a state- and time-dependence of 

the birth-death rate in this two-stage description (Supp Note 2 sec. SN2.2.4). 

 

Time-dependence may arise not because of extrinsic signals but because discretizing 

the state space lowers resolution so that cell state alone can no longer explain proliferation. 

Accordingly, we also fit the continuous pseudodynamics model to a trajectory model based on 

scRNA-seq data26 (Fig. 5c). To distinguish state- and time-dependent proliferation, we fit the 

model with two different parameterizations of the birth-death rate, namely a function of the cell 

state only (state model) and a function of cell state and time (state-time model). We accounted 

for the time-dependence in the state-time model with a factor based on an additional spline of 

https://paperpile.com/c/sR54Wx/6sNYw
https://paperpile.com/c/sR54Wx/ibP4l
https://paperpile.com/c/sR54Wx/ibP4l
https://paperpile.com/c/sR54Wx/SLMRP
https://paperpile.com/c/sR54Wx/6sNYw
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the time coordinate (Supp. Note 1 eq. SN1.3). Both models were able to fit the cell state 

density and the total population size well (Supp. Fig. 15). To validate predictions of the birth-

death rates, we estimated the fraction of cycling β-cells using Ki67-stainings across multiple 

time points, and computed birth rates based on an estimate of the cell cycle length in 

pancreatic β-cells29 (Fig. 6a). We only detected subtly cleaved caspase-3 positive β-cells at 

P9 (Fig. 6b). Thus, the death rates are close to zero. This conclusion is supported by low 

apoptosis rates in pancreatic β-cells of neonatal rats observed in propidium iodide staining 

assays30. As the death rates are close to zero, the birth rate measurements approximate the 

birth-death rate. These measurements are independent of the estimates from the 

pseudodynamics model and confirm both magnitude and decreasing trend of the predicted 

birth-death rates (Fig. 6c). We performed model selection with a likelihood-ratio test between 

the state (null) model and state-time (alternative) model (Fig. 6d): The test did not reject the 

null hypothesis for any regularization. Therefore, the state-dependent proliferation model is 

sufficient to explain the observations. 

 

The previously observed temporal variation of proliferation rates by cell state26,27 may be 

caused by the discretization of the β-cell maturation trajectory into two compartments. 

Pseudodynamics is able to overcome these discretization problems given a continuous cell 

state space. This yields a mechanistic hypothesis: The observed proliferation rates of 

pancreatic β-cells can be explained with a maturation-dependent proliferation model and there 

is no evidence for extracellular regulation. 

 

Discussion 

The order of cells along developmental trajectories can be inferred from large and high-

dimensional single-cell data sets. However, temporal sample coordinates encode dynamic 

information which is not exploited in transcriptome-based embeddings. Secondly, population 

size measurements, that encode information on proliferation and death events, have been 

neglected in this context. We showed that a description solely based on transcriptomic data 

uncovers many known aspects of T-cell maturation in an unbiased fashion. We used 

pseudodynamics to integrate scRNA-seq and population size observations to infer the 

dynamics underlying T-cell maturation and found that this process is biphasic. One may think 

of this class of dynamic models as a step towards approximating the developmental potential 

previously termed “Waddington’s landscape”31. The inclusion of population size into the 

diffusion-advection framework allowed us to map selection pressure and population expansion 

on the cell state coordinate, which was not possible in previous dynamic models of cellular 

development in transcriptome space11,13. Moreover, we showed via model selection that the 

https://paperpile.com/c/sR54Wx/8NJ8X
https://paperpile.com/c/sR54Wx/5ft3g
https://paperpile.com/c/sR54Wx/ibP4l+6sNYw
https://paperpile.com/c/sR54Wx/kVsrS
https://paperpile.com/c/sR54Wx/CGVpu+PlOYD
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variation of proliferation across time in pancreatic β-cells is consistent with a state-dependent 

effect in a continuous cell state space.  

 

Here, we chose a pseudotemporal ordering as the developmental progression space. 

Possible extensions include different cell state spaces, such as from coarsened graphs32, 

protein measurements, coordinates determined by lineage tracing33,34 or coordinates informed 

by RNA velocities35. Pseudodynamics bridges the concepts of pseudotemporal ordering and 

cell state dynamics in a probabilistic framework that adds layers of information with uncertainty 

quantification to a developmental lineage. 

 

Figure 1 A population-based view of single-cell RNA-seq time-series experiments: Concept 

of pseudodynamics and example fits on a mouse embryonic stem cell differentiation data set. 

(a) Development can be modeled as the temporal progression of a population density in 

transcriptome (cell state) space. Here, the developmental process is a branched lineage from 

a progenitor to two terminal fates. (b) Dimension reductions of the full cell state space are 

useful for dynamic modelling. Discrete cell types, such as from FACS gates, were previously 

used for ordinary differential equation models. Branched trajectories with pseudotime 

coordinates can be used in the context of pseudodynamics. (c) Conceptual overview of the 

pseudodynamics algorithm: The input consists of developmental progress data (normalized 

distributions across cell state) and population size data (number of cells) for each time point. 

The output contains interpretable parameter estimates and imputed samples at unseen time 

points (dotted densities). (d) Diffusion map of mouse embryonic stem cell development in vitro 

after leukemia inhibitory factor (LIF) removal1. Color: days after LIF removal in cell culture. 

(e,f) Kernel density estimate and simulated density of cells across cell state coordinate 

(diffusion pseudotime) at four sampled time points (n0=933, n2=303, n4=683, n7=798 cells) for 

regularized (rho = 1) and unregularized (rho = 0) model fits. Colored density: kernel density 

estimate, solid line: simulated density based on model fitted to all data, dotted line: simulated 

density in leave-one-time-point-out cross-validation.  

 

Figure 2 A trajectory model for T-cell maturation yields a description with higher resolution 

than a discretized description of the cell state space. (a) Design of the single-cell RNA-seq 

experiment. TCs: T-cells, NCLs: non-conventional lymphoid cells. (b) 2D density estimate in 

hexagonal bins of population by time point in the diffusion map. The density is encoded by the 

hexagon color (dark: low density, bright: high density, white: no cells observed, grey: non-zero 

density in the union of all samples). The diffusion map was computed based on TCs and NCLs 

from all time points. (c) Diffusion map based on TCs and NCLs only with cell state (diffusion 

pseudotime) superimposed. (d) Summary of the trajectory model for T-cell maturation. The 

https://paperpile.com/c/sR54Wx/vOS9c
https://paperpile.com/c/sR54Wx/hb3kO+Bh38f
https://paperpile.com/c/sR54Wx/CPPv
https://paperpile.com/c/sR54Wx/IdVIC
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boxplots show the sampled density of cells across cell state by time point. The boxplots are 

based on nE12.5=366 cells, nE13.5=1611 cells, nE14.5= 981, nE15.5= 974, nE16.5= 2492, nE17.5= 1908, 

nE18.5= 857, nP0= 890. The center of each boxplots is the sample median, the whiskers extend 

from the upper (lower) hinge to the largest (smallest) data point no further than 1.5 times the 

interquantile range from the upper (lower) hinge. The heatmap shows z-scores of sliding 

window expression estimates across cell state in the T-cell lineage (n=10079 cells) and the 

NCL lineage (n=793 cells). ETP: early thymic progenitors, DN2a/b, DN3a/b, DN4: double-

negative stages, DP: double-positive stage. 

 

Figure 3 Pseudodynamics density and parameter fits extend the stationary description of T-

cell maturation. (a) Simulated population size by time point. log N: log number of total cells. 

(b) Alluvial plot showing the flows between intervals of cell state bins across time. Each bar 

plot corresponds to one time point. The height of the boxes of each bin within a bar is 

proportional to the fraction of cells of all cells in that bin. The T-cell trajectory was divided into 

15 equidistant bins in cell state (labelled 1-15), the non-conventional lymphoid cell branch was 

summarized to one bin (labelled NCL). The resulting 16 bins and their outflows are color 

coded. Outflow width represents the fraction of surviving cells transitioning into each bin at the 

old time point. Inflow width represents the contribution of each flow to the population size in a 

bin at the new time point. The alluvial plot is explained in Supp. Note 3 sec. SN3.2.2.7 and 

also provided as Supp. video 3. (c) Parameter estimates of pseudodynamics as function of 

cell state on the αβ-T-cell lineage with confidence intervals for regularization parameter 

rho=10. Shaded area: spline fit to 99% confidence interval boundary on spline nodes. (d) 

Transcriptome-based cell cycle state scores (online methods) per cell by cell state bin. The 

cell state was binned into intervals of length 0.05. The boxplots are based on nx cells observed 

per bin x (sorted ascending in cell state): n1=500, n2=930, n3=623, n4=1078, n5=3624, 

n6=2580, n7=646, n8=368, n9=276, n10=186, n11=61. The center of each boxplots is the sample 

median, the whiskers extend from the upper (lower) hinge to the largest (smallest) data point 

no further than 1.5 times the interquantile range from the upper (lower) hinge. 

 

Figure 4 Pseudodynamics annotates a trajectory model with the position of a developmental 

checkpoint based on knock-out data, with the developmental potential and with developmental 

phases. (a) Boxplots of population density in cell state on T-cell lineage by sample with least 

squares cost profile of proposed beta-selection point as function of cell state based on the 

following number of cells per sample: n={215, 145,  55} at t=12.5; n={664, 603, 462} at t=13.5;  

n={436} at t=14.5 in the Rag2KO sample; n={487, 531} at t=14.5 in the wild-type samples; 

n={420, 560} at t=15.5; n={694, 896} at t=16.5 in the Rag1KO samples; n={784, 828, 865} at 

t=16.5 in the wild-type samples; n={929, 936} at t=17.5; n={429, 405} at t=18.5; n={378, 427} 
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at t=19.5. Here, cell state coordinates are computed based on all replicates. Replicates are 

independent Drop-seq samples which are based on separate thymus samples, the two 

replicates at P0 are based on the two lobes of a single thymus. The red box denotes high cell 

state outliers at E16.5 only observed in wild-type. The cost profile shows the fit of the mutant 

data to the pseudodynamics parameterization which reflects the position of beta-selection in 

cell state space as a free parameter (online methods eq. 20). Color: time point, black solid 

outline: wild-type mice, red dotted outline: Rag1/2KO mice. The center of each boxplots is the 

sample median, the whiskers extend from the upper (lower) hinge to the largest (smallest) 

data point no further than 1.5 times the interquantile range from the upper (lower) hinge. (b) 

Approximation of developmental potential of the proposed model of T-cell maturation with 

other pseudodynamics output annotated. The developmental potential is the integral of the 

drift parameter on the T-cell lineage across cell state (online methods eq. 22). 

 

Figure 5 Cell state space discretization and time-dependence of models of pancreatic β-cell 

maturation and proliferation. (a) Concept of state- and time-dependent effects in vivo. Cell 

state-dependent effects (cell color) directly depend only on the molecular state of the cell. 

Time-dependent effects (background color) are invariant with respect to the cell state. Time-

dependent effects depend directly only on extracellular regulators if the cell state variable 

captures the full molecular state of a cell. (b) Surface marker-based compartment model for 

β-cell maturation. Here, the presence of Ucn3 is used as a marker for maturation within the 

set of Ins+ cells. (c) Continuous trajectory model of β-celll maturation in cell state space. Here, 

pseudotime quantifies maturation as cell state in a continuous interpolation of the two states 

shown in (b). The boxplots show the distribution of single-cell RNA-seq samples across cell 

state space by sampled time point with nx cells per time point x: n0=61, n1.5=84, n4.5=88, 

n10.5=81, n16.5=59, n19.5=71, n61.5=131. The center of each boxplots is the sample median, the 

whiskers extend from the upper (lower) hinge to the largest (smallest) data point no further 

than 1.5 times the interquantile range from the upper (lower) hinge. (d) Maturation 

quantification of β-cells in pancreas sections via co-staining of DAPI, insulin (β-cells) and Ucn3 

(β-cell maturation) at multiple time points (P0, P4, P9, P14). The fractions of cells in the two 

compartments shown in (b) can be directly counted in these sections. We quantified the 

proliferation of 1000-3300 β-cells in 3 animals per animal per time point. White scale bar: 50 

µm. 

 

Figure 6 Likelihood-based model selection favors a state-dependent birth-death model over 

a state- and time-dependent model for β-cell maturation. (a,b) Proliferation (Ki67, a) and 

apoptosis (cleaved caspase-3, b) quantification of β-cells in pancreas sections via co-staining 

with DAPI and insulin (β-cells) at multiple time points (E17.5, P0, P4, P9, P14, P25). The 
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fraction of proliferating and apoptotic β-cells can be directly counted, similarly to Fig. 5d. We 

observed the apoptosis and maturation status of 1900-3600 β-cells in 3 animals per time point. 

White scale bar: 50 µm. (c) Average birth-death rate per time point by model and observed 

proliferation rates by time point with one standard deviation around the mean as error bars. 

The birth-death rates at a given time point are computed as the convolution of the simulated 

population density at that time point with the parameter fit, both functions of cell state (Supp. 

Note 3 sec. SN3.2.3.3). The parameter fit is multiplied by the value of the time dependent 

birth-death function at that time point in the case of the time-dependent model. Two 

regularization hyper-parameters (rho) are shown for each model. (d) Likelihood of ten best fits 

by birth-death rate model for different regularization hyper-parameters. The interval shown is 

the interval between the best and the worst fit. Model selection was performed via a likelihood 

ratio test between of the best fit of each model (n.s.: not significant at threshold of 0.05). 
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Ethical approval 
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pancreas study were carried out in compliance with the German Animal Protection Act, the 

guidelines of the Society of Laboratory Animals (GV-SOLAS) and Federation of Laboratory 

Animal Science Associations (FELASA).  

 

Statistics 

We used a log-likelihood ratio test to perform model selection between pseudodynamics 

model fits on the pancreatic β-cell data as explained in the main text. We used false-discovery 

rate-corrected p-values for differential expression based on a multivariate Wald test in Supp. 

Fig. 7. We used a one-sided Kolmogorov-Smirnov test to test the developmental delay of the 

T-cell population in the knockout versus the wild-type animals (Supp. Fig. 14a,b). 
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See also (Supp. Note 1 sec. SN1.3). Pseudodynamics describes the development of a 

population of single cells in time and cell state. We consider the number density 𝑢(𝑠, 𝑡) of cells 

over a cell state coordinate 𝑠 at a time point 𝑡. The integral of 𝑢(𝑠, 𝑡)  over an interval 𝐼=[0,i], 

∫ 𝑢(𝑠, 𝑡)𝑑𝑠
𝑖

0
 provides the number of cells with cell state 𝑠 in 𝐼. Due to differentiation and growth 

dynamics this density changes during development. In pseudodynamics, the change in this 

density over time is modeled by a reaction-diffusion-advection partial differential equation 

(PDE) across the 1D transcriptomic progression (“cell state”) coordinate (eq. 1). The model 

includes directed movement of cells along the cell state coordinate (drift) with drift parameter 

𝑣(𝑠, 𝑡), random fluctuations in cell state modeled by a diffusion term with a diffusion parameter 

𝐷(𝑠, 𝑡), and population growth with growth rate 𝑔(𝑠, 𝑡). A detailed discussion of the influence 

of the parameters on the model behavior can be found in the Supp. Note 1 sec. SN1.3.3. All 

rates can depend on cell state 𝑠 and time 𝑡. The parameters are parameterized as natural 

cubic splines in cell state or time. 

𝜕

𝜕𝑡
𝑢(𝑠, 𝑡) =

𝜕

𝜕𝑠
(𝐷(𝑠, 𝑡)

𝜕

𝜕𝑠
𝑢(𝑠, 𝑡)) −

𝜕

𝜕𝑠
(𝑣(𝑠, 𝑡)𝑢(𝑠, 𝑡)) + 𝑔(𝑠, 𝑡)𝑢(𝑠, 𝑡)   (1) 

Boundary conditions for pseudodynamics should be chosen to correspond to the biological 

setting. For the applications in this work, we assumed no-flux boundary conditions at both 

boundaries of the 1D domain. To improve numerical stability, the drift is decreased to zero on 

the right hand side: 

(𝐷(𝑠, 𝑡)
𝜕

𝜕𝑠
𝑢(𝑠, 𝑡) − 𝑣(𝑠, 𝑡)𝑢(𝑠, 𝑡))|

𝑠=0

= 0   (2) 

𝜕

𝜕𝑠
𝑢(𝑠, 𝑡)|

𝑠=𝑠𝑚𝑎𝑥

= 0   (3) 

Accordingly, one can formulate a pseudodynamics model for a process with one branching 

region as a system of two coupled partial differential equations. The first PDE describes the 

evolution of the population along the main trajectory from a progenitor state to a chosen 

terminal cell fate (eq. 4) and the second equation describes the evolution along the side branch 

starting at the branching region (eq. 5) to the alternative terminal cell fate. Both equations are 

coupled at the branching region in which cells can switch between main and side branch with 

propensities 𝛿𝑖𝑗 for change from branch 𝑖 to branch 𝑗: 

𝜕

𝜕𝑡
𝑢1(𝑠, 𝑡) =

𝜕

𝜕𝑠
(𝐷1(𝑠, 𝑡)

𝜕

𝜕𝑠
𝑢1(𝑠, 𝑡)) −

𝜕

𝜕𝑠
(𝑣1(𝑠, 𝑡)𝑢1(𝑠, 𝑡)) + 𝑔1(𝑠, 𝑡)𝑢1(𝑠, 𝑡)

− 𝑇(𝑠)(𝛿12𝑢1(𝑠, 𝑡) − 𝛿21𝑢2(𝑠, 𝑡))   (4) 

𝜕

𝜕𝑡
𝑢2(𝑠, 𝑡) =

𝜕

𝜕𝑠
(𝐷2(𝑠, 𝑡)

𝜕

𝜕𝑠
𝑢2(𝑠, 𝑡)) −

𝜕

𝜕𝑠
(𝑣2(𝑠, 𝑡)𝑢2(𝑠, 𝑡)) + 𝑔2(𝑠, 𝑡)𝑢2(𝑠, 𝑡)

+ 𝑇(𝑠)(𝛿12𝑢1(𝑠, 𝑡) − 𝛿21𝑢2(𝑠, 𝑡))   (5) 
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Here, the function 𝑇(𝑠) defines a branching region in state space: 𝑇(𝑠) is one inside the 

branching region and zero outside of it. On each branch we assume no-flux boundary 

conditions. Analogous to (3), the drift parameter is decreased to zero at each right boundary: 

(𝐷1(𝑠, 𝑡)
𝜕

𝜕𝑠
𝑢1(𝑠, 𝑡) − 𝑣1(𝑠, 𝑡)𝑢1(𝑠, 𝑡))|

𝑠=0

= 0   (6) 

(𝐷2(𝑠, 𝑡)
𝜕

𝜕𝑠
𝑢2(𝑠, 𝑡) − 𝑣2(𝑠, 𝑡)𝑢2(𝑠, 𝑡))|

𝑠=0

= 0   (7) 

𝜕

𝜕𝑠
𝑢1(𝑠, 𝑡)|

𝑠=𝑠𝑚𝑎𝑥

= 0   (8) 

𝜕

𝜕𝑠
𝑢2(𝑠, 𝑡)|

𝑠=𝑠𝑚𝑎𝑥

= 0   (9) 

The population size 𝑁(𝑡) at a time point 𝑡 is computed as the sum of the integrals of the 

corresponding density with respect to cell state summed over branches 𝐵, 

𝑁(𝑡, 𝜃) = ∑ ∫ 𝑢𝑏(𝑠, 𝑡)𝑑𝑠
𝑠=𝑠𝑚𝑎𝑥

𝑠=0𝑏∈𝐵

   (10) 

The initial conditions for the system can be derived from the experimental data at the initial 

time point, i.e., the population size and the initial distribution of cells are initialized as the 

(mean) observed population size and cell distribution at the first measurement time point. In 

principle, it is also possible to include these as additional parameters. 

      

Likelihood, regularization and parameter estimation 

See also (Supp. Note 1 sec. SN1.5). The parameters of the pseudodynamics model are 

estimated from a given dataset using a maximum likelihood estimation. The likelihood 𝐿 (eq. 

11) accounts for the cell state distribution of the population, the population size, and the 

proportion of cells on each branch. The data consist of samples 𝑆b,t, of cell state observations 

of single cells in a population at time points 𝑇cdf and in branches 𝐵, a set of mean population 

sizes N̅t observed at time points 𝑇N, and of the standard error in the population size 

observations per time point σt
N . From the cell state sample 𝑆b,t the empirical cumulative density 

function (ECDF) 𝑒𝑐𝑑𝑓𝑆𝑏,𝑡
(𝑠) at cell state 𝑠, time point 𝑡 and branch 𝑏, as well as the fraction of 

cells observed on a branch 𝑏 at time 𝑡, 𝜔b,t , and the corresponding standard deviation 𝜎𝑏,𝑡
𝜔  can 

be computed. Using these data the log-likelihood can be formulated as: 

log 𝐿 (𝜃) = (∑ ∑ log 𝐿(𝑒𝑐𝑑𝑓𝑆𝑏,𝑡
(𝑠)|𝜃)

𝑡∈𝑇𝑐𝑑𝑓𝑏∈𝐵

) + ( ∑ log 𝐿(𝑁𝑡|𝜃, 𝜎𝑡
𝑁)

𝑡∈𝑇𝑁

)

+ ( ∑ ∑ log 𝐿(𝜔𝑏,𝑡|𝜃, 𝜎𝑏,𝑡
𝜔 )

𝑡∈𝑇𝑐𝑑𝑓𝑏∈𝐵\𝑏𝑚𝑎𝑥

)   (11) 

where 𝜃 is the set of parameters of the pseudodynamics model. Note that the likelihood term 

on the fraction of cells per branch does not need to be evaluated on one branch as the 
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proportions across all branches sum to one. For numerical reasons, we minimize the negative 

log-likelihood and add regularization terms on the parameter splines with regularization 

parameter ρ to counteract overfitting. This yields the objective function:    

𝐽𝜌(𝜃) = − log 𝐿 (𝜃)

+ 𝜌 (∑ [ ∑ ((𝛼⃑𝐷𝑏)
𝑖+1

− (𝛼⃑𝐷𝑏)
𝑖
)

2
𝑛𝑏

𝐷−1

𝑖=1

+ ∑ ((𝛼⃑𝑣𝑏)
𝑖+1

− (𝛼⃑𝑣𝑏)
𝑖
)

2
𝑛𝑏

𝑣𝐷−1

𝑖=1𝑏∈𝐵

+ ∑ ((𝛼⃑𝑔𝑏)
𝑖+1

− (𝛼⃑𝑔𝑏)
𝑖
)

2

𝑛𝑏
𝑔

−1

𝑖=1

])   (12) 

where 𝑛b
D, 𝑛b𝑣 and 𝑛b

g are the number of nodes of the natural cubic splines and 𝛼D, 𝛼v, and 

𝛼g the associated parameter vectors on each branch 𝑏 out of 𝐵 branches. Similarly, time-

dependent parameterizations can be regularized (Supp. Note 1 sec. SN1.5.3). The 

regularization parameter ρ can be chosen via cross-validation (Supp. Note 1 sec. SN1.5.3.1). 

The likelihood of observing the cell state distribution for given parameters is evaluated 

based on the area between the ECDF of the observed data and simulated cumulative density 

function. In the case of branching, this is done per branch. The simulated cumulative density 

function is: 

𝑐𝑑𝑓𝑢𝑏
(𝑠, 𝑡) =

∫ 𝑢𝑏(𝑠̅, 𝑡)𝑑𝑠̅
𝑠

0

∫ 𝑢𝑏(𝑠̅, 𝑡)𝑑𝑠̅
𝑠𝑚𝑎𝑥

0

   (13) 

where 𝑢b is the simulated density on branch 𝑏. We assumed that area between the curves (A) 

is normally distributed with standard deviation σA(𝑡) and mean μA(𝑡) estimated per time point 

𝑡 on the area between the curves of the ECDF of each experimental replicate to the ECDF of 

the union of all cells (𝑆t) of a given time point 𝑡, yielding the likelihood function 

log 𝐿 (𝑒𝑐𝑑𝑓𝑆𝑏,𝑡
|𝜃) = 𝑁 (𝐴 (𝑐𝑑𝑓𝑢𝑏

(𝑠, 𝑡), 𝑒𝑐𝑑𝑓𝑆𝑏,𝑡
(𝑠)) |𝜇 = 𝜇𝑏

𝐴(𝑡), 𝜎2 = (𝜎𝑏
𝐴(𝑡))2)

= 𝑁 (∫ |𝑐𝑑𝑓𝑢𝑏
(𝑠̅, 𝑡), 𝑒𝑐𝑑𝑓𝑆𝑏,𝑡

(𝑠̅)| 𝑑𝑠̅
𝑠𝑚𝑎𝑥

0

|𝜇 = 𝜇𝑏
𝐴(𝑡), 𝜎2 = (𝜎𝑏

𝐴(𝑡))2)   (14) 

For the population size, we assumed normally distributed errors. We estimated the 

standard deviation of the measurement noise per time point as the standard error of the 

population size observation at that time point 𝜎t
N. Accordingly, the likelihood for the population 

size observations is a normal distribution:  

log 𝐿 (𝑁𝑡|𝜃, 𝜎𝑡
𝑁) = 𝑁(𝑁𝑡|𝜇 = 𝑁(𝑡, 𝜃), 𝜎2 = (𝜎𝑡

𝑁)2)   (15) 

which has the square of the standard error of the population size observations as variance 

and which has the integral of the simulated density over cell state as a mean parameter (eq. 

10). 

 

Implementation of the parameter estimation of the continuous model 
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See also (Supp. Note 1 sec. SN1.5, Supp. Note 3). The estimation of the parameters of the 

pseudodynamics models is non-trivial as the PDE has to be forward simulated for each 

likelihood evaluation. The numerical implementation of the forward simulation of the 

pseudodynamics model was based on the method of lines. The model was discretized in cell 

state using finite volumes. For the solution of the resulting system of ordinary differential 

equations we employed the Sundials CVODE suite36 and AMICI37 (https://github.com/ICB-

DCM/AMICI/) as Matlab interface. For the optimization, we used a multi-start approach (with 

gradient information) that is implemented in the Matlab toolbox PESTO38 

(https://github.com/ICB-DCM/PESTO). We supplied the optimizer with the analytical gradient 

as this increases efficiency in comparison to gradients computed using finite differences39. 

Uncertainty analysis and computation of confidence intervals was performed using profile 

likelihoods (also implemented in PESTO) or asymptotic confidence intervals. To determine 

the regularization parameter, we performed leave-one-out cross validation successively 

leaving out the data corresponding to a time point and estimating the parameters for the 

reduced data set. For these parameters we were able to evaluate the likelihood on the whole 

data set and compare prediction accuracy (Supp. Note 1 sec. SN1.5.3.1). 

  

Estimation of the cell state coordinate of beta-selection with pseudodynamics 

(See also Supp. Note 1 sec. SN1.6). To compute a least squares cost profile of the point of 

beta-selection across the cell state coordinate 𝑠, we calibrated the pseudodynamics model 

on the wild-type data subset of the combined wild-type and knock-out sample diffusion 

pseudotime model. To estimate the point of beta-selection, 𝑠*, we considered the 

discrepancy between the calibrated pseudodynamics model that was modified to include 

developmental arrest at some time point 𝑠’ and the mutant data. The estimator for the point 

of beta-selection was then chosen as the arrest point that minimizes this discrepancy (eq. 

17). The model was adjusted for developmental arrest at a proposed cell state 𝑠’ by setting 

the drift parameter at the cell state coordinates beyond the proposed point of arrest to zero 

(eq. 18,19) and the growth parameter to -3, a lower bound of estimated birth-death 

parameters. We computed a least squares cost profile of 𝑠’ between the smallest cell state 

grid point not observed at the initial time point and the highest cell state observed on the T-

cell lineage by computing the fit of the model with arrest at 𝑠’ to the knock-out data for every 

𝑠’ in that range. As no replicates were available, we used a least squares objective function 

to evaluate the fit (eq. 20). 

𝜃𝑚𝑢𝑡 = (𝑣𝑚𝑢𝑡(𝑠|𝑠′), 𝐷𝑊𝑇(𝑠), 𝑔𝑚𝑢𝑡(𝑠|𝑠′))   (16) 

𝑣𝑚𝑢𝑡(𝑠|𝑠′) = {
𝑣𝑊𝑇(𝑠) if 𝑠 ≤ 𝑠′

0, otherwise
   (17) 

https://paperpile.com/c/sR54Wx/IdW2u
https://paperpile.com/c/sR54Wx/Z6ZkE
https://github.com/ICB-DCM/AMICI/
https://github.com/ICB-DCM/AMICI/
https://paperpile.com/c/sR54Wx/rldDW
https://github.com/ICB-DCM/PESTO
https://paperpile.com/c/sR54Wx/xcCxF
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𝑔𝑚𝑢𝑡(𝑠|𝑠′) = {
𝑔𝑊𝑇(𝑠) if 𝑠 ≤ 𝑠′

−3, otherwise
   (18) 

𝑠∗ = arg min
𝑠′

log 𝐿𝑚𝑢𝑡 (𝑒𝑐𝑑𝑓𝑆𝑏,𝑡
𝑚𝑢𝑡|𝜃𝑚𝑢𝑡)   (19) 

𝐿𝑚𝑢𝑡 (𝑒𝑐𝑑𝑓𝑆𝑏,𝑡
𝑚𝑢𝑡|𝜃𝑚𝑢𝑡)

= 𝐴 (𝑐𝑑𝑓𝑢𝑏
(𝑠, 𝑡 = 14.5|𝜃𝑚𝑢𝑡), 𝑒𝑐𝑑𝑓𝑆𝑏,𝑡=14.5

𝑚𝑢𝑡 (𝑠))
2

+ 𝐴 (𝑐𝑑𝑓𝑢𝑏
(𝑠, 𝑡 = 16.5|𝜃𝑚𝑢𝑡),mean (𝑒𝑐𝑑𝑓

𝑆𝑏,𝑡=16.5
𝑚𝑢𝑡,1 (𝑠), 𝑒𝑐𝑑𝑓

𝑆𝑏,𝑡=16.5
𝑚𝑢𝑡,2 (𝑠)))

2

   (20) 

where 𝜃mut contains the adjusted parameters as described in eq. 18,19 and the wild-type drift 

parameter. We trained the pseudodynamics model and computed the least squares cost 

profile based on cell state coordinates derived from diffusion pseudotime ordering computed 

on the union of all wild-type and mutant cells. This diffusion pseudotime coordinate (𝑠WT+KO) is 

different from the diffusion pseudotime computed only on the set of wild-type cells (𝑠WT). We 

mapped the cell state 𝑠WT+KO back to 𝑠WT to interpret the beta-selection point in the context of 

the T-cell maturation description established based on the wild-type data (Fig. 2). We note 

that 𝑠WT+KO is a monotonously increasing function of 𝑠WT. Accordingly, we performed the 

mapping with a smooth function class (degree 5 natural cubic splines) (Supp. Fig. 14f). 

 

Computation of the developmental potential function 

We assume that the gradient of the developmental potential function 𝑊 with respect to cell 

state 𝑠 can be approximated by the drift parameter estimate of the pseudodynamics model 

(eq. 21). Accordingly, one can approximate 𝑊 as the integral of the negative drift parameter 

trajectory with respect to cell state (eq. 22). 

𝑑𝑊

𝑑𝑠
= −𝑣(𝑠)   (21) 

𝑊(𝑠) = ∫ −𝑣(𝑠̅)𝑑𝑠̅
𝑠

0

   (22) 

We approximated the integral (eq. 22) with Euler’s method by setting 𝑊(0) = 0 and by using 

the negative drift parameter fit to do stepwise finite difference approximation of 𝑊 in 𝑠 (eq. 

23), where Δ𝑠 is the grid spacing of the drift parameter fit in cell state.  

𝑊(𝑠 = 𝑖) = 𝑊(𝑠 = 𝑖 − 1) − 𝑣(𝑖)∆𝑠   (23) 

We note that this approach to approximate the developmental potential function only yields 

approximations of 𝑊 along the observed developmental trajectories. 

 

Generation of Drop-seq dataset of T cell development 

Detailed description of isolation of thymus resident cells and generation of Drop-seq datasets 

are provided in19. Briefly, C57BL6/J and Rag1 knockout mice were obtained from The Jackson 

Laboratory, and thymus tissue was isolated from timed pregnant mice. Live cells were 

https://paperpile.com/c/sR54Wx/ph0Ma
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enriched using FACS and immediately processed for Drop-seq analysis. Drop-seq was 

performed following the online protocol provided from the McCarroll lab at Harvard Medical 

School (Drop-seq Laboratory Protocol version 3.1; http://mccarrolllab.com/dropseq/).  

 

Drop-seq data processing and analysis  

Drop-seq libraries were sequenced at paired-end (20-50) on a Nextseq500. Alignment was 

done as described in Supp. Note 3 sec. SN3.2.2.5. We rescaled raw molecule counts of each 

cell to sum to 10,000, and we transformed the resulting values via X→log2(1+X) . The number 

10,000 was chosen by rounding the median unique molecular identifier (UMI) count up to the 

nearest power of 10.  

 

T-cell receptor alignment was improved by augmenting the reference genome. The 

augmented reference contained an artificial TCR contig in which known constant, joining, and 

variable regions of the TCR were concatenated. TCR regions were extracted from TRACER40 

annotation files. The boundaries were annotated as splice junctions, allowing the extensive 

spliced alignment capabilities of STAR to position reads, despite TCR rearrangement. Reads 

aligning to the TCR contig were subsetted, and transcript quantification was performed as 

above. We made two alterations: in place of MIN_NUM_GENES_PER_CELL=1000; we used 

cell barcodes established using the conventional alignment pipeline, and we specified 

READ_MQ=1. TCR realignment was performed after the initial analysis, and this did not affect 

the set of cells classified as thymic hematopoietic cells. 

 

In silico isolation of wild-type thymic hematopoietic cells E12.5-E16.5 

Quality control and thymic hematopoietic isolation were conducted using the R language 

(https://www.R-project.org/) and the package Seurat41 (http://www.satijalab.org/seurat). The 

main goals for quality control were to verify exclusion of female embryos; to exclude empty 

droplets; and to deplete cell doublets. Only male embryos were analyzed to avoid biological 

confounding by sex. To remove empty droplets, we excluded any cell expressing less than 

1000 genes. We also excluded any gene expressed in less than 10 cells. Doublet depletion 

was carried out, followed by isolation of the thymic hematopoietic cells. Both steps used 

unsupervised machine learning. 

For doublet depletion and thymic hematopoietic cell isolation, we used two pipelines that differ 

only in their final steps. Each began by compensating for variation due to the cell cycle. For 

each of five cell cycle phases (IG1.S, S, G2.M, M, M.G1), scores were computed by averaging 

expression within each cell over a set of genes found in the second workbook of table S2 from 

a reference42. Seurat's RegressOut function was used to replace expression levels with 

standardized residuals from linear regressions (one per gene). In each regression, 

http://mccarrolllab.com/dropseq/
http://mccarrolllab.com/dropseq/
https://paperpile.com/c/sR54Wx/DrKCz
https://paperpile.com/c/sR54Wx/0w0Cw
https://paperpile.com/c/sR54Wx/bVsii
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observations are cells; the response variable is log-normalized expression; and the covariates 

are the five cell cycle scores. After cell-cycle correction, we enriched for informative genes by 

applying Seurat's MeanVarPlot function (with x.low.cutoff = 0.1 and y.cutoff = 0.5). Principal 

components analysis (PCA) was run on the selected genes using as features the normalized 

residuals from RegressOut.  

The first difference in the two pipelines occurs after PCA. For doublet removal, the top 20 

principal components (PCs) were used as input to Barnes-Hut t-Stochastic Neighbor 

Embedding (tSNE). DBSCAN was used to isolate and remove outlying cells and clusters 

showing markers from multiple cell types. In DBSCAN, the t-SNE embedding was used as 

input, and the parameters were 1.1 (neighborhood size) and 5 (minPts). In total, 52 putative 

doublets and 80 outlying cells were excluded from downstream analyzes. 

For isolation of thymic hematopoietic cells, the entire process up to PCA was repeated after 

doublet depletion. Clustering was then carried out using Seurat's FindClusters function, which 

applies a variant of the Louvain algorithm43 to a shared-nearest-neighbor graph constructed 

in the principal subspace (20 PCs, resolution 0.5). Results were visualized as before via tSNE. 

Six contiguous clusters were manually labeled as thymic hematopoietic cells based on 

expression of known markers. Different parameter choices for variable gene selection and for 

the number of PCs were explored and results remained qualitatively consistent.  

 

In silico isolation of E17.5-P0 wild-type thymic hematopoietic cells and E14.5 Rag2 

knockout thymic hematopoietic cells  

The thymic hematopoietic cells from these later time points were aligned following the same 

procedure. Data were filtered for at least 1000 genes per cell, but the requirement was relaxed 

to at least 3 cells per gene due to the smaller total number of cells. No doublet removal was 

attempted. Thymic hematopoietic cell isolation was performed via the pipeline described 

above using x.low.cutoff = 0.1 and y.cutoff = 1.2 for gene selection, 25 PCs, and the Louvain 

algorithm with resolution 0.5. Two clusters lacked Ptprc and expressed thymic stromal 

markers, and these were manually removed. Different parameter choices were explored for 

variable gene selection and for the number of PCs; relabeled results remained relatively 

robust. Wild-type cells were processed together and Rag2 knockout cells were processed 

separately. 

 

In silico isolation of E16.5 Rag1 knockout thymic hematopoietic cells  

For whole-thymus samples from Rag1 knockout embryos, the same alignment, quantification, 

and quality control steps were performed (>1000 genes per cell, >3 cells per gene). Cells were 

classified by k-nearest-neighbors (k = 25) after projection into a 20-dimensional principal 

https://paperpile.com/c/sR54Wx/7SJd2
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subspace, with both PCA and classifier trained on the E12.5-E16.5 wild-type data. Cells 

classified into any of the six thymic hematopoietic cell clusters were retained for analysis. 

 

Preparation of pseudodynamics input from thymic hematopoietic cell transcriptomes 

See also (Supp. Note 3 sec. SN3.2.2) and (Supp. data 1.2, 1.3). We fit diffusion pseudotime 

with one branching point to the union of all lymphocytes from all samples with scanpy44 (k = 

100, knn = False) (diffusion map A). We classified the resulting four groups of cells based on 

markers genes as progenitors/intermediate cells, T-cells, non-conventional lymphoid cells 

(NCL) and putative myeloid and dendritic cells (Supp. Fig. 3-5). We discarded the putative 

myeloid and dendritic cell group to obtain a data set that contains a single branching between 

the  αβ-T-cell lineage and the NCL lineage and fit a new pseudotemporal ordering on this data 

set with scanpy (k = 100, knn = False) (diffusion map B). We defined the allocations of cells 

to branches and the branching region in diffusion map B based on pseudotime coordinates 

and diffusion component 1 and 2 coordinates. We repeated the workflow from diffusion map 

A to diffusion map B separately for the wild-type only and the wild-type with knock-out samples 

data sets. We discarded the putative myeloid and dendritic cell group and the NCL group from 

diffusion map A to obtain a data set that contains no branching and only the T-cell lineage 

(used for monocle2-based cell state coordinates6). 

 

Preparation of pseudodynamics input from pancreatic β-cell transcriptomes 

See also (Supp. Note 3 sec. SN3.2.3) and (Supp. data 1.4). We fit diffusion pseudotime with 

no branching points to all pancreatic β-cells from all time points with scanpy44 (k = 30, knn = 

False). We obtained total β-cell population size measurements for mice at ages P10 and P45 

(via extrapolation from counts in cross-sections) from Herbach et al.28. We generated rough 

estimates in the same fashion for E17.5, P4, P9 and P14. We extrapolated our P9 and P14 

observations with a linear model to P10 and used the relative difference to the P10 observation 

from Herbach et al. as a scaling factor which we applied to all of our observations. We note 

that such cell counting is very laborious and we therefore restricted our data collection to 

relative counts which we scaled to the accurate data of Herbach et al.. The state-dependent 

model parameter 𝑔s as a function of time 𝑔s(𝑡), shown in Fig. 6c, is the integral over the product 

of the density at a given time point, and the birth-death parameter spline with respect to cell 

state 𝑔s(𝑠).  

𝑔𝑠(𝑡) = ∫ 𝑢(𝑠̅, 𝑡)𝑔𝑠(𝑠̅)𝑑𝑠̅
𝑠𝑚𝑎𝑥

0

   (24) 

 

Mice for pancreas study 

https://paperpile.com/c/sR54Wx/msEEL
https://paperpile.com/c/sR54Wx/gSY4G
https://paperpile.com/c/sR54Wx/msEEL
https://paperpile.com/c/sR54Wx/SLMRP
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For pancreas dissection C57BL6/J mice were sacrificed at each of the tested developmental 

stages. 

 

Cryosections of pancreas 

The dissected pancreas was fixed in 4% paraformaldehyde (PFA) for 2-24 hours at 4 °C. After 

fixation, the tissues were cryoprotected in a sequential gradient of 10% and 30% sucrose in 

PBS (1-2 hours each at room temperature). Next, the pancreas was incubated in 30% sucrose 

and tissue embedding medium (Leica) (1:1) at 4 ºC overnight (O/N). The pancreas was 

orientated in an embedding mold, frozen using dry ice and stored at -80 °C. Cryosections were 

cut into 20 µm sections using a cryostat (Leica), mounted on a glass slide (Thermo Fisher 

Scientific) and dried for 10 min at RT before use or storage at -20 °C. 

 

Immunostaining of pancreatic cryosections 

Cryosections were rehydrated by 3 times washing with 1X PBS, permeabilized with 0.2% 

Triton X-100 in H2O for 15 min and blocked in blocking solution (PBS, 0.1% Tween-20, 1% 

donkey serum, 5% FCS) for 1-2 hrs. Afterwards, the sections were incubated with primary 

antibody in blocking solution at 4 °C overnight. Prior to the incubation with secondary 

antibodies in blocking solution the sections were rinsed 3 times and washed 3 times with 1X 

PBS. Finally after incubated for 3-5 hrs with the secondary antibodies, the sections were 

stained for DAPI (1:500 in 1X PBS) for 30 min, rinsed and washed 3 times with 1X PBS and 

mounted by Elvanol. Confocal pictures were taken using a Leica DMI 6000 microscope and 

LAS AF software. For all quantifications, the sections were ≥ 100 µm apart. The primary and 

secondary antibodies used are listed Reporting Summary. 

 

Microscopy & analysis of pancreatic cryosections 

The acquired images were analyzed using Leica LAS AF software and/or Image J software. 
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