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1 Overview over the mathematical analysis

1.1 Data driven modeling

We summarize the considerations made in the main text. The starting point of our considerations is
the observation that the number of votes per party satisfies approximately a log-linear dependency on
the party’s rank. The slope of this log-linear relation seems to be rather independent of the number
of voters: If we inspect the parameters of the linear model, we only find the intercept to vary with the
size of the group. The slope is fairly constant. That is, we expect that the mechanism is the same on
different levels of organization (city, state, country).

The decision process leads to group formation — we identify the voters of a given party with one group.
This process inherits, of course, stochasticity. That is, if we consider any partition of the population,
the resulting decomposition has a certain probability to meet the “true” decomposition, observed in
elections. As the data indicate that the slope is basically independent on the size of the organizational
unit, we expect that the fundamental ruling mechanisms are fairly independent of the population size
(number of voters). Even more, if we first take a subset of the complete population (the voters in
Bavaria, say), and the a subset of the subset (the voters in Munich), yields the same result as if we
directly take the small sample (Munich). In statistics, this property is known as sampling consistency
condition [9, 8]. The probability measures that exhibit the sampling consistency condition are well
characterized: they can be constructed by the so-called paint ball process [9]. One distribution out
of those is especially famous: the Ewens sampling distribution [5, 4]. This distribution has many
applications, in particular in population genetics [3], and moreover, can be generated by a stochastic
process — the infinite allele Moran model with mutations.

We adapt the infinite allele model in the context of opinion formation of voters (see Figure 1). Let us
consider a population of n voters — non-voters are neglected. Each voter is a supporter of a proto-party.
The difference between a party and a proto-party becomes clear below, by now we may identify the
two terms. Voters change their opinion in the following way: a randomly selected voter thinks over
his/her opinion. With a certain probability v, he/she stays with his/her opinion. With probability
1 — v the person is prepared to change the proto-party he/she is supporting. If this is the case, this
person either constitutes a new proto-party with probability u, or selects randomly one person of the
population and adopts the opinion of that individual. If the last supporting voter of a given proto-
party changes his/her mind such that this proto-party has no supporters any more, this proto-party is
dissolved. In particular, no political aims or believes are involved in this model — it is a model neutral.

In the long run, the stochastic process approaches its invariant measure. There is some kind of
equilibrium for the number of proto-parties (a distribution), and each individual is the follower of a
proto-party. In an election, however, proto-parties that are too small will not stand for election. Only



arandomly chosen person rethinks his/her opinion the person joins a party

77?7 -

“o--lZ0 =7 [probability v
/:::::::;\:‘ ///:;;:::::;\:‘ 7;;/

Proy,
ap, i,
o

a new party is founded

a party is liquidated if the last supporter leaves in an election, parties that are too small are not present

;\ : “ “\

277

-

Figure 1: Scheme of the model.

proto-parties with a supercritical number of followers ng become parties. It turns out later that the
relative critical size z = ng/n is even more handy parameter. Followers of a subcritical proto-party
give their vote to another party, where that party is selected proportional to its size. We call this
model the voter model with party-dynamics.

The voter model with party dynamics and ng = 0 is equivalent with an infinite-allele Moran model
with mutation. It is well known that the resulting composition structure follows the Ewens sampling
formula, which has only one parameter # = 2un/(1 — v), the rescaled party-constitution rate (or the
rescaled mutation rate in the context of population genetics). Our model has one additional parameter:
the threshold z € (0,1). All individuals in groups with a size smaller ng = zn are distributed to the
groups with size larger or equal zn.

2 Invariant measure of the model, Ewens Sampling Formula

2.1 The Ewens Sampling Formula

We recall some basic facts about the Ewens Sampling foprmula. The Ewens Sampling Formula is a
probability measure that describes partitions of a set (population) of size n. The Ewens Sampling



Formula is appealing in that this probability measure is generated by the invariant measure of the
infinite allele model, that is, of a mechanistic and interpretable process. If zy = 0, this process is
identical with our voter model with party dynamics.

Let us first consider the original Ewens Sampling Formula. In a sample of size n (given), we observe
K groups (K is a random variable). The sizes are given by ay,...,ax. Let ¢; denote the number of
groups of size 1, co the number of groups of size 2, etc. The partition can be characterized by the
vector of frequencies C' = (c1,...¢,), where n = > " ;ic; and K = > | ¢;. The Ewens Sampling
Formula states the probability to observe a given partition structure C'. Mostly, it is parametrized by
a scaled mutation probability 6, and can be formulated as (e.g. [4, page 22])

Cr~(W1,... Yo iYi=n) (1)

where Y; ~ Pois(6/i) are independent Poisson random variables.

In our application it will be interesting to condition the distribution on the number of groups [4,
chapter 3.1}, [11], [6, chapter 9.5]. Note that the number of groups K = K(C) = ), ¢; is a random
variable. Then,

Hk
P(K = k|0) = -— |S}] (2)
On)
where S¥ are the number of permutations of {1,...,n} with exactly & cycles. The Ewens Sampling

Formula reads (k = ) ¢; in the given realization)

P(C|0) = n ﬁ 0/5)9 _ n! o ﬁ (1/5)%

Q(n) =1 Cj! 9(n) =1 Cj!
Therefore,
B _ P(cr,...,cn and K =k|0) P(c,...,cql0) 1/]
PCI9, K =k) = P(K = k|9) ~ P(K =kl|0) \Sk| H

In a slight abuse of notation, we define for a; > 0, > a; >0
Multinom(n, (ay, ..., am))

to denote the multinomial distribution with n trials, and p; = a;/ 27:1 a;. If we compare the result
above with the probability function of a multinomial distribution, we conclude

(C|K = k) ~ Multinom(k, (1,1/2,...,1/n)) ’ ch =n. (3)

2.2 Invariant measure of the model

In our model we know the number of parties before the election takes place. That is, the natural
parametrization of our model uses the minimal group size possible ng = |z n|, the population size n,
and the number of observed groups K (that is, groups with a supercritical size, a; > |zn]). The aim
of the present section is to show that, conditioned on these parameters, the invariant measure of our
model can be well approximately by a multinomial distribution.



In our case, we are only interested in groups with size above the critical group size ng. For the random
variable C' = (cq,...,¢,) define

n n no—1 nog—1
Ky =K(C)=> ¢, N =N(C)=)> ic, K =) c=K-K;, Ny=)Y ic=n-Ny.
i=ng i=ng i=1 i=1

Furthermore, we define the projections
IMy(eryeoyen) =(0,...,0,¢Cngy o), _(c1,...,¢n) = (C1y..- Cng—1,0...,0).

Our ultimate goal is an approximation of the distribution of I (C')|0, K. If we do not only condition
on K and K, but also on N, then

n
E 1C; = N4

1=ng

(I (C)|K =k, Ky =k, Ny =ng) ~ Multinom<k+, 0,...,0, 1/n0,...,1/n)>

Note that the r.h.s. does not depend on K any more. Thus, we may drop the condition on K,

n
g 1c; = Ny

i=ng

(I (C)|Ky =ky, Ny =ny) ~ Multinom<k+, 0,...,0,1/ng,..., 1/n)>

If Ky = ky is fixed, we have a hierarchical model: We obtain a conditioned multinomial distribution for
I, (C)|0, Ky = ky, Ny = ny, where 6 does not appear directly any more; however, the distribution
of N depends on . That is, n4 can be considered as a hyperparameter with a given (f-dependent)
distribution. In that, the situation is somewhat similar to that before: if we observe all groups, the
distribution of C|#, K only depends on 6 via the distribution of K. Also (3) can be interpreted as an
hierarchical model with hyperparameter K, which has the distribution indicated in (2).

In order to infer the distribution of N, we note Ny = n—N_. Next we use (see [4, Theorem 1.19], [1])
that for n large, approximately ¢; ~ Y;, where Y; ~ Pois(6/i) are independent random variables. Note
that in this step some heuristics are involved, as this theorem is only true for i fixed and n — co. For

n large we have approximately
no—1 nog—1

N_~ Y Y;~Pois( Y _ 0/i).
=1 =1

Note that this Poisson random variable may attend arbitrary large numbers, such that in this approx-
imation N4 < n is not always given. However,

no—1

E(N_)~ Z 0/i =~ 0log(ng).

i=1

This argument indicates that the hyperparameter NV, can be represented as n — N_, where N_ has
a Poisson distribution with expectation O(log(ng)). Thus, for n large, N; ~ n, and we find in this
sense

Z ic; =ng. (4)

1=ng

(M4 ()10, K+ = ky, Ny =n) =~ Multinom(ky, (0,...,0,1/ng,...,1/n))

This statistics can be reformulated in a handy way if the underlying urn model for a multinomial dis-
tribution is considered. We return to the group sizes (ay, ..., ay, ); recall that the sample configuration



C = (Cngs---+Cn) is computed from a realization of (a1,...,ar, ). We define i.i.d. random variables
Xo, L €{1,...,ky}, with values in {ng,...,n} where

P(X, =1i) = c/i, (5)

and, as before,
=Y i~ In((n + 1)/no) ~ In(1/2), (6)
i=ng

then
ky
(a1, ax)| Ny =n ~ (X1,..., X)) | D Xe=n, (7)
/=1

The approximate distribution of configurations (II;.(C)|0, K+ = k4, Ny =n) given in (4) is identical
with the distributions of configurations generated by (a1, ... as, ) defined in (7). The invariant measure
of our dynamic model, the voter model with party dynamics, is well described by the construction (7).

2.3 Rank statistics — unconditioned case

In this section, we derive an expression for the expectation of the size ratio of subsequent groups
(ordered according to their rank), respectively about the expectation of the logarithm of the group
size. Here we do not condition on the total population size. That is, we consider K independent
realizations X7, ..., Xk of i.i.d. random variables that assume values in {ng, ..., n}, where 0 < ng < n,
P(X; = j) = c¢/j for j € {ng,...,n} and 0 else, ¢! = PR, 1. We order these realizations
according to size X(1) < X(9)... < X(f), and investigate FE(X(,41)/X(y)) respectively E(In(X (1))
The central result of this section is the independence of that expectation w.r.t. £ for n large:

Theorem 2.1 Let § = K/In(1/z). For € {1,..., K — 1} we find

1 n In(1/2z)0-1
Tim B(X(0)/X) = G0,2)=1+0 / C—;) (Lﬁg;) dy. (8

That is, the expectation of the quotient of subsequent group sizes is constant in the rank. The next
proposition indicates that E(X1)/X(y) only depends weakly on z (for 2 small) if 6 is larger one
and kept fixed.

Proposition 2.2 We find for 6 > 1 that
. 0
For the logarithm, we obtain the following theorem.

Theorem 2.3 For{=1,--- , K, we find
E(In(X(p41)) — log(n))

-5 L0-8E) () (i) e

J
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n—oo
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=)

This theorem indicates that the logarithm of the population size does not exactly depends in a linear
way on the rank ¢, but only approximatively.

We prove the theorems resp. proposition in the next sections.



2.3.1 Order statistics

As a first step we obtain P(X (¢) = 1), based on the well known formulas for the distribution functions

of order statistics.

In the following, we use the convention that a sum extending from a to b with a > b is zero, in

particular

Proposition 2.4

n n

P(Xqy=1i1) = Z - Z

Cc
=)

o= = SEON(E:) ( ) [ (E) e

m=11+1

1=11 J= )

K
Proof: Since P(X, >i1) =)', c/ifor £=1,..., K, we have P(X(1) > i1) = (Zﬁ; E) and

P(X(l) =) :P(X(l) >iy) — (X(l) >i+1)= Z* — Z
=11+

Jj= 21 Jj=t
Furthermore, we find for the ¢’th order statistics X

P(X >1i) = P(at most £ — 1 realizations are smaller i)
l

/-1

Jj=0 J]= w=ngo

- 3 (S <oy pn =0 () (5 ) (Zm)



Hence, by means of Taylor expansion we obtain

P(Xy=1i1) = P(Xq>4)—PXy >i1+1)

(ill 1>j (f: 1>Kj (f: 1>j < zn: 1>Kj
w “m w - m
w=ng m=u1 w=ng m=11+1

J
-1 i1—1 J n K—j i1—1 J n K—j
K 1 1 1 1 1 1
_ K - i _ -4 § il
7=0 w=no m=i1+1 w=ngo m=i1+1
_ - J K—j K—j—1
S (VS L) [(ss L) aEsi s )
a J w - m i1 - m
j=0 w=ng m=i1+1 m=i1+1

i1—11 J . i1—11 J—1 n 1 K—j

£ 4B (£ e
w=ng w=ng m=11+1

(z‘l—l 1 J-1 no K—j—1
2:) (27)

w=ng m=i1+1
i1—1 1 n 1
uea (S 1)-i( 3 5)]} e
w=ng m=i1+1
K /—1 i1—1 jfl n K_j_l il—l
c K 1 1 1
- - = K - a1 .—2
SO (h) [x(xh)-sproun
7=0 w=ng m=i1+1 w=ng
d
Therewith, we find
K K
B(Xq) = > i HE P
i=ng =i j=ir1?
K K K
S [ e s e[ s (e
1=ng Jj=t J i=ng Jj=i+1 J i=no Jj=i+1 J

= o +| Y f:f. (11)

i—no  \j=it1”/

where we used that >3, ¢/j=1and 3% . ,(...)=0.

Let us introduce some more notation. Denote by X (y).;,y n, i the random variable as introduced above;
the additional indices characterize all parameters of the random variable.

If we condition on X1y =41, then X(y),..., X (k) is the order statistics of K —1 random variables with
values in i1,...,n. That is, we obtain realizations X(g),..., X(g) by determining K — 1 realizations
of random variables Y; with values in 41,...,n, where P(Y; = j) = &, »/j. Here, as before, é;lln =

S . 571 Then,

Jj=i1

(Xe2), - X)Xy =11 ~ Yy, -, Yik-1))-

7



In particular,
X@ymom, K1 X(1momxk =11~ X1y m, k-1

and, similarly, for £ =1,... K — 1,
X(e+1)imo,m, K 1 X (@mon =11~ X(1yiyn -0 (12)

2.3.2 Size ratio

Before we come to the point where we investigate limy, oo F(X(g41)/X (@)), we first indicate two alge-
braic relations. All computations below are not deep, but lengthy and involving. We do all calculations
step by step, even the completely trivial parts that are most likely unnecessary for trained readers.

Proposition 2.5

-1
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Proof: This proposition is a consequence of Pascal’s identity. First we note that
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Proposition 2.7

Jim E(X(p41)/ X)) =1

) ) -1 B 1/2-1 In(u+1) K=t w1y ()1 In(1/2) ¢
- ww e [ (Sws) a e W

Proof: As X(€+1);no,n,K|X(€);no,n,K =1i1 ~ X(1):i;n,K—t, We have (cim = (h; r~H=1

“ 1 . .
E(X@i)/X@) = BEXen/XelXe) =, EE(X(K—H)‘X(Z) =i1)P(X () = i1)

11=n0
"1
= . ~EX i) P(X) = 01)
11=n0 1
K—¢
n 1 n n Cinm
S >R D 5N B S TA I | PEEREN
1 — = J
i1=ng =11 Jj=i+1
n n n K-t
1 c
RN Sk 1 Dol B o) I PR,
i1=ng =11 Jj=i+1 J

Hence, with proposition 2.4,

E(X(g+1)/X(g)) —1

-EESa(Ey) OIEY (297

7=0t1=ng i=11 7'=i+1 w=ng m=t1+1
i1—1
1 1 1
x| K — —jec ! —O((7 3| <.
(5 )t

Introducing y = i/n € [w=!, 1], w = i1 /n € [z, 1], we find for n large

n Ciun In((n+1)/7) 1y In(1/y) ol

j,z;ﬂ i ln((n+1)/i1)+0(1) 1n(1/w)+0( )
i1—1 .
> 5 = Il = 1/m)+ 0 = (P 4 06 = ) + O )
3 % — (/i1 + 1))+ OGTY) = In(1/w) + O(n™)

m=1i1+1

As ng = |zn], we note furthermore (see eqn. (6)) that lim, o ¢~ ! = lim, o In(n/ng) = In(1/z). In
the equation F(X(41)/X(s)) — 1 we recognize two nested Riemann sums; for n — oo, we find that

10



these terms converge to nested integrals

i B(X 1)/ X )

J 1In

_ / / In( 1/2 G;(( //w)))K_g <§(> In(w/2) ! ln(l/w)K_j_1<K In(w/2) —jln(l/z)) dy dw
K—¢

(
(

(1/w)=9 1

= Z< >K1n 1/2) /Zln(l/y) - /Zyulenw/a(

In(w/z)7~" In(1/w)K—3-1

In(1/w)K-¢

j=0
jzl(K)gln(l/z) w [ [
/—1

1/ w)K—t

dw dy

dw dy

= K> K In(1/2)” / In(1/y)%~* /y % In(w/z) In(1/w)* 7~ dw dy

z z

z

Now we transform the integrals: Let y = z(u + 1), then

E(Xu1y/ X))

- +Z( >Kln1/z) /01/211n<z( >

/-1

Z( )Jln 1/2) K“/Ol/z_lln(Z( )

J=

And next, let v = w/z,

E(X 1)/ X @)
1

z

g
[

> 1( )J in(1/2)71 (1)< /yufz In(w/z) " In(1/w)" 9 dw dy

z(14u)
1 n(w/z)? n(1/w)7~tdw du

(1+w)
In(w/z)’ "t In(1/w)* 7~ dw du.

= 1+Y K) K In(1/2)K /01/Z1h1< ! >K€ /jﬂvz (vl In(1/(z0))" 7 dv du

z(u+1)

z(u+1

0
R <K> j In(1/2)~ K+ /0 K <(1)>K4 /1 Hu; (oY1 In(1/(z )~ dv du

= 1+ Z (?) K 111(1/2:)—5/01/Z_1 (1 - W)K_e /11+u U% In(v)? In(1/(zv))* " dv du

-1

In(1/2)

=1

<.

=0
( >j In(1/2) —6+1 /Ol/z—l (1 B ln(u—i—l)) K—¢ /11+u1;[2 In(v)/~! ln(l/(zv))g_j_l do du.

We expand In(1/(zv))*7~! = [~ In(v) + In(1/2)]*7~!, and collect terms with equal powers of In(v)

and In(1/z): If we use the abbreviation

B In(u+1)
4= (l ~ (1/2)

11

)



-1 1/z—1 1+u . .
_ Z IJ() Kln(l/z)_f/ ARt /1 1)172 In(v)’ ln(l/(zv))é_]_l dv du

7=0
Sl 1/z—1 14u | ‘ .
- < .)j ln(l/z)_“l/ AK=E / — In(v)’~! In(1/(z )" tdv du
, J 0 1 v
7j=1
-1
= <K> K In(1/2)7* x
=0\
1/2—1 1+u g1, , .
" ‘“g/‘z§<iic ilqumwmmuwﬂlm>mmeu
0 1 m=0

~ Z:I <I;) JIn(1/2)~1+ x

1

{—j—1

S

1/z—1 1+u 4 . )
% / AK— / % ( (E J 1) (=)™ In(v)™ ln(l/z)e_]_l_m) ln(v)j_1 dv du
0 1 v m=0 m
Z—l z— u
RO
; J 0 1

l—j—
> (Z_J - 1) 1) In(v)™ ln(l/z)_j_l_m) dv du
¢

j 0
-1 1/2—1 1+u J ) )

- <K> j / AR / 1 (Z (Z ) 1)™ In(v)m 71 1n(1/z)—ﬂ—m> dv du
=0 J 0 1 0

1
By n = m + j, we re-order the sums, noting that

1

(=1 6—j—1 -1 n
Z term(j,m) = Z Z term(n — m, m)
7j=0 m=0 n=0m=0

Therewith,
E(X(41)/ X)) — 1

S (-ym <n f(m> (e —(n ;Lm) - 1> K /0 Y e /1 e () 1“521/ D7 e du

O oy [ e [TROITROT

m v?

(
<g - ;L— m) — 1) . /Ol/z‘l Kt /1”“ 1n(v)“v1;1<1/z)£ dv du
(
(

m=0
=2 n —(n—m) — 1/2—1 1+u n(v)” In > —n—1
e S ) (T e [ e [ R
n=0m=0
{—1 n—1 (n—m) — 1/z—1 1+u n(w n—1 n 2\ N
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SR (Y (e [ e [ b,

Zn: (—1)™ (n f(m> (E —(n ;m) B 1) K /0 TS /1 (o) 1“521/ 7 du

n=0 m=0

With propositions 2.5 and 2.6 the result follows.

Now we are in the position to prove theorem 2.1.
Proof: [of Theorem 2.1] We start off with

E(X 1)/ X)) — 1

L e [N (et DY () n(1/2)
IR E)(K‘j’/o <1‘1n<1/z>> / 02

(/=) T, o [ It )\ )
- 1L D -R) e

If we focus on the inner integral, we find (v = In(v), dv = 1dv, v = ¢")

1+u hl(U)g_l In(14u) o
/1 2 dv = /0 vVole ™ dy = (0, In(1 4 u))

-2 Z(—Um(ni‘_ m) (ﬁ— (n+;ln— m) —1> (n+1—m) /01/“ Kt /11“‘ In(o)" 1][11521/,2)‘”‘1

dv du

dv du

where y(n, ) denotes the (lower) incomplete I" function. In particular, y(n,z) = (n—1)y(n—1,2) —

2" L e™. Thus, for £ > 2, using partial integration in the 4’the equality,

E(X @41/ X)) —1

B In(1/z)~* = LY In(u + 1) K=t rltu In(v)*1
R HO(K‘”/O -Sm) [ e

In(1/2)~¢ ‘o

. 1/2—1 ln(u+ 1) K¢
(€—1)! jI:[O(K‘J) /0 (£, In(1 +u)) <1 - ) du

In(1/2)

_ -2 o —(t=1)
_ _(/mH [Tk —3) /1/ lfy(ﬁ,ln(l—i-u))(l—i-u)i (1—ln(“+1)>K Y
0

(¢ —1)! o du In(1/z2)
In(1/2)~¢+1 =2

1/z—1
— - H(K_j) /0 <’y(€,ln(1 +u)) +

=0

(14 u)?

(0 —1)! In(1/z)

In(u+1) K=(=1)
In(1/2) ) du

ln(l/z)*“*l) =2 . 1/2—1
(e H(K_j)/o A= 1,10(1 + u)) <1_

3=0
= E(X@/X@-1) -1
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In(1 +u) (1 + u)> (1 B lrll(i(ﬁl—/i- ?

_ }9£11§2:ff1 s o 1/z-1 B B _In(u+1) K—(£-1)
- Jl_Io(K J)/O <(€ 1)y(¢ 1,ln(1+u))) (1 > du

K—(t-1)
> du



Per finite induction we find that E(X (/X 1) is independent off £ (for those £ that are feasible). If
we take ¢ = 1, we have (y = 2(1 +u), 0 = K/In(1/z))

K 1/2—1 In(u + 1 K-1 I+u q
B(X/Xw) = 1+ a7 /0 <1—1IE(JZ))> /1 5 dv du
- K Vel In(1/(z(1 +u))\* ! - du
= 1+ln(1/z)/0 <z z(l—l—u)> < m(1/2) ) d

- [(23) () T e

]
2.3.3 Limit z — 0
We expect this expression mainly to depend on § = K/In(1/z). That is, our formula reads
1 In(1/2)6—1
1 1 In(1/y)
E(X X = G(0 = 1446 - — = d
( (€+1)/ (f)) ( 72) + /; <Z y) < 11’1(1/2’) Yy
In order to discuss the dependencies of G(0, z), we keep 6 fixed and take the limit z — 0.
Proposition 2.8
lim G(0,z) = 0 (14)
aho T T

Proof: We use the transformation y = z(1 + u), and w = In(1 + u), and introduce x = In(1/z2):

1 In(1/z)0-1
im [ (L-1) (O dy
=0/, \z y In(1/z)

= lim v 11 In(1/(2(1 + w))) In(1/z) 6-1 »
= z—=0 Jo z Z(l + u) ln(l/z)
1/z=1 In(1/2)6-1
= lim v [y tw "
z—0 J 14w In(1/2)
: v w w\ zo-1
- :clggo 0 (e —1) (1 - ;) dw

In order to compute this limit, we first note that {(u) = In(1 — u) + u/(1 — u) has the derivative
('"(u) = u/(1 —u)? > 0 for u € [0,1); since ¢(0) = 0, we have ((u) > 0 for u € [0,1). Since
21— w/z)* = (1 —w/z)*¢(w/z) >0, we have 0 < (1 — w/2)* < e, and (1 — w/z)® tends in a
monotonously increasing way to e~ ".

Next we note (recall that 6 > 1)

X x 6 xT oo
lim sup/ (e’ —1) (1 - E) dw < limsup/ (e —1) e % dw = / (e¥ —1) e % dw < co.
0 x 0 0

T—r00 T—r00

Furthermore, for any g € R, we find

x z0 o z6 o
lim inf/ (e —1) (1 — E) dw > liminf/ (e’ —1) (1 — E) dw = / (e¥ —1) e~ dw.
0 0 0

T—00 €T T—00
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Figure 2: Convergence of G(#, z) (solid line) to G(#,0) (dashed line) for § = 1.5. Note the logarithmic
scale of the z-axis.

As [0 (ev —1) e dw  — IS (ev —1) e "dw for g — oo, we conclude that
Jo (e —1) (1— %)xe dw converges to [ (e — 1) e dw.
Last, we consider the limiting behaviour of

T w L w —1 B z w w\ z (0—¢) w\Ex—1
/O(e _1) (1—;) (1—5) dw—/o (e¥ — 1) (1—5) (1—5) dw.

Let € > 0, s.t. # —e > 1. For x large enough, ex — 1 > 0 and (1 — %)ax_l < 1. With the argument
from above,
z x 6 -1 00
lim sup/ (e¥—1) (1 - E) (1 - E) dw < / (e —1) e~ 02w gy,
T—00 0 T x 0

Since this inequality holds true for any € > 0, we can take ¢ = 0. The estimate for lim inf from below
relies on the same argument as before: for zp € R fixed we have

it [ =1) (1-3)" (1-3) @
> liminf/or0 (e —1) (1—3)1‘6 (1_E>_1 dw:/oro (e¥ —1) e % duw.

T—00 X x
Hence,
z 0—1 00 1 1
tim [ -1 (1-2) dw= [Ty an = -
=00 Jo x 0 0—1 0
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Forn>1and z < 1 and § = K/In(1/z), we have

E(X@)/Xw) = 57 (15)

From this result, we conclude that E(X41)/X(,) mainly depends on § = K/In(1/z); however, the
convergence of G(0,z) to G(6,0) is rather slow (see figure 2). If we parametrize the model with the
rescaled “party creation rate” 6 and the relative minimal party size z, the model is sensitive in # and
insensitive in z. It is only necessary to know the rough magnitude of z as long as we know 6 precisely.

2.3.4 Logarithm of the group sizes

Proof: [of theorem 2.3] Using proposition 2.4, we find

lim E(In(X(1)) —In(n)) = lim > In(i/n)P(X(y =1)

n—o0 .
i=ng
K K K K
) n ‘ n c n c ] n ‘ n c c c
S mEm (LG S| 2 F) 7 e w25 )~ {25
i=ng j=t Jj=i+1 i=ng Jj=t Jj=t
Note that Y7, $= O(n®). Taylor expansion yields
K-1
. L . Kc [&e Ly
nlggloE(ln(X(l)) —In(n)) = nh_)rgo In(i/n) Z > +O@G™7)
i=ng j=t
" [ " K-1
. , K & 11 TS B |
— nlgroloz In(i/n) i Tn +O0((i/n)7*) — ¢~
i=ng j=t

We recognize two nested Riemann sums, that converge to the corresponding integrals. If we use that
¢ converges to 1/1In(1/z) for n — oo, we obtain

lim E(In(X) —In(n)) = Kln(1/z) ¥ /1 In(z) (/: 1dy>K_1 dr = —K /li (ln(l/x)>K dz.

n—o0 . In(1/2)

For ¢ > 1, E(In(X/)) is handled in a similar way:

lim E(In(X(y) —In(n)) = Y In(i/n)P(X(y = i)

n—oo

= lim é}){ln(i/n)cz{:; (f){ (wii;;)jl <m§;+1 nlz) K=j-1 [K (wii; i}) —jc_l] } +(9(i_2)}

R ) () (e )
U

Note that E(log(X11))) — E(log(X(s))) is not independent on £, even for n large; the expectation of
log(X(¢)) does not depend exactly in a linear way on the rank ¢, but only approximately. The growth
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law of the group sizes can be better seen in the rations of subsequent groups than in the logarithm of
group sizes. However, for practical purpose, the difference of the linear growth law for the logarithmic
group sizes is negligible.

As as heuristic estimator for z we will use

B U1 /In(1/z)\*
E(In(Xq)) —In(n) = —-K /Z - (ln(l/z)) dx

We replace E(X(l)) by the minimal observed group size (to be more precise: by the minimal group
size predicted by a linear fit of the data), and infer from the relation above the parameter z. Though
we consider data that are conditioned on the total population (number of voters known), for practical
purposes this estimator works fine (see figures in section 7).

2.4 Rank statistics — conditioned case

Now we investigate the corresponding order statistics in the conditioned case: We consider K inde-

pendent realizations X1, ..., Xx of i.i.d. RV that assume values in {ng,...,n}, where 0 < ny < n,
P(X; =j)=c/jforj € {ng,...,n} and 0 else, where ¢~ = Z?:no 5. We condition on Efil X,=n

and order these realizations according to size X(1) < X(9)... < X(g). In order to distinguish the con-
ditioned and the non-conditioned random variables, let us denote the realizations with condition by

Xym < X@yn-- < XKy

The objects to investigate are E(X (4 1)n/X(0),n) and E(In(X ) ,))-

2.4.1 Joint distribution

Proposition 2.9 Let

K
Mg = {(’Ll,ZK)’TLoS’LlSn/K, iK:n*Ziéa
(=1

ji—1
o 1 ”Z. .
Zj—lsljgw<n—é_ll@>, ]:2,K—1}

and

K p(l-z)/(K=1) r(l-z1—22)/(K-2) (1-2255 25)/2 1 1 !
CK R / / / / ’ Wn—dm{_l--dxl .
z x1 T2 TR_1 1- 2421 Te 4 24

Then, for (i1,...,ix) € My, we have
1
P(X(yn =11, X(igyn = iK) = CKE P o).
Proof: The values that (X(1), < X2y -.. < X(x),) can assume is given by (i1, ...ix) € My with
K
My = {(ir, .. ix) |no <iy <ip... <ik, Yy ig=n},
/=1
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In order to obtain a conditioned realization, we may draw unconditioned realizations until the condition
is hit, and only accept those. Hence, the probability for an admissible value is proportional to the

unconditioned probability distribution:

. . 1
P(Xqy,=i1,... Xyn=ix) = C]] I
=1 "
The constant C' can be determined by
K
o= —.
(”Ll,...lK)GMK /=1
We characterize Mg better. For (iy,...ix) € Mk, we mey write
K-1
iK =n — Z ig.
/=1
Thus
K-1 1 K-2
i L e <k _ A
k-1 <ig=mn Z” 1K 1_2<n K_lzg)

/=1

We can proceed recursively,

1 K-2 1 K-3
k-2 <1ig-1 < 5 (n - iz) = ig-2<1ig-1< 3 (n — iz)
1

K—j—1
injflfinj < —H(n Z i€>

or

For i1, we obtain the maximal value given if all indices are equal, i1 < n/K. Hence,

My = {(il,...z‘K)|no§i1§n/K7 iK:”_ZW’

]—1
z’j—1<ij§K_j+1< lg) ,...K—l}.
(=1
Therewith,
= Z H n~K
(i1, ig)EMK 1_26 1 zg/n —1 ie/n
/K p(l—z1)/(K-1) p(l—zi—22)/(K— 2) (1-3K524,)/2 ) K1
xr2 TK—1 1_Z€ 1 1‘2 =1 Ty
=: (cKn
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O

In order to compute the constant cg, we can waive the order of x;. As there are K! possibilities to

order a vector (x1,...,7x) € [20,1 — (K — 1)20]¥, for symmetry reasons, we may write as well
1—(K-1 1-(K-1 K-1
cF = 1'/ ( )ZO.../ ( )ZO% Hid:ﬁxKﬂ...dmL
K! 20 20 1-— —1 Tt —1 Ly

Note that (X1, .., Xk )/n follows for n — oo a truncated Dirichlet distribution with parameters o; = 0;
while for the original Dirichlet distribution necessarily «; > 0 due to integrability conditions, the
truncated Dirichet distribution is also well defined for a; = 0.

2.4.2 Size ratio

We do not compute the expectation of the quotient for general K but only for K = 3. As discussed
above, the joint distribution of (X(), X(2)) is given by

€3
i1i2(n — i1 — i2)

P(X(l) = il,X(Q) = ig) =

respectively
. . C3

P(X(g) =i, X(3) = i3) = (n — i3 — i3) i2 43
where i 2 = n(l-z—= da

L ) ? |
Therewith,

1/3 p(1-2)/2 1 1/3 2(1 — 22)
‘ B o -2
o i B/xo) = [0 [0 gty aie= [t w (2 @

Furthermore,

‘ 1/3 p(1-o)/2 1
c3 lim E(X3)/X@2) = / / dyder =2In(2) =1+ — —2In(1/20 — 1).
20 x

n—00 x y? 20

Obviously,
Jim E(X(5)/ X)) # lim E(X(3)/X()-

The magnitude of both expectation are in the same range, though (see figure 3).

2.4.3 Logarithm of group sizes
Theorem 2.10 For k < K,

E(In(Xx)n)) — In(n)

UK p(l—a)/(K-1) p(1-e1—w2)/(K-2) 1-K22)/2 (s —1

1 2 TK-1 L= my @ oy %
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Figure 3: E(X()/X(1)) (solid line) and E(X(3)/X(2)) (dashed line) for K = 3.

and

E(In(X(xy)) — In(n)

/K p(l-z1)/(K=1) p(1-z1-22)/(K~2) (-1 22)/2 In (1 -yt xe) K-1
[ / - ) T L g
z x1 2

TR_1 1-— ZZZI Ty /=1 Ty

The proof consists of an obvious calculation. Particularly, for n large, E(In(X(),)) = In(n) plus a
term only depending on z, ¢, K, but not on n.

Though we see that, strictly spoken, there is no linear relation between the logarithmic size of groups
and their order, simulations indicate that the dependency is almost linear, even if K is small (see
figure 4).

2.4.4 Simulations

Direct simulations of X, /m in a naive way is costly for large n. The convergence of Xk)n /n to
the truncated Dirichlet distribution opens the way for a simple method to construct realizations. We
fix a population size of 7 = 10°t™, where m € Ny is the minimal non-negative integer to ensure
that zn > 5. Then, we draw K independent realizations of X as introduced in section 2.3. We
accept a realization if Zfi 1 X € [0.9757,1.0257]. In order to obtain (approximate) realizations for
population size n, we rescale n Xy /n. This algorithm is able to handle the populations sizes at hand
for the data we consider.

We know that the expected group size of the model does not exactly follow a linear log-rank relation.
We investigate the residuals of the data. In order to ensure that the residuals of the model do not
show a distinct trend (s.t. all trends in the deviance observed in the data come from a mechanism not
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Figure 4: E(log(X(y)) over £. Boxplot from 1000 realizations, line is a linear fit to the expectations
of E(log(X(y))); n = 1000, z = 0.03. Left:K = 4. Right: K = 10.
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Figure 5: Residuals from the linear fit for 100 runs. In each run, the linear fit and the residuals are
determined. Population size used is n = 10°, z = 0.0004. (a) Number of parties is fixed, K = 15, (b)
In each run, K is randomly chosen between 10 and 20. Only the residuals of the 11 largest ranks are
shown (largest rank at 11).

covered by the model), we simulate the residuals (Figure 5). In subfigure (a), the number of parties
is constant K = 15. In order to come closer to the residuals in the data (where the number of parties
can be different in each election), in subfigure (b) the number of parties is randomly chosen for each
realization. In both cases, the systematic bias is rather small, and does not play a role in comparison
with the systematic bias found in the data (Figure 2 in main text).

3 Sensitivity analysis for z

In order to obtain an impression about the influence of the model parameters, in particular the model
parameter z (as K and n are given explicitly in the data), we take the election in the Netherlands
(2017), and compare that data with model predictions, where we vary z (figure 6). We use these
recent data as the Netherlands do not have a threshold as the FRG, and in this satisfy the model
requirements rather well. As predicted by the theory, the simulated data are approximately linear in

21



the rank. If we inspect the lower panels in figure 6, we find that the maximum value is hardly affected
by z, but the maximum basically meets the observed data. The slope, however, is affected by z. In
that, if we vary z, we find a certain range where the slope and the maximum group size predicted by
the model agrees with the data; if z is too low or too high, we have a distinct difference.

This observation is also reflected by the distance of data with the simulated mean group sizes (figure 6,
top panel). We find that the distance of the mean from the data has a unique minimum; there is,
however, a certain plateau where the distance does not differ strongly from the minimum. Our heuristic
estimator (see section 2.3.4) for z does not meet the absolute minimum, but is in the acceptable range.

4 Model comparison: Election model versus linear regression model

There are different model comparison and model selection approaches available. Akaike’s Information
Criterion (AIC) [2] is a model selection criterion commonly used. The smaller the AIC the better the
model. Given data, from a purely statistical aspects, a model is better if the likelihood of the data is
higher. Clearly, a model with more parameter should be able to better fit the data. The AIC therefore
increases the score linearly in the number of parameters. If k is the number of parameters, and 11(z|6)
is the likelihood of the data given parameters, the AIC is given by

AIC =2k — 2 In(ll(x]6)).

The problem in our case is mainly that the likelihood is not available analytically. We need to
determine the likelihood numerically.

4.1 Approximate Likelihood

Assume we have an R¥-valued random variable (with C! density ¢). We can simulate this random
variable (draw realizations), but do not know the density ¢ explicitly. We have data & € RX, and
would like to know the likelihood of Z, that is, we aim to estimate the density of the random variable
at 2.

We draw m samples x1, ..., Z;,, and choose € > 0. Next, we compute the fractions of realizations with
a distance of at most ¢ from 2, and find

N N . #SCZ ﬂ?i—i‘ <€
P(‘X—$|’<E):/ o(x)dr ~ p(#)wg e, P(|X -] <e) ~ {zi |l | <e}

B () m
and thus (wg denotes the size of the K-dimensional unit sphere)

#izil ||z — 2] <e}

mwKEK

p(2) ~

A proof that this method converges for m — oo and € — 0 (in an appropriate manner) can be found
n [10]. Unfortunately, for K reasonable large (K = 30, say) the course of dimension requires n to be
very large, such that this approach is not feasible any more. A way out is to focus not on the complete
random vector x € R¥, but select 2 or 3 components, and only consider the marginal distribution of
these few components.

4.2 Test of the method with linear regression model

We take the data from the Netherlands 2017 (number of parties have been 28), and do a linear
regression,
log 10(X(;)) = a +bi + e
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Figure 6: Sensitivity analysis of the model w.r.t. the parameter z. Upper panel: distance of the mean
in the simulated data from the data of the Netherlands (2017). Vertical line indicates the location of
our heuristic estimator (see section 2.3.4). Panels below: Data (bullets) and boxplot of 100 simulations
of the model for indicated values of z.
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where e; are i.i.d., ¢; ~ N(0,0%). We find that
b=0.144, a=253, & =0.187.

If we focus on the marginal likelihood of components 4, 14, and 24 (small medium and large party),
we obtain analytically

likely =9.18.

a,b,5,(4,14,24)
If we run our algorithm (¢ = 0.05, sample size m = 10°), we obtain in three arbitrary runs the
approximate likelihood

approx.likeli; ; ( ¢ 9.24; 9.34; 8.16.

,6,(4,14,24)

The approximation seems to be rather reliable. We obtain the AIC of that model (3 parameters) using
the approximate likelihood,

AICapprow,regression,(4,14,24) = 1.55; 1.53; 1.80,
which is consistent with the AIC we find using the analytic likelihood

AICregression,(4,14,24) = 1.57.

4.3 Approximate likelihood of the election model and model comparison

In order to draw many realizations from the election model (given the minimal group size z, and the
number of parties K resp. number of voters n), we change the strategy to simulate. Above, the aim
has been to draw 100 independent realizations. By now, we need to draw thousands of realizations.
Therefore, we utilize the fact that the relative groups sizes X;/n (note that X; are not ordered)
tend for n — oo to a truncated K-dimensional Dirichlet distribution with parameters o; = 1 (SI,
section 2.4.1). Up to a multiplicative constant, the probability density of that distribution is known.
We can use a Metropolis Hastings algorithm [7] to produce (after a burn-in phase which we take to
1000 steps) a time series that is distributed according the truncated Dirichlet distribution. To decrease
the autocorrelation of that time series we only store every 10’th realization. These realizations are
then multiplied by n, and ordered to address the order structure in our election data.

As before, we consider the data of the election in the Netherlands from 2017. As before we focus on
a small (order number 4), medium (order number 14) and large (order number 24) party. For the
election model we find the approximate likelihoods (sample size m = 1e5, ¢ = 0.1, 3 runs)

approx.likelielection model,(4,14,24) . 168, 2487 2.02
corresponding to the AIC
AICelection model,(4,14,24) = 0.96; 0.18; 0.59.

In any case, if we compare with AIC,.cg ession,(4,14,24) = 1.57, we find that the election model is
superior. From the purely statistical point of view, this results is based on the numbers of parameters
used. The election model has only one parameter that is adapted to the data, while the regression
model has three parameters. The likelihood of regression and election model are roughly in the same
magnitude.

However, there is a second point, not considered by statistics: the election model is the consequence
of a mechanism, while the regression model is a purely phenomenological, generic model. While the
mechanistic model provides some hint why we observe the log-linear structure in the election data,
the regression model does not address such questions. It is an additional argument in favor of model,
that it is based on first principles on a microscopic level (which can be readily discussed) and that
these first principles yield on a macroscopic level the observed behavior.
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5 Visualization of Data

5.1 Data sources

The data for the election of the FRG (“Bundestagswahl”) can be downloaded from
https://www.bundeswahlleiter.de/en/bundeswahlleiter.html
We only take parties into account that can be vote for by second votes (“Zweitstimmen”).

The data for the elections in France can be found in
https://www.interieur.gouv.fr/Elections/Les-resultats

The data for the Republican primaries 2016 in the US can be found in:

Iowa caucuses: https://edition.cnn.com/election/2016/primaries/states/ia
retrieved from

https://www.iowagop.org/

New Hampshire : http://www.thegreenpapers.com/P16/NH-R

retrieved from

http://sos.nh.gov/2016RepPresPrim.aspx?id=8589957185

Nevada: http://www.thegreenpapers.com/P16/NV-R retrieved

from
http://nevadagop.org/nevada-republican-presidential-caucus-results/
Massachusetts: http://www.thegreenpapers.com/P16/MA-R

retrieved from
http://electionstats.state.ma.us/elections/search/year_from:2016/year_to:2016/
office_id:1/stage:Republican

Tennessee: http://www.thegreenpapers.com/P16/TN-R

retrieved from

https://sos.tn.gov/products/elections/election-results

Texas: http://www.thegreenpapers.com/P16/TX-R

retrieved from

http://elections.sos.state.tx.us/elchist273_state.htm

Michigan: http://www.thegreenpapers.com/P16/MI-R

retrieved from
http://miboecfr.nictusa.com/election/results/2016PPR_CENR.html
Wisconsin: http://www.thegreenpapers.com/P16/WI-R

retrieved from
http://elections.wi.gov/elections-voting/results/2016/spring-election-presidential-preference

The data for the Netherlands are taken form wikipedida,

https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen 1972
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen_ 1977
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen_1981
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen_ 1982
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen_1986
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen_ 1989
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen_ 1994
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen 1998
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen_ 2002
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen 2003
https://nl.wikipedia.org/wiki/Tweede_Kamerverkiezingen_ 2006
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https://de.wikipedia.org/wiki/Parlamentswahl_in_den_Niederlanden_2010
https://de.wikipedia.org/wiki/Parlamentswahl_in_den_Niederlanden_2012
https://de.wikipedia.org/wiki/Parlamentswahl_in_den_Niederlanden_2017

5.2 Overall results

We show below data from the US elections (Republicans, Primaries, 2016, n = 8), from France (Pres-
idential elections, first round, 2007, 2012, and 2017, n = 8), elections in the Netherlands (1972-2017,
n=14), and the Federal Republic of Germany (Federal elections 1949-2017, n = 95) from different
organizational units (city, federal state, country). We present a semi-logarithmic representation, to-
gether with a linear fit of the data. In order to obtain a first, overall impression about the quality of
the fits, we consider R? . in figure 7. We find that the linear model mostly explains far more than

adj
90% of the variability in the data.
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Figure 7: (a) Boxplot for the Rgdj values in France (n = 9), Germany (n = 95), Netherlands (n = 14),
and the US (n = 8). (b) R? over year of election for FRG (the values for the complete FRG are

connected by a line, the other dots belong to Stuttgart, Munich, Bavaria, and Baden-Wiirttemberg).

In section 7, we fit according to the heuristic estimator (proposed at page 17) the parameter z;
the histogram of the logarithm of this parameter obtained from the elections in all four democracies
considered is shown in figure 8. We find an unimodal distribution. A closer analysis of the dependency
on the number of voters, number of parties for the unit under consideration, and democracy at hand
reveals a significant, but weak dependency (R? 4= 0.44; see table in figure 8). Interestingly, also the

a,
democracy (France, FRG, the Netherlands and US) has a significant influence on z.
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7 B point estimator P
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Figure 8: Left: Logarithmic histogram of the parameter z. Right: Result of a linear fit of log(z) by
the number of voters n.
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6 Elections in semilogarithmic representation with linear fit
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Figure 9: Election France, 2017, 1012, 2007 (bullets: data, line: linear fit).
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Figure 10: Election France, 2017 (bullets: data, line: linear fit).
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Figure 11: Election FRG, 1949 (bullets: data, line: linear fit).
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Figure 13: Election FRG, 1957 (bullets: data, line: linear fit).
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Figure 14: Election FRG, 1961 (bullets: data, line: linear fit).
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Figure 15: Election FRG, 1965 (bullets: data, line: linear fit).
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Figure 16: Election FRG, 1969 (bullets: data, line: linear fit).
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Figure 17: Election FRG, 1972 (bullets: data, line: linear fit).
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Figure 18: Election FRG, 1976 (bullets: data, line: linear fit).
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Figure 19: Election FRG, 1980 (bullets: data, line: linear fit).
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Figure 20: Election FRG, 1983 (bullets: data, line: linear fit).
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Figure 21: Election FRG, 1987 (bullets: data, line: linear fit).
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Figure 22: Election FRG, 1990 (bullets: data, line: linear fit).
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Figure 23: Election FRG, 1994 (bullets: data, line: linear fit).
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Figure 24: Election FRG, 1998 (bullets: data, line: linear fit).
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Figure 25: Election FRG, 2002 (bullets: data, line: linear fit).
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Figure 26: Election FRG, 2005 (bullets: data, line: linear fit).
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Figure 27: Election FRG, 2009 (bullets: data, line: linear fit).
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Figure 28: Election FRG, 2013 (bullets: data, line: linear fit).
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Figure 29: Election FRG, 2017 (bullets: data, line: linear fit).
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Figure 30: Election in the Netherlands (bullets: data, line: linear fit)
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Figure 31: Election in the Netherlands (bullets: data, line: linear fit).
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Figure 32: Election in the Netherlands (bullets: data, line: linear fit).
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Figure 33: Election US (republican primaries), 2016 (bullets: data, line: linear fit).
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Figure 34: Election US (republican primaries), 2016 (bullets: data, line: linear fit).
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6.1 Parameter values of the linear fit

Note that — for a given election — the slope is rather independent on the number of voters, provided
that the number of parties (candidates) are the same for organizational units of different size. If we
go from cities to states to the country (more and more voters are involved), mainly the intercept
changes.

country | unit ‘ year H #parties ‘ #voters H intercept ‘ slope ‘ R?

FRG Stuttgart 1949 || 6 224203 3.552 0.245 | 0.68
FRG Munich 1949 || 6 503822 4.5 0.11 | 0.951
FRG Bavaria 1949 || 7 4824052 4.112 0.347 | 0.606
FRG Baden-Wiirttemberg | 1949 || 7 2745453 3.556 0.4 0.813
FRG FRG 1949 || 15 23732398 || 4.497 0.16 | 0.895
FRG Stuttgart 1953 || 8 303222 3.167 0.24 | 0.922
FRG Munich 1953 || 10 589476 3.12 0.223 | 0.979
FRG Bavaria 1953 || 10 5178145 4.077 0.218 | 0.956
FRG Baden-Wiirttemberg | 1953 || 8 3588131 4.15 0.248 | 0.937
FRG FRG 1953 || 13 27551272 || 4.582 0.182 | 0.973
FRG Stuttgart 1957 || 8 344679 1.987 0.429 | 0.958
FRG Munich 1957 || 11 690061 2.148 0.301 | 0.965
FRG Bavaria 1957 || 11 5380289 3.126 0.288 | 0.965
FRG Baden-Wiirttemberg | 1957 || 8 3907840 3.282 0.387 | 0.987
FRG FRG 1957 || 13 29905428 || 3.572 0.278 | 0.984
FRG Stuttgart 1961 || 7 353395 2.268 0.458 | 0.911
FRG Munich 1961 || 7 751046 2.679 0.439 | 0.943
FRG Bavaria 1961 || 7 5596615 3.576 0.43 | 0.991
FRG Baden-Wiirttemberg | 1961 || 7 4189163 3.596 0.409 | 0.959
FRG FRG 1961 || 9 31550901 || 4.116 0.359 | 0.943
FRG Stuttgart 1965 || 6 351760 2.752 0.447 | 0.9

FRG Munich 1965 || 6 791871 3.03 0.455 | 0.927
FRG Bavaria 1965 || 6 5772593 3.691 0.491 | 0.98
FRG Baden-Wiirttemberg | 1965 || 6 4452227 3.745 0.462 | 0.953
FRG FRG 1965 || 11 32620442 || 2.715 0.431 | 0.977
FRG Stuttgart 1969 || 8 341860 1.525 0.488 | 0.983
FRG Munich 1969 || 9 827541 2.301 0.372 | 0.984
FRG Bavaria 1969 || 9 5860298 2.939 0.392 | 0.973
FRG Baden-Wiirttemberg | 1969 || 8 4584766 2.652 0.481 | 0.963
FRG FRG 1969 || 12 32966024 || 3.282 0.324 | 0.956
FRG Stuttgart 1972 || 6 371579 1.996 0.583 | 0.902
FRG Munich 1972 || 6 922487 2.317 0.592 | 0.917
FRG Bavaria 1972 || 6 6708665 2.993 0.627 | 0.968
FRG Baden-Wiirttemberg | 1972 || 6 5322133 3.044 0.604 | 0.946
FRG FRG 1972 || 8 37459750 || 3.269 0.542 | 0.951
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country | unit ‘ year H #parties ‘ #voters H intercept ‘ slope ‘ R?
FRG Stuttgart 1976 || 10 345308 1.126 0.39 | 0.866
FRG Munich 1976 || 11 897795 1.669 0.328 | 0.825
FRG Bavaria 1976 || 11 6822919 2.296 0.349 | 0.853
FRG Baden-Wiirttemberg | 1976 || 10 5405534 || 2.219 0.399 | 0.888
FRG FRG 1976 || 16 37822500 || 2.196 0.292 | 0.908
FRG Stuttgart 1980 || 9 328751 0.912 0.491 | 0.943
FRG Munich 1980 || 11 827190 1.332 0.373 | 0.915
FRG Bavaria 1980 || 11 6896186 2.002 0.393 | 0.924
FRG Baden-Wiirttemberg | 1980 || 9 5454040 2.092 0.489 | 0.936
FRG FRG 1980 || 12 37938981 || 2.791 0.37 | 0.929
FRG Stuttgart 1983 || 8 329103 1.406 0.506 | 0.943
FRG Munich 1983 || 10 840650 1.716 0.387 | 0.912
FRG Bavaria 1983 || 10 7077256 2.359 0.417 | 0.951
FRG Baden-Wiirttemberg | 1983 || 8 5722585 2.4 0.539 | 0.962
FRG FRG 1983 || 13 38940687 || 2.543 0.364 | 0.94
FRG Stuttgart 1987 || 11 317464 1.65 0.314 | 0.904
FRG Munich 1987 || 12 835534 1.814 0.308 | 0.94
FRG Bavaria 1987 || 12 6846746 2.786 0.297 | 0.943
FRG Baden-Wiirttemberg | 1987 || 11 5608973 2.832 0.322 | 0.945
FRG FRG 1987 || 16 37867319 || 2.589 0.285 | 0.948
FRG Stuttgart 1990 || 12 299515 1.733 0.286 | 0.983
FRG Munich 1990 || 13 505886 1.87 0.27 | 0.982
FRG Bavaria 1990 || 13 6468521 3.031 0.257 | 0.972
FRG Baden-Wiirttemberg | 1990 || 12 5439352 3.142 0.267 | 0.975
FRG FRG 1990 || 24 46455772 || 2.36 0.199 | 0.993
FRG Stuttgart 1994 || 15 297117 1.543 0.23 | 0.954
FRG Munich 1994 || 17 504335 1.569 0.208 | 0.967
FRG Bavaria 1994 || 17 6799366 2.732 0.203 | 0.955
FRG Baden-Wiirttemberg | 1994 || 15 5668824 2.905 0.221 | 0.942
FRG FRG 1994 || 22 47105174 || 2.983 0.183 | 0.964
FRG Stuttgart 1998 || 22 294613 1.303 0.15 | 0.905
FRG Munich 1998 || 22 512338 1.687 0.141 | 0.906
FRG Bavaria 1998 || 22 7085122 2.799 0.142 | 0.909
FRG Baden-Wiirttemberg | 1998 || 22 5945364 2.736 0.144 | 0.917
FRG FRG 1998 || 33 49308512 || 2.821 0.118 | 0.942
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country | unit ‘ year H #parties ‘ #voters H intercept ‘ slope ‘ R?
FRG Stuttgart 2002 || 16 286544 1.617 0.197 | 0.914
FRG Munich 2002 || 17 669491 1.9 0.181 | 0.854
FRG Bavaria 2002 || 17 7495435 2.929 0.179 | 0.868
FRG Baden-Wiirttemberg | 2002 || 16 5939859 3.009 0.191 | 0.902
FRG FRG 2002 || 24 47996480 || 2.779 0.176 | 0.975
FRG Stuttgart 2005 || 12 280490 2.094 0.245 | 0.95
FRG Munich 2005 || 14 640630 2.141 0.224 | 0.929
FRG Bavaria 2005 || 14 7222308 3.31 0.216 | 0.97
FRG Baden-Wiirttemberg | 2005 || 12 5822447 3.413 0.247 | 0.966
FRG FRG 2005 || 25 47287988 || 3.044 0.154 | 0.946
FRG Stuttgart 2009 || 17 269104 1.619 0.192 | 0.952
FRG Munich 2009 || 19 652946 2.01 0.168 | 0.955
FRG Bavaria 2009 || 19 6768352 3.158 0.162 | 0.964
FRG Baden-Wiirttemberg | 2009 || 17 5442089 3.01 0.188 | 0.967
FRG FRG 2009 || 27 43371190 || 3.09 0.141 | 0.96
FRG Stuttgart 2013 || 20 284541 1.651 0.156 | 0.944
FRG Munich 2013 || 20 650216 1.933 0.165 | 0.989
FRG Bavaria 2013 || 20 6695559 3.015 0.161 | 0.982
FRG Baden-Wiirttemberg | 2013 || 20 5642019 2.953 0.158 | 0.976
FRG FRG 2013 || 30 43726856 || 3.146 0.121 | 0.947
FRG Stuttgart 2017 || 21 298012 1.601 0.152 | 0.925
FRG Munich 2017 || 21 722141 2.007 0.154 | 0.966
FRG Bavaria 2017 || 21 7519739 2.977 0.158 | 0.968
FRG Baden-Wiirttemberg | 2017 || 21 5992968 2.941 0.15 | 0.928
FRG FRG 2017 || 34 46515492 || 2.725 0.122 | 0.969
F France 2007 || 12 36719396 || 5.02 0.167 | 0.924
F France 2012 || 10 35883209 || 4.844 0.238 | 0.965
F France 2017 || 11 36054394 || 4.792 0.217 | 0.935
F Paris 2017 || 11 1076559 2.883 0.254 | 0.977
F Ile de France 2017 || 11 5631456 3.833 0.234 | 0.966
F Lyon 2017 || 11 234507 2.383 0.24 | 0.964
F Rhone-Alpes 2017 || 11 4187716 3.853 0.218 | 0.936
F Marseille 2017 || 11 366083 2.595 0.238 | 0.949
F Cote d’Azur 2017 || 11 2750937 || 3.525 0.233 | 0.955
NL Netherlands 2017 || 28 10516041 || 2.537 0.145 | 0.975
NL Netherlands 2012 || 21 9424235 2.599 0.193 | 0.938
NL Netherlands 2010 || 18 9416001 2.799 0.219 | 0.96
NL Netherlands 2006 || 24 9838683 1.931 0.195 | 0.981
NL Netherlands 2003 || 19 9654475 2.528 0.218 | 0.985
NL Netherlands 2002 || 18 10545916 || 3.041 0.212 | 0.836
NL Netherlands 1998 || 22 8607787 3.095 0.145 | 0.982
NL Netherlands 1994 || 26 8981556 3.112 0.118 | 0.953
NL Netherlands 1989 || 25 8893302 1.548 0.195 | 0.987
NL Netherlands 1986 || 27 9172159 2.313 0.143 | 0.951
NL Netherlands 1982 || 20 8236516 2.705 0.188 | 0.892
NL Netherlands 1981 || 28 8690837 1.966 0.156 | 0.984
NL Netherlands 1977 || 23 5665334 1.816 0.196 | 0.938
NL Netherlands 1972 || 20 7394045 2.964 0.182 | 0.833
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country | unit year H #parties ‘ #voters H intercept ‘ slope ‘ R?

US Towa 2016 || 13 186872 1.9 0.239 | 0.793
US New Hampshire | 2016 || 31 284149 0.074 0.143 | 0.904
US Nevada 2016 | 12 59336 0.455 0.326 | 0.968
US Massachusetts 2016 || 16 516932 1.799 0.192 | 0.886
US Tennessee 2016 || 15 553752 1.644 0.24 | 0.951
UsS Texas 2016 || 14 2796618 || 1.831 0.307 | 0.863
US Michigan 2016 || 14 1323589 || 2.218 0.245 | 0.959
US Wisconsin 2016 || 14 1099469 || 1.474 0.273 | 0.875
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7 Elections in semilogarithmic representation with model simula-
tions

In this section, we show a boxplot of 100 realization of the model (n, K and z adapted) together
with the data from the corresponding election according to the algorithm described in section 2.4.4.
The number of voters n and the number of candidates/parties K are directly taken from the data,
the relative minimal group size z is estimated according to the estimator described at page 17 (this
supplement).
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Figure 35: Election France, 2017, 1012, 2007 (boxplot of 100 realizations og the model, bullets: data).
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Figure 37: Election FRG, 1949 (boxplot of 100 realizations og the model, bullets: data).
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Figure 38: Election FRG, 1953 (boxplot of 100 realizations og the model, bullets: data).
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Figure 39: Election FRG, 1957 (boxplot of 100 realizations og the model, bullets: data).
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Figure 40: Election FRG, 1961 (boxplot of 100 realizations og the model, bullets: data).
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Figure 41: Election FRG, 1965 (boxplot of 100 realizations og the model, bullets: data).
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Figure 42: Election FRG, 1969 (boxplot of 100 realizations og the model, bullets: data).
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Figure 43: Election FRG, 1972 (boxplot of 100 realizations og the model, bullets: data).
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Figure 44: Election FRG, 1976 (boxplot of 100 realizations og the model, bullets: data).

68



log(Voters)

log(Voters)

Stuttgart 1980 Munich 1980

3
1
1
L
ol
Kl
f
log(Voters)
4
|
1
1
Il
o [}
o[
t
t

s | .
N @E - o~ 'EEE -
[ — - — —_—
I I I I I I I I I T 1T 1T T 1T 1T T T T
1 2 3 456 7 89 123456789 11
rank rank
Baden—-Wirttemberg 1980 Bavaria 1980

f AT
R el
1 g

4 5
| |
1
4
f
f
log(Voters)
2 3 4 5 6 7
1
1
CIs=
ol
o]
[ 2
t

N*Tf\\\\\\\ 77#\\\\\\\\\
1 2 3 4 5 6 7 8 9 1234567829 11
rank rank
FRG 1980

log(Voters)
5

Figure 45: Election FRG, 1980 (boxplot of 100 realizations og the model, bullets: data).
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Figure 46: Election FRG, 1983 (boxplot of 100 realizations og the model, bullets: data).
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Figure 47: Election FRG, 1987 (boxplot of 100 realizations og the model, bullets: data).
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Figure 48: Election FRG, 1990 (boxplot of 100 realizations og the model, bullets: data).
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Figure 49: Election FRG, 1994 (boxplot of 100 realizations og the model, bullets: data).
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Figure 50: Election FRG, 1998 (boxplot of 100 realizations og the model, bullets: data).
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Figure 51: Election FRG, 2002 (boxplot of 100 realizations og the model, bullets: data).

75



log(Voters)

log(Voters)

Stuttgart 2005 Munich 2005

5.0
!
rof

4.0
[
1
1
KX
+
log(Voters)
4
|
1
1
o |
o]
@
3
3

3*EE++ me:E
o 1257 8-
Ni
N T 1T 1T 17 T 1T 17 1T T T T T T T T T T T T T
1 3 5 7 9 1 1 3 5 7 9 11 13
rank rank
Baden—-Wirttemberg 2005 Bavaria 2005
s a7 S T:
] T T 7 i} e
5 fTiﬂgi* £ 3 ***5@E+*
o T leEe S ol -7 iETr -
RN = E 3 ewEtt
o JaT s JamPrl
T 1T 1T 17 T 1T 17 1T T T T T T T T T T T T T
1 3 5 7 9 1 1 3 5 7 9 11 13
rank rank
FRG 2005

log(Voters)
5
|

\
1 4 7 10 14 18 22

rank

Figure 52: Election FRG, 2005 (boxplot of 100 realizations og the model, bullets: data).
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Figure 53: Election FRG, 2009 (boxplot of 100 realizations og the model, bullets: data).
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Figure 54: Election FRG, 2013 (boxplot of 100 realizations og the model, bullets: data).
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Figure 55: Election FRG, 2017 (boxplot of 100 realizations og the model, bullets: data).
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Figure 56: Election in the Netherlands (boxplot of 100 realizations og the model, bullets: data).
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Figure 57: Election in the Netherlands (boxplot of 100 realizations og the model, bullets: data).
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Figure 58: Election in the Netherlands (boxplot of 100 realizations og the model, bullets: data).
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Figure 60: Election US (republicans), 2016. Note that, in case of Texas, z was estimated according to
an outlier (boxplot of 100 realizations og the model, bullets: data).
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