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Abstract

Genome-wide DNA methylation studies have quickly expanded due to advances in next-generation sequencing techniques
along with a wealth of computational tools to analyze the data. Most of our knowledge about DNA methylation profiles,
epigenetic heritability and the function of DNA methylation in plants derives from the model species Arabidopsis thaliana.
There are increasingly many studies on DNA methylation in plants—uncovering methylation profiles and explaining
variations in different plant tissues. Additionally, DNA methylation comparisons of different plant tissue types and
dynamics during development processes are only slowly emerging but are crucial for understanding developmental and
regulatory decisions. Translating this knowledge from plant model species to commercial crops could allow the
establishment of new varieties with increased stress resilience and improved yield. In this review, we provide an overview of
the most commonly applied bioinformatics tools for the analysis of DNA methylation data (particularly bisulfite sequencing
data). The performances of a selection of the tools are analyzed for computational time and agreement in predicted
methylated sites for A. thaliana, which has a smaller genome compared to the hexaploid bread wheat. The performance of
the tools was benchmarked on five plant genomes. We give examples of applications of DNA methylation data analysis in
crops (with a focus on cereals) and an outlook for future developments for DNA methylation status manipulations and data
integration.
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Introduction
Methylation of cytosine at carbon position 5 (also termed 5-
meC) is a hallmark of an epigenetic modification, and 5-meC has
been described as the fifth base of DNA [1]. Although the extent

and context of 5-meC vary considerably between different plant
lineages, all plants whose genomes have been sequenced and
analyzed so far show substantial DNA methylation [2, 3]. Two
major genomic contexts can be distinguished: (i) methylation
on gene bodies and (ii) methylation on repeat sequences and
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transposons. Gene body methylation typically peaks on exons
of moderately transcribed genes and, despite a comprehensive
body of publications [3–5], its function remains mysterious [6].
Methylation on repeat sequences and transposons is crucial
for suppressing transcription and is necessary for establishing
heterochromatic domains. Consequently, mutations that abolish
most DNA methylation lead to transposon activation and
genomic meltdown after several generations in Arabidopsis
thaliana. However, in early generations, the mutation can be
outcrossed, and selfed offspring will be isogenic but with
different DNA methylation states [7–9]. Experiments along these
lines have established that these differences in DNA methylation
can be stably inherited over many generations and influence
ecologically relevant phenotypic traits [10–15].

In contrast to animals, which only maintain CG methyla-
tion, in most plants 5-meC occurs also in several sequence
contexts (CG, CHG and CHH, where H is any of the bases
A, T or C) and is catalyzed by different methyltransferases
acting on different DNA methylation pathways. In A. thaliana,
CG methylation is maintained by MET1, CHG methylation
by CMT3 and CHH by CMT2 and the RNA-induced DNA
methylation pathway. CG methylation occurs in euchromatin
and heterochromatin whereas CHG and CHH methylation
decorate repeats and transposons [16]. The cross-functioning
and redundant DNA methylation pathways form a nuclear/DNA
protection system that aids in identifying invading transposons
and permanently shutting off their expression (see review by
Kim et al. [17]).

Lister and Ecker [18] argued that 5-meC should be used
as a dynamic fifth letter of the genomic code because of the
important implications of methylation. It has become tractable
to analyze genome-wide DNA methylation states in populations
or across different plant species because of advances in next-
generation sequencing (NGS) technologies. Much effort has been
undertaken to determine the landscape of DNA methylation
changes especially in A. thaliana and other land plants such as
rice and tomato, which have had reference genomes available
for several years [19, 20]. DNA methylation patterns vary widely
among animals; Drosophila completely lacks CG methylation
while the human genome is highly methylated (∼75% of the
cytosines). In A. thaliana, ∼24% of the CGs, ∼ 6.7% of the CHGs
and ∼1.7% of the CHHs are methylated [21, 22].

Plants have varying levels of repeat content, which might
be the result of bursts of single-repeat retroelements, which
can amplify rapidly using a reverse transcription step to
make multiple copies, or DNA transposons, which use a
copy-and-paste strategy [23, 24] and thus can amplify during
DNA replication. While the repeat content is only ∼20% in
Arabidopsis, in cereals such as barley and wheat the repeat
content can be up to 90%. Together with the presence of three
subgenomes in hexaploid wheat, these repeats require tightly
regulated epigenetic mechanisms [25]. Genes have evolved
different mechanisms for tolerating transposable elements (TEs)
in their vicinity [26, 27]. Hirsch and Springer [28] provide a
review of the interactions between TEs and gene expression in
plants. They discuss three mechanisms by which transposons
influence gene expression, namely (i) the prevailing evidence
that TE insertions within introns or untranslated regions of
genes are often tolerated and have minimal impact on gene
expression levels or splicing. Conversely, TE insertions within
genes lead to aberrant or novel transcripts; (ii) TEs act as
novel alternative promoters—with the potential to result in
different expression patterns; and (iii) TE insertions near genes
can influence gene regulation. In Arabidopsis, two genes (IBM1

and IBM2) have been identified that prevent spreading of CHG
and CHH methylation from transposons into gene bodies or
promoters.

Interestingly, DNA methylation levels can also affect how
plants respond to stress. Arabidopsis mutants with reduced
global DNA methylation show increased expression of defense-
related genes and enhanced resistance to pathogens [29].
Polymorphisms of CMT2 correlate with DNA methylation
variation along a longitudinal temperature gradient in natural
populations [30], and cmt2 plants are more heat tolerant [31].
Isogenic lines with different DNA methylation states show
differences in their ability to compete in synthetic plant
communities [32]. Similar influences on stress tolerance have
also been observed in monocots, and wheat with experimentally
reduced DNA methylation shows resilience to salt and oxidative
stress. The dynamics of the methylation state of genomic
elements are tissue-specific (for instance, in A. thaliana seedlings
[33–35]) and differ between juvenile and mature plants (e.g. in
a study of Acacia mangium [36]). Reduced DNA methylation also
results in abnormal plant development in A. thaliana [37]; hence,
an optimally regulated level of methylation is vital for normal
plant growth and development.

Plant pathogen invasion can also influence methylation
levels in different ways. For instance, genome-wide hypomethy-
lation and hypermethylation influence resistance-related genes
[38] and alter gene expression profiles, resulting in plant adap-
tation to stress. Wang et al. [39] showed that drought-induced
alterations to DNA methylation in rice influence an epigenetic
mechanism that regulates gene expression. As a major modifi-
cation of the eukaryotic genome, DNA methylation significantly
influences gene expression. Methylation of genomic features
can lead to different gene regulatory effects. For instance,
alteration of a gene’s expression potential is a result of DNA
methylation affecting the interaction between transcription
factors and DNA with chromatin proteins [40]. Additionally,
methylation of the promoter region results in repression of gene
expression, and gene body methylation leads to the opposite
effect [41, 42]. Studies have shown that gene body-methylated
genes are constitutively expressed in a wide range of conditions
and tissues [6].

Chemistry of bisulfite conversion and
sequencing
Bisulfite sequencing is generally done in three main steps,
namely (i) denaturing, (ii) bisulfite treatment and (iii) polymerase
chain reaction (PCR) amplification. In bisulfite conversion,
DNA is denatured in a process that separates the forward
and reverse strands. This is followed by treatment with
sodium bisulfite, which converts unmethylated cytosine into
uracil—which is then converted to thymine during PCR [43].
Quantification of the abundance of each cytosine can be
achieved via Sanger sequencing [44] or NGS technologies [45].
The DNA strands cease to be complementary after bisulfite
conversion. Treatment of genomic DNA with sodium bisulfite
[46] enables us to distinguish between highly similar (and yet
different) methylated cytosine, which has the same base-pairing
features as unmethylated cytosine. Mapping read sequences
to a reference genome enables the determination of positions
with matching and mismatching bases. This process enables
identification of methylated and unmethylated bases.

Bisulfite sequencing can be accomplished with different
sequencing kits depending on whether whole-genome bisulfite
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sequencing (WGBS) [18] or reduced-representation bisulfite
sequencing (RRBS) [47, 48] is performed. Currently, WGBS
remains the most informative method for generating DNA
methylation data. It provides a huge wealth of data and requires
no prior targeting. Unlike WGBS, which is expensive, RRBS can
be performed more economically because it is restricted to CpG-
enriched regions that make up a smaller portion of the genome.
The restriction enzyme Msp1 cleaves at 5′-C∗CGG-3′ targets (base
preceding ∗ is methylated), thereby, mainly CpG-rich regions are
targeted—which is advantageous for large genomes.

Typical workflow for processing bisulfite
sequencing data
Before reads are mapped to a reference genome, the sequenc-
ing quality of reads can be checked with FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc) or NGS
QC Toolkit [49], followed by removing low-quality bases
and adapters with, among others, Trim Galore (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore), cutadapt
[50] or Trimmomatic [51]. However, some WGBS data processing
tools integrate various analytic steps—enabling data prepro-
cessing, read alignment, a more robust statistical analysis
that output statistics such as read coverage, the percentage of
uniquely aligned reads and statistics on the three methylation
contexts (CpG/CHG/CHH). One such tool is gemBS [52], which is
a recently published pipeline for processing and analysis of
WGBS data. The pipeline integrates data preprocessing and
analysis steps from adaptor trimming through downstream
statistical analysis of mapping results. gemBS uses the high-
performance read aligner GEM3 [53] as a dependency and BScall
(embedded in samtools, bcftools; http://samtools.sourceforge.
net), which is a variant caller for bisulfite sequencing data.
Both GEM3 and BScall support single and paired-end reads.
Further reading on the generic workflow of analyzing WGBS
is found in the work of Liang et al. [54] and Wrecyzcka et al.
[55].

Non-bisulfite-based methods and related
bioinformatics tools
While bisulfite sequencing methods represent the most
popular approaches for analyzing epigenomic data, there
are other approaches within the field of DNA modification-
based methods. These approaches include methylated DNA
immunoprecipitation (MeDIP)-seq and MethylCap-seq (a robust
procedure for genome-wide profiling of DNA methylation)
in MeDIP analyses [56] where the genomic DNA is randomly
sheared, sonicated and immunoprecipitated with an antibody
recognizing 5-methylcytidine. Precipitated DNA can either be
sequenced or hybridized to microarrays. MethylCap-seq uses
the methyl-CpG-binding domain of MeCP2 [57] while Oxidative
bisulfite sequencing (oxBS) [58] is used to specifically detect
5-methylcysteine and 5-hydroxymethylcytosine (5hmC) that
can be also done with ‘Tet’-assisted bisulfite sequencing [59].
CAB and fCAB are used for the recognition of 5caC [60]. Notably,
the presence/absence of 5hmC in plants remains contentious.
Some scholars claim that 5hmC is present in plants [61, 62]
while others claim it’s absent [63]. A comprehensive overview of
the various tools is given at https://omictools.com/medip-seq-
category.

Tools for analyzing epigenomics datasets

Bismark [64] and BSMap [65], as one of the 1st published
tools for quantifying epigenomic datasets, had to address
the challenge of attaining high-read mapping efficiency to
enable a sensitive sequence search. Bowtie [66], Merman [67],
SNAP (http://snap.cs.berkeley.edu) and Bowtie2 [68] have been
used as dependencies in epigenomics tools, for instance, BS-
Seeker [69], BS-Seeker2 [70], BS-Seeker3 [71], BRAT-nova [72],
WALT [73] and Bismark, which are currently among the most
commonly applied tools for mapping bisulfite methylation data.
We outlined the most common tools for mapping bisulfite
sequencing data along with tools that allow for the detection and
analysis of differentially methylated regions (DMRs). The pro-
gram parameters as well as input and output data formats are
specified in Table S1. This table provides an overview of the main
tools for mapping and analysis of epigenomic data—particularly
for bisulfite sequencing data. Additionally, we also categorized
the tools into three major classes, namely (i) mapping, (ii)
statistical analysis and (iii) complete pipelines (Table S1). The
defining features for each tool, such as their ability to handle
single or double-stranded sequence data as well as their ability
to process data and perform downstream statistical analysis,
are also provided. Reviews by Adusulalli et al. [74], Shafi et al. [75]
and Wrecyzcka et al. [55] complement our overview Table S1. The
most frequently applied computational epigenetics methods
were applied and tested using DNA methylation data, particu-
larly with data acquired from bisulfite sequencing experiments.
Therefore, there are many statistical procedures available for
analyzing methylome data—categorized into the parametric
and non-parametric approach. Both approaches are widely
used in the literature [76]. For instance, MethylMix [77] is an
excellent example of a parametric approach that uses Bayesian
mixture models to identify DNA methylation states of genes as
either hypo- or hypermethylated. The method entails fitting a
distribution function onto the frequencies of DNA methylation
counts. The advantage of using non-parametric models is
that no prior knowledge of the data distribution is required.
However, when such knowledge is available, then parametric
models are the preferred choice for modeling such data.
MethylMix quantifies the effect of DNA methylation on
genes, which is interesting for integrative studies that aim
at establishing the association between the methylation
states of the individual genes and their expression profiles.
Investigating such associations unravels any hidden vari-
ations within and between samples (or tissues) as illus-
trated in [78–80]. Lea et al. [81] discussed the applications
of mixed models on DNA methylation in plant epigenetics.
They specifically focused on the binomial mixed model
with the sampling-based algorithm (MACAU, mixed model
association for count data via data augmentation) for the
approximation of parameters and computation of P-values.
Other modeling frameworks are based on algorithms that
integrate various analytical steps resulting in the detection
of DMRs across the entire genome, for instance, (i) the
weighted optimization algorithm proposed in [82] (which
is an extension of MethylKit [83]) and (ii) ChAMP.DMR [84],
which applies the Bumphunter [85] or ProbeLasso Algo-
rithm [86]. An example of a non-parametric model is the
Bayesian approach based on the Dirichlet process beta mixture
model—which is used for clustering methylation profiles
[76]. The model considers the DNA methylation expres-
sions consisting of an infinite number of beta mixturex
distributions [87, 88].
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DNA methylation: plant physiology and
pathophysiology
Investigating the dynamics of DNA methylation in plant growth
and development requires the analysis of samples from dif-
ferent plant tissues (e.g. [34]). To our knowledge, no existing
software has been developed specifically for the analysis of plant
physiology and pathophysiology. However, there are many stud-
ies analyzing bisulfite data using samples from different plant
developmental stages (from seedlings to mature plants). For
instance, Bismark—in leaf tissues from bread wheat seedlings
[89], BSMap—for various datasets from different tissues in A.
thaliana [90] and BS-Seeker2—for young Zea mays leaves [91].
With rapid advancements in the development of software/tools
for analysis of epigenomes, we are optimistic such tools will soon
be available to the public.

DMRs and their significance
Genomic regions (or bases) with different methylation profiles
between samples are known as DMRs. This is also referred to
as differentially methylated CpG sites since the CpG-methylated
sites occur in much larger numbers compared to the non-CpG
contexts (CHG and CHH) [92, 93]. Peak detection enables the iden-
tification of CpG islands—which are essential for differentiating
methylation profiles between samples (typically between con-
trols and test samples). CpG islands are not randomly distributed
in the genome but are instead grouped close together [94]. Long
stretches of non-dense CpG sites, known as CpG shores, can
also be detected. Combining the methylation profiles of both
CpG-islands and CpG-shores enables more efficient comparative
analysis of DNA methylation profiles between samples.

Various statistical algorithms have been proposed for identi-
fying DMRs—the most popular ones being methylKit [83], meti-
lene [95], DMRcaller [96] and Bumphunter [85]. For elaborate
discussions on the DMR detection methods and a discussion on
choosing the right method for DMR detection, see [97, 98]. The
tools are written and compiled in different programming lan-
guages (e.g. R, Python, Perl, Java, C and C++; Table S1). Essentially,
such tools are used to identify DMRs from either targeted regions
of the genome or from the whole genome. Critical considerations
have to be made, e.g. the choice of experimental designs for
experiments and statistical methods for data analysis [99]. DMRs
are intricately linked to transcription and the abundance of CpG
sites (CpG islands). A high concentration of CpG sites is often
found within the promoter regions of genes—so it is essential to
accurately identify such sites. Methylation of promoter regions
influences the level of transcription—heavy methylation dis-
rupts transcription, and de-methylation leads to transcription
reactivation [100–102].

Peak identification and normalization are crucial initial steps
in analyzing DNA methylation data and visualization and can
be useful for comparing datasets and judging the performance
and agreement between tools. Post-processing and visualization
of (differentially) methylated sites enable high-resolution explo-
ration and comparison of regions in the genome for variations
in methylation profiles. Therefore, tools like BiQ [103] and BSeQC
[104] have aided quality control and visualization of methylation
data, thereby enabling researchers to explore data attributes and
perform data quality control before analysis. There are many
methods for clustering methylation marks such as the dynamic
genome warping [105] approach that uses hierarchical clustering
and the combination of different epigenomics analytic platforms
and data integrative modules. Dynamic genome warping has

been demonstrated to be a reliable way to get more meaningful
results from datasets (for instance, [106]). To utilize this method,
Liang et al. [54] developed a webserver to analyze WGBS data and
their platform includes major steps for detection and mapping
of the conversion rate, detection of DMRs and their associa-
tion with gene expression. Wreczycka et al. [55] discussed data
requirements and computational attributes for specific software
and assess bisulfite sequencing data analysis methods, align-
ment and data processing, detection of differential methylation
and assess strategies for handling large epigenetic datasets.
In contrast, our work highlights existing asymmetries between
mapping tools and contrasts their computational capabilities.

Another important aspect in plant epigenetics is how
hypomethylation and hypermethylation affects gene expres-
sion. The concept of hypomethylation and hypermethylation is
not limited to plants as they have also been extensively studied
in cancer progression in humans [107], coronary heart disease
[108] and eukaryotes in general [109]. The division of DMRs
into hypo- and hypermethylated enables investigations into
the influence of both types of methylation on gene expression.
Many computational tools have integrated modules that enable
the extraction and quantification of the extent of hypo- and
hypermethylation in genes. One such tool is MethylMix, which
requires that changes in a gene’s methylation state must
also agree with its expression profile. Additionally, it requires
a treatment and control sample (for agricultural studies) or
healthy and disease conditions (for clinical studies).

Downstream analyses of bisulfite methylome
data
After data processing and calling of methylation sites, down-
stream analysis can be performed—including the functional
annotation of DMRs and analysis of the associated pathways
influenced by the targeted genes. Such analysis enables the
assignment of functions and gene annotation as seen in the
overviews of Bioinformatics omicX tools (https://omictools.com/
epigenomics-category). Examples of tools for performing down-
stream analysis are given in Table 1.

Technical challenges: conversion rate,
repetitive regions and DMRs
The main challenges in the analysis of DNA methylation data
include incomplete methylation patterns and overdispersion
of read mappings [110–112]. Here, overdispersion means the
presence of variability in the reads compared to the expected
read distributions based on a given model structure. When
epigenomics marks coincide with repetitive regions in the
genome, mapping tools need to keep reads that map to
multiple genomic locations—making these tools slower and
computationally memory-intensive. This problem can be partly
circumvented through parallel computing using multiple
threads, especially for larger repetitive plant genomes.

Conversion rates
As a method for studying DNA methylation, bisulfite conver-
sion involves the conversion of cytosine to uracil (while 5-
methylcytosine, 5-mC remains unchanged). Bisulfite sequence
conversion rates vary for different datasets. It is essential
for conversion rates to be determined accurately to ensure
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Table 1. Examples of some downstream analysis software

Tool Citation and descriptions

ADMIRE: Analysis and visualization of differential
methylation in genomic regions using the Infinium
HumanMethylation450 Assay

Preussner et al. [109]; online and offline. Adds experimental settings, quality
control, automatic filtering, normalization, multiple testing and differential
analyses genome browser tracks, table outputs and summary files.

BATMAN: Bayesian automated metabolite analyser for
Nuclear magnetic resonance (NMR) spectra

Hao et al. [110]; uses Markov chain Monte Carlo algorithm for sampling.
Bayesian-based approach.

KEGG: Gene Ontology Pathways

It is a database for mining and analysis of high-level functions. KEGG
enables analysis and data mining on different biological scales (e.g. cellular
and molecular-level information, whole organism, at ecosystem level,
etc—using data from high-throughput experiments; see https://www.
genome.jp/kegg).

IPA: Ingenuity Pathway Analysis

Krämer et al. [111]; platform enables exploration and visualization of
complex omics data (e.g. microarrays including miRNA, metabolomics,
proteomics, Ribonucleic acid sequencing (RNA-Seq), small RNA-Seq and
single-nucleotide polymorphism (SNP) and small-scale experiments); see
https://www.qiagenbioinformatics.com.

DAVID: Database for Annotation, Visualization and
Integrated Discovery

Huang et al. [112]; DAVID enables pathway mining and gene function
classification. Input is gene list from high-throughput genomic
experiments; see https://david.ncifcrf.gov.

the reliability of downstream data analysis. Reliable results
can be obtained from datasets with bisulfite conversion
rates higher than ∼0.999 (see, e.g. [113]—demonstrated using
their tool MethQA). However, they urge caution for datasets
with lower conversion rates. Modern commercially available
bisulfite sequence conversion kits generally indicate conversion
efficiencies of 90–100% [114]. An elaborate discussion on
methods for estimating conversion rate from bisulfite DNA
methylation data is provided in [115, 116].

Description of experiment: benchmarking
selected tools

We aimed to determine how the well-established computational
epigenomics methods perform on a small genome such as
A. thaliana with ∼130 Mbp (TAIR10) compared to a genome
with a high repeat content and much larger genome size
such as bread wheat—taking chromosome 1A (Chr1A) for
demonstration purpose [117]. We used bisulfite sequencing
data from two studies (with accession numbers SRR429549
[118, 119] for A. thaliana and ERR1141918 [89] for Triticum
aestivum; data from NCBI) and applied four methods: BSMap
[65], Bismark [64], BS-Seeker3 and segemehl [120]. Our analysis
focused on the speed and agreement of common methylated
sites between the tools. BS-Seeker3 was the fastest, followed
by BSMap, while Bismark and segemehl were the slowest
irrespective of genome size—especially for multiple threads
(Figure 1A and B). When using a single thread, segemehl
(keeping reads that mapped a maximum of three times)
performed slowest compared with the other methods. Overall,
the computation time required for the T. aestivum (Chr1A)
dataset is significantly longer than those from A. thaliana
(Figure 1A and B). When comparing the reported sites, we
found that, for A. thaliana, 562 051 sites are shared among all
four tools. While most sites were overlapping between BSMap,
BS-Seeker3 and Bismark, likely because they use the same
mapping software, segemehl reported only ∼10% of these sites.

However, for T. aestivum, ∼101 944 sites were reported with
most of them being reported in segemehl (Figure 1C and D).
The existence of such asymmetries requires more attention
and is certainly worth taking into consideration when using the
different computational tools. Other studies on comparisons
of the performance of epigenetics analysis tools, specifically
focusing on mapping short reads for bisulfite sequencing data,
can be found in the work of Tran et al. [121]. Several studies have
also compared runtime and memory consumption of different
epigenomics tools, such as Tran et al. [121] who compared the
five bisulfite short read-mapping tools BSMap, Bismark, BS-
Seeker, Bisulfite Sequencing Scorer (BiSS) and BRAT-BW and
Bismark performed best on real data, followed by BiSS, BSMap
and BRAT-BW and BS-Seeker. Recently, Huang et al. [71] proposed
BS-Seeker3—a fast mapping tool for bisulfite data and compared
it performance for runtime and sensitivity to sister tools like
Bismark, BRAT-nova and BSMap. Additional to being accurate
and versatile, Huang et al. concluded that BS-Seeker3 is an
ultra-fast pipeline to process bisulfite-converted reads. The tool
also aids visualization of methylation data, hence justifying its
comparability to the other three tools (Bismark, BRAT-nova and
BSMap).

We simulated reads from A. thaliana and bread wheat using
the tool by Sherman (https://www.bioinformatics.babraham.
ac.uk/projects/sherman) to test the performances of the four
tools by comparing the precision and sensitivity along all
chromosomes (Figure 2). The sensitivity, also sometimes referred
to as recall, is defined as TP/(TP + FN). The precision is defined
as TP/(TP + FP), where TP—true positive, FN—false negative
and FP—false positive. We observed best performances for
the Bismark, followed by BSMap and segemehl, while BS-
Seeker3 seemed to have a lower sensitivity in A. thaliana
compared to the other tools. For bread wheat a similar
order to performances of tools was observed when reads
where simulated for each subgenomes of chromosome 1
with the three genome copies. All scripts were provided
in GitHub (https://github.com/jomony/EPItools/blob/master/
README.md).
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Figure 1. Selection of epigenomics tools. (A and B) Results of the calculation user times for four common tools, Bismark, BSMap, BS-Seeker3 and segemehl. We used

data for A. thaliana and chromosome 1A in bread wheat (T. aestivum). n.a, values not available. (C and D) Overlap of detected sites in the two reference genomes for the

four mapping tools.

Figure 2. Precision and sensitivity analysis. Precision and sensitivity analysis for the A. thaliana data based on read mapping of simulated reads using the tool by Sherman

(https://www.bioinformatics.babraham.ac.uk/projects/sherman)—with the parameters (CG = 24, CH = 8, e = 0.5). (A) There is a large difference in the sensitivity of the

four tools. BS-Seeker3 was the least sensitive (sensitivity averaging ∼48%)—Bismark was the most sensitive (sensitivity, ∼99.9%). The sensitivity values for BSMap and

segemehl averaged ∼97% and 90%, respectively. (B) For bread wheat (T. aestivum), BSMap appears to be marginally less precise and less sensitive than segemehl. There

is consistency in the precision and sensitivity values for the subgenomes A, B and D in chromosome 1 of T. aestivum. Overall, the results from both (A) and (B) are in

agreement. Notably, BS-Seeker3 has a wide range of precision compared to the other three tools. Each data point represents the precision–sensitivity value based on a

simulation run for an individual tool. The precision and sensitivity values for Bismark, BSMap, BS-Seeker3 and segemehl averaged ∼(99%, 99%), (94%, 82%), (86%, 38%)

and (97%, 87%), respectively. Five simulation runs were performed for each tool—one for each of the A. thaliana chromosomes. The elliptical rings around each set of

data points represent the confidence bounds.
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Feature comparison between the tools and
related literature benchmarking
To further benchmark the performance of the tools, we used
bisulfite sequencing data from five plant genomes. These
genomes consist of the dicots: A. thaliana (genome size, ∼0.13 Gb;
SRR4295494), Arabidopsis lyrata (∼0.21 Gb; SRR3880297) and
Glycine max (∼1.2 Gb, SRR5079790) and also the monocots: T.
aestivum (chromosome 1A; size, ∼0.67 Gb; ERR1141918) and Oryza
sativa (∼0.43Gb; SRR7265433). Figure 3A shows the results of a
comparative analysis of the memory footprint analysis of the
performance of the four tools benchmarked using data from
five genomes. These results come from mapping the bisulfite
reads data to their respective reference genomes. Association
analysis was performed for each of the four tools as seen
in the linear regression model fits (Figure 3B–E). The results
show that the genome sizes for each of the five genomes
are significantly correlated to the memory footprint analysis
(P < 0.05).

The key attributes and parameters for the four tools are
summarized in Table S2. This table presents a summary of the
supported features in the four tools (BSMap, BS-Seeker3, Bismark
and segemehl). Such features are essential for deciding on which
tool to use for mapping reads and data analysis. Examples of
such features can also be found in the work of Guo et al. [70] and
Tran et al. [121]. Lee et al. [122] evaluated the mapping accuracy
and mapping rates for Bismark, BSMap and BS-Seeker2 as a
function of the error rates. Using WGBS data, they assessed the
influence of the error rates on the mapping rates and mapping
accuracy and observed that at low error rates (<4%), BSMap had
a higher mapping rate than Bismark and BS-Seeker2. On the
contrary, BSMap had a lower mapping accuracy than Bismark
and BS-Seeker2. They also showed that mapping accuracy is
independent of the methylation level.

A discussion on benchmarking approaches with a focus on
short sequence mapping tools is found in the work of Hatem
et al. [123]. They assess the performance of various aligners for
the read mapping tools and benchmark them using criteria such
as mapping percentage, running time and memory footprint.
Variations in parameters such as seed length, base quality and
single- or paired-end reads on the mapping quality are also
evaluated. Benchmarking of tools by comparing the performance
of each tool based on multiple attributes can be achieved in
various ways, for instance, by assessing (i) the effect of the read
length and sequencing error, (ii) the effect of data processing
and (iii) the effect of varying parameters in the tools. These
are some of the approaches discussed by Tran et al. [121]. They
compared the performance of epigenomic mapping tools such
as BSMap, Bismark, BS-Seeker, BRAT-BW [124] and the BiSS [125].
Tran et al. primarily benchmarked the performance of the tools
basing on mapping efficiency (as the percentage of reads that
map uniquely to the genome) and the central processing unit
(CPU) time.

Outlook
In the near future, there is a need for more comparative
analyses to explore the epigenomes of diverse plants in different
development stages together with various stress factors. This
would enable the discovery of exclusive and common epigenetic
regulatory mechanisms. Uncovering and exploiting such mech-
anisms could potentially promote adaptation to changing envi-
ronmental conditions. Moreover, a large number of methylomes
are required to study the effect of the environment and stress

conditions on the epigenomic state of a single plant [126, 127].
Resources like the 1001 Epigenomes Project (https://1001
genomes.org) in A. thaliana are exciting datasets to aid in our
understanding of the role of the epigenome. However, it remains
unclear whether the observations in these studies are directly
applicable to crops.

Computational tools are instrumental for bridging the gap
between mapping of sequenced reads, the accurate prediction
of methylated sites and their statistical analysis However, this
effort is hampered by variations in the size of epigenomic marks
and the complexity associated with normalizing peaks. The
need to increase crop yield on the same amount, and in some
cases dwindling, of arable land is another important aspect that
requires advancements in epigenomics studies. Several studies
have shown that during seed and grain development, the plant
epigenome changes and leads to gene silencing. Therefore, a
change in the epigenetic state of a plant would result in an
increase in its likelihood of adapting from one geographical
location to another or to different environmental conditions.

Lämke and Bäur [128] argued that such modifications have
the potential to provide a mechanistic basis for stress memory
in plants. This enables plants to respond more efficiently to
recurring stress from the environment, for instance, drought
and salinity stress [129], a topic that was reviewed by Golldack
et al. [130] (and more recently by Yang and Guo [131] and Abhi-
nandan et al. [132]). This might enable plants to prepare their
offspring for future attacks from stressors and to improve their
adaptation to specific stress factors [130]. Plant adaptation to
stress might enable us to explore new ways to improve yield,
for instance, by shortening or prolonging the time for grain
development, by finding ways to regulate the expression of the
three homeologs in wheat or by interfering with fruit ripening
(as seen in tomatoes [133–135] and other fruits like peach, apples
and strawberries [136]). A more intriguing discussion on the
epigenetic mechanisms of plant stress response and adaptation
to different environmental conditions was reviewed in [137–139].

In this review, we have discussed the use of bioinformatics
tools to study DNA methylation data in plants. Notably, several
studies in humans and mouse were successfully performed
using popular tools like BSMap, BS-Seeker/BS-Seeker2/BS-
Seeker3, Bismark in mouse and segemehl in human cancer
cell lines. For the analysis of bisulfite sequence data, most of
the fundamentals of the chemical background and methylation
principles are the same; however, the major difference between
the use of such tools in plants and animals (specifically, in
humans and mouse) is the genome structure organization and
the presence of predominantly more CHG/CHH methylation
contexts in plants. The most predominant context of DNA
methylation in mammals is the symmetric CG—estimated to
be at ∼70–80% of CG dinucleotides genome-wide [140]. The
mechanisms of regulation and function of DNA methylation
vary in animals and plants [141, 142]. These variations in
regulation and function mechanism, coupled with genome
structure differences and complexity levels, is a motivating
factor for integrating small subtle differences in mapping
and analysis tools for epigenome data. Another important
difference of plants and animals is how they are able to
demethylate their genome. So far, enzymes removing directly
the methyl group from cytosines have not been identified in
plants, but they are important components of mammalian DNA
methylation homeostasis. Plants use either passive mecha-
nisms (not maintaining methylation during DNA replication)
or base excision and subsequent repair for direct removal
of methylated cytosines. Unlike with the human genome,
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Figure 3. Memory footprint analysis for the four tools—benchmarked on five genomes. (A) Barplots showing variation in attained memory footprint between the tools

benchmarked on different genomes. (B–E) Correlation analysis of genome size and memory footprint analysis. A benchmark of the four tools, (B) BSMap, (C) BS-Seeker3,

(D) Bismark and (E) segemehl. The genome sizes are all significantly correlated to the memory footprint analysis (P < 0.05). Dotted line, fitted regression line; Dots, data

points.
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the CHG/CHH contexts that are more abundant in plants
[143] need to be integrated into the mapping and analysis
of methylome data. Many plants have large and repetitive
genomes compared to that of humans. Such large genomes
are a limiting factor in the analysis since they require a lot of
computational resources. The sequence mapping to references
and statistical computational time for large genomes such that
of bread wheat (∼17 Gb) and barley (∼5.3 Gb) is likely to scale
linearly.

Concluding remarks
In the last decade, there has been tremendous progress in the
development of tools for analyzing epigenomic data; however,
numerous challenges remain. For instance, the visualization
capacity of many tools remains either inadequate or lacks
essential modules for handling and displaying statistical
outcomes from the resulting analysis. Additionally, the ability
of these tools to scale-up and to handle large genomes
remains an issue for further exploration. Technically, most
computational tools for analyzing epigenomic data perform
well for datasets from organisms with a genome size that is
smaller than the human genome (∼3 Gb). For much larger
and complex genomes, more computational resources are
required, and the genome structure (whether diploid, hexaploidy
or tetraploid) and repetitive nature of the genome have to
be taken into consideration during mapping to a reference
genome. This is demonstrated in our example where we
compared the mapping efficiency for Arabidopsis and a wheat
chromosome; however, the complexity in genome structure, the
presence of TEs and the lack of consistent gene annotations for
some plants remain a major obstacle to advancing epigenetic
research.

In the next decade, there is likely to be a steady improvement
in sequencing methods and performance of already existing
computational algorithms. Recently, it was shown that even
well-established sequencing methods might be prone to errors,
leading to misleading results, e.g. DNA immunoprecipitation
sequencing [144]. Discovering and amending such errors can
lead to new findings from the previous studies and limit these
errors’ damage to future studies. This will aid further epigenetic
research not only in plants but also in life sciences in general.
Additionally, a few tools have the capability to effectively get
more information out of low-coverage data. Developing new
tools or improving on existing ones to attain optimal results
using low coverage data and fewer replicates would save experi-
ment and sequencing costs. A high sequence coverage allows for
good data quality and enables robust statistical analysis [145].
Achieving high sequence coverage can be quite expensive and
the minimum desired coverage can depend on the research
objectives at hand. Typically, a coverage value of 5–10× is suf-
ficient for many comparative studies and for achieving reliable
methylation calls [145]. However, studies have demonstrated
that coverage values as low as 2× is sufficient [146]. Accurate
identification of DMRs in large samples, especially between
multiple conditions, remains a challenge—despite tremendous
progress already made in this area.
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Key Points
• We introduce the concepts of epigenetics in plants and

discuss commonly used tools—with a focus on their
capabilities.

• Integration of bioinformatics tools needed to under-
stand epigenomics datasets in crops.

• The presence of repetitive elements in the genome
influences the prediction of methylated sites.

• We list the runtime and computational requirement for
a small and large complex genome and demonstrate
their overlaps in four most applied tools.

• Different tools have different levels of asymmetry with
regards to their mapping and methylation call statistics.
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