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42 Abstract

43 Genome-wide DNA methylation studies have quickly expanded due to advances in next-

44 generation sequencing techniques along with a wealth of computational tools to analyze the 

45 data. Most of our knowledge about DNA methylation profiles, epigenetic heritability, and the 

46 function of DNA methylation in plants derives from the model species Arabidopsis thaliana. 

47 There are increasingly many studies on DNA methylation in plants – uncovering methylation 

48 profiles and explaining variations in different plant tissues. Additionally, DNA methylation 

49 comparisons of different plant tissue types and dynamics during development processes are only 

50 slowly emerging but are crucial for understanding developmental and regulatory decisions. 

51 Translating this knowledge from plant model species to commercial crops could allow the 

52 establishment of new varieties with increased stress resilience and improved yield. In this review, 

53 we provide an overview of the most commonly applied bioinformatics tools for the analysis of 

54 DNA methylation data (particularly bisulfite sequencing data). The performances of a selection of 

55 the tools are analyzed for computational time and agreement in predicted methylated sites for A. 

56 thaliana, which has a smaller genome compared to the hexaploid bread wheat. The performance 

57 of the tools was benchmarked on five plant genomes. We give examples of applications of DNA 

58 methylation data analysis in crops (with a focus on cereals) and an outlook for future 

59 developments for DNA methylation status manipulations and data integration. 

60 Keywords: epigenomics, epigenetics, bisulfite sequencing, DNA methylation, plants, 

61 differentially methylated regions.

62
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64 Introduction

65 Methylation of cytosine at carbon position 5 (also termed 5-meC) is a hallmark of an epigenetic 

66 modification and 5-meC has been described as the 5th base of DNA [1]. Although the extent and 

67 context of 5-meC vary considerably between different plant lineages, all plants whose genomes 

68 have been sequenced and analyzed so far show substantial DNA methylation [2, 3]. Two major 

69 genomic contexts can be distinguished: (i) methylation on gene bodies and (ii) methylation on 

70 repeat sequences and transposons. Gene body methylation typically peaks on exons of 

71 moderately transcribed genes and, despite a comprehensive body of publications [3-5], its 

72 function remains mysterious [6]. Methylation on repeat sequences and transposons is crucial for 

73 suppressing transcription and is necessary for establishing heterochromatic domains. 

74 Consequently, mutations that abolish most DNA methylation lead to transposon activation and 

75 genomic meltdown after several generations in Arabidopsis thaliana. However, in early 

76 generations, the mutation can be outcrossed and selfed offspring will be isogenic but with 

77 different DNA methylation states [7-9]. Experiments along these lines have established that 

78 these differences in DNA methylation can be stably inherited over many generations and 

79 influence ecologically relevant phenotypic traits [10-15]. 

80 In contrast to animals, which only maintain CG methylation, in most plants 5-meC occurs also in 

81 several sequence contexts (CG, CHG, and CHH, where H is any of the bases A, T, or C) and is 

82 catalyzed by different methyl-transferases acting on different DNA methylation pathways. In A. 

83 thaliana, CG methylation is maintained by MET1, CHG methylation by CMT3, and CHH by CMT2 

84 and the RNA induced DNA methylation pathway (RdDM). CG methylation occurs in euchromatin 

85 and heterochromatin whereas CHG and CHH methylation decorate repeats and transposons 

86 [16]. The cross-functioning and redundant DNA methylation pathways form a nuclear/DNA 

87 protection system that aids in identifying invading transposons and permanently shutting off their 

88 expression (see review by Kim et al. [17]). 
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89 Lister and Ecker [18] argued that 5-meC should be used as a dynamic fifth letter of the genomic 

90 code because of the important implications of methylation. It has become tractable to analyze 

91 genome-wide DNA methylation states in populations or across different plant species because of 

92 advances in next-generation sequencing (NGS) technologies. Much effort has been undertaken 

93 to determine the landscape of DNA methylation changes especially in A. thaliana and other land 

94 plants such as rice and tomato, which have had reference genomes available for several years 

95 [19, 20]. DNA methylation patterns vary widely among animals; Drosophila completely lacks CG 

96 methylation while the human genome is highly methylated (~75% of the cytosines). In A. 

97 thaliana, ~24% of the CGs, ~ 6.7% of the CHGs, and ~1.7% of the CHHs are methylated [21, 

98 22]. 

99 Plants have varying levels of repeat content, which might be the result of bursts of single-repeat 

100 retro-elements, which can amplify rapidly using a reverse transcription step to make multiple 

101 copies, or DNA transposons, which use a copy-and-paste strategy [23, 24] and thus can amplify 

102 during DNA replication. While the repeat content is only ~20% in Arabidopsis, in cereals such as 

103 barley and wheat the repeat content can be up to 90%. Together with the presence of three 

104 subgenomes in hexaploid wheat, these repeats requires tightly regulated epigenetic mechanisms 

105 [25]. Genes have evolved different mechanisms for tolerating transposable elements (TEs) in 

106 their vicinity [26, 27]. Hirsch and Springer [28] provide a review of the interactions between TEs 

107 and gene expression in plants. They discuss three mechanisms by which transposons influence 

108 gene expression, namely: (i) the prevailing evidence that TE insertions within introns or 

109 untranslated regions of genes are often tolerated and have minimal impact on gene expression 

110 levels or splicing. Conversely, TE insertions within genes lead to aberrant or novel transcripts; (ii) 

111 TEs act as novel alternative promoters – with the potential to result in different expression 

112 patterns; and (iii) TE insertions near genes can influence gene regulation. In Arabidopsis two 
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113 genes (IBM1 and IBM2) have been identified that prevent spreading of CHG and CHH 

114 methylation from transposons into gene bodies or promotors.

115 Interestingly, DNA methylation levels can also affect how plants respond to stress. Arabidopsis 

116 mutants with reduced global DNA methylation show increased expression of defense related 

117 genes and enhanced resistance to pathogens [29]. Polymorphisms of CMT2 correlate with DNA 

118 methylation variation along a longitudinal temperature gradient in natural populations [30] and 

119 cmt2 plants are more heat tolerant [31]. Isogenic lines with different DNA methylation states 

120 show differences in their ability to compete in synthetic plant communities [32]. Similar influences 

121 on stress tolerance have also been observed in monocots, and wheat with experimentally 

122 reduced DNA methylation show resilience to salt and oxidative stress. The dynamics of the 

123 methylation state of genomic elements are tissue-specific (for instance, in A. thaliana seedlings 

124 [33-35]) and differ between juvenile and mature plants (e.g. in a study of Acacia mangium [36]). 

125 Reduced DNA methylation also results in abnormal plant development in A. thaliana [37]; hence, 

126 an optimally regulated level of methylation is vital for normal plant growth and development. 

127 Plant-pathogen invasion can also influence methylation levels in different ways. For instance, 

128 genome-wide hypomethylation and hypermethylation influence resistance-related genes [38] and 

129 alter gene expression profiles, resulting in plant adaptation to stress. Wang et al. [39] showed 

130 that drought-induced alterations to DNA methylation in rice influence an epigenetic mechanism 

131 that regulates gene expression. As a major modification of the eukaryotic genome, DNA 

132 methylation significantly influences gene expression. Methylation of genomic features can lead to 

133 different gene regulatory effects. For instance, alteration of a gene’s expression potential is a 

134 result of DNA methylation affecting the interaction between transcription factors and DNA with 

135 chromatin proteins [40]. Additionally, methylation of the promoter region results in repression of 

136 gene expression and gene body methylation leads to the opposite effect [41, 42]. Studies have 
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137 shown that gene body methylated genes are constitutively expressed in a wide range of 

138 conditions and tissues [6].

139 Chemistry of bisulfite conversion and sequencing

140 Bisulfite sequencing is generally done in three main steps, namely: (i) denaturing, (ii) bisulfite 

141 treatment, and (iii) polymerase chain reaction (PCR) amplification. In bisulfite conversion, DNA is 

142 denatured in a process that separates the forward and reverse strands. This is followed by 

143 treatment with sodium bisulfite, which converts unmethylated cytosine into uracil – which is then 

144 converted to thymine during PCR [43]. Quantification of the abundance of each cytosine can be 

145 achieved via Sanger sequencing [44] or NGS technologies [45]. The DNA strands cease to be 

146 complementary after bisulfite conversion. Treatment of genomic DNA with sodium bisulfite [46] 

147 enables us to distinguish between highly similar (and yet different) methylated cytosine, which 

148 has the same base-pairing features as unmethylated cytosine. Mapping read sequences to a 

149 reference genome enables the determination of positions with matching and mismatching bases. 

150 This process enables identification of methylated and unmethylated bases.

151 Bisulfite sequencing can be accomplished with different sequencing kits depending on whether 

152 whole-genome bisulfite sequencing (WGBS) or reduced representation bisulfite sequencing 

153 (RRBS) (WGBS: Lister and Ecker [18], RRBS: Jeddeloh et al. [47], Schmidt et al. [48]) is 

154 performed. Currently, WGBS remains the most informative method for generating DNA 

155 methylation data. It provides a huge wealth of data and requires no prior targeting. Unlike 

156 WGBS, which is expensive, RRBS can be performed more economically because it is restricted 

157 to CpG-enriched regions that make up a smaller portion of the genome. The restriction enzyme 

158 Msp1 cleaves at 5’-C*CGG-3’ targets (base preceding * is methylated), thereby, mainly CpG-rich 

159 regions are targeted – which is advantageous for large genomes. 

160 Typical workflow for processing bisulfite sequencing data
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161 Before reads are mapped to a reference genome, the sequencing quality of reads can be 

162 checked with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) or NGS QC 

163 Toolkit [49] followed by removing low-quality bases and adapters with, among others, Trim 

164 Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), cutadapt [50], or 

165 Trimmomatic [51]. However, some WGBS data processing tools integrate various analytic steps - 

166 enabling data preprocessing, read alignment, a more robust statistical analysis which output 

167 statistics such as read coverage, the percentage of uniquely aligned reads, and statistics on the 

168 three methylation contexts (CpG/CHG/CHH). One such tool is gemBS [52], which is a recently 

169 published pipeline for processing and analysis of WGBS data. The pipeline integrates data pre-

170 processing and analysis steps from adaptor trimming through downstream statistical analysis of 

171 mapping results. gemBS uses the high-performance read aligner GEM3 [53] as a dependency 

172 and BScall (embedded in samtools, bcftools; http://samtools.sourceforge.net/) which is a variant 

173 caller for bisulfite sequencing data. Both GEM3 and BScall support single and paired-end reads. 

174 Further reading on the generic workflow of analyzing WGBS is found in the work of Liang et al. 

175 [54] and Wrecyzcka et al. [55]. 

176 Non-bisulfite based methods and related bioinformatics tools

177 While bisulfite sequencing methods represent the most popular approaches for analyzing 

178 epigenomic data, there are other approaches within the field of DNA modification based 

179 methods. These approaches include MeDIP-seq and MethylCap-seq, in methylated DNA 

180 immunoprecipitation (MeDIP) analyses [56] where the genomic DNA is randomly sheared, 

181 sonicated, and immunoprecipitated with an antibody recognizing 5-methylcytidine. Precipitated 

182 DNA can either be sequenced or hybridized to microarrays. MethylCap-seq uses the methyl-CpG 

183 Binding Domain (MBD) of MeCP2 [57] while oxBS [58] is used to specifically detect 5-

184 methylcysteine (5mC) and 5-hydroxymethylcytosine (5hmC) which can be also done with Tet-

185 assisted bisulfite sequencing (Tet) [59]. CAB and fCAB for the recognition of 5caC [60]. Notably, 
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186 the presence/absence of 5hmC in plants remains contentious. Some scholars claim that 5hmC is 

187 present in plants [61, 62] while others claim its absent [63]. A comprehensive overview of the 

188 various tools is given at https://omictools.com/medip-seq-category.

189 Tools for analyzing epigenomics datasets

190 Bismark [64] and BSMap [65], as one of the first published tools for quantifying epigenomic 

191 datasets had to address the challenge of attaining high read mapping efficiency to enable a 

192 sensitive sequence search. Bowtie [66], Merman [67], SNAP (http://snap.cs.berkeley.edu/), and 

193 Bowtie2 [68] have been used as dependencies in epigenomics tools, for instance, BS-Seeker 

194 [69], BS-Seeker2 [70], BS-Seeker3 [71], BRAT-nova [72], WALT [73] and Bismark, which are 

195 currently among the most commonly applied tools for mapping bisulfite methylation data. We 

196 outlined the most common tools for mapping bisulfite sequencing data along with tools that allow 

197 for the detection and analysis of differentially methylated regions (DMRs). The program 

198 parameters as well as input and output data formats are specified in Table S1. This table 

199 provides an overview of the main tools for mapping and analysis of epigenomic data – 

200 particularly for bisulfite sequencing data. Additionally, we also categorized the tools into three 

201 major classes, namely: (a) mapping, (b) statistical analysis, and (c) complete pipelines (Table 

202 S1). The defining features for each tool, such as their ability to handle single or double-stranded 

203 sequence data as well as their ability to process data and perform down-stream statistical 

204 analysis, are also provided. Reviews by Adusulalli et al. [74], Shafi et al. [75] and Wrecyzcka et 

205 al. [55] complement our overview Table S1. The most frequently applied computational 

206 epigenetics methods were applied and tested using DNA methylation data, particularly with data 

207 acquired from bisulfite sequencing experiments. Therefore, there are many statistical procedures 

208 available for analyzing methylome data – categorized into the parametric and non-parametric 

209 approach. Both approaches are widely used in the literature [76]. For instance, MethylMix [77] is 

210 an excellent example of a parametric approach which uses Bayesian mixture models to identify 
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211 DNA methylation states of genes as either hypo- or hypermethylated. The method entails fitting a 

212 distribution function onto the frequencies of DNA methylation counts. The advantage of using 

213 non-parametric models is that no prior knowledge of the data distribution is required. However, 

214 when such knowledge is available, then parametric models are the preferred choice for 

215 modelling such data. MethylMix quantifies the effect of DNA methylation on genes, which is 

216 interesting for integrative studies that aim at establishing the association between the 

217 methylation states of the individual genes and their expression profiles. Investigating such 

218 associations unravels any hidden variations within and between samples (or tissues) as 

219 illustrated in [78-80]. Lea et al. [81] discussed the applications of mixed models on DNA 

220 methylation in plant epigenetics. They specifically focused on the binomial mixed model with the 

221 sampling-based algorithm (MACAU: Mixed model association for count data via data 

222 augmentation) for the approximation of parameters and computation of p-values. Other 

223 modelling frameworks are based on algorithms that integrate various analytical steps resulting in 

224 the detection of DMRs across the entire genome, for instance: (i) the weighted optimization 

225 algorithm proposed in [82] (which is an extension of MethylKit [83]), and (ii) ChAMP.DMR [84] 

226 which applies the Bumphunter [85] or ProbeLasso Algorithm [86]. An example of a non-

227 parametric model is the Bayesian approach based on the Dirichlet-process beta-mixture model – 

228 which is used for clustering methylation profiles [76]. The model considers the DNA methylation 

229 expressions consisting of an infinite number of beta mixture distributions [87, 88].

230 DNA methylation: plant physiology and pathophysiology

231 Investigating the dynamics of DNA methylation in plant growth and development requires the 

232 analysis of samples from different plant tissues (e.g. Bartels et al. [34]). To our knowledge, no 

233 existing software has been developed specifically for the analysis of plant physiology and 

234 pathophysiology. However, there are many studies analyzing bisulfite data using samples from 

235 different plant developmental stages (from seedlings to mature plants). For instance, Bismark – 
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236 in leaf tissues from bread wheat seedlings [89], BSMap – for various datasets from different 

237 tissues in A. thaliana [90], and BS-Seeker2 – for young Zea mays leaves [91]. With rapid 

238 advancements in the development of software/tools for analysis of epigenomes, we are 

239 optimistic such tools will soon be available to the public.

240 Differentially methylated regions and their significance

241 Genomic regions (or bases) with different methylation profiles between samples are known as 

242 differentially methylated regions (DMRs). This is also referred to as differentially methylated CpG 

243 sites since the CpG-methylated sites occur in much larger numbers compared to the non-CpG 

244 contexts (CHG and CHH) [92, 93]. Peak detection enables the identification of CpG islands – 

245 which are essential for differentiating methylation profiles between samples (typically between 

246 controls and test samples). CpG islands are not randomly distributed in the genome but are 

247 instead grouped close together [94]. Long stretches of non-dense CpG sites, known as CpG 

248 shores can also be detected. Combining the methylation profiles of both CpG-islands and CpG-

249 shores enables more efficient comparative analysis of DNA methylation profiles between 

250 samples.

251 Various statistical algorithms have been proposed for identifying DMRs – the most popular ones 

252 being: methylKit [83], metilene [95], DMRcaller [96], and Bumphunter [85]. For elaborate 

253 discussions on the DMR detection methods and a discussion on choosing the right method for 

254 DMR detection see Hebestreit et al. [97], and Kurdyukov and Bullock [98]. The tools are written 

255 and compiled in different programming languages (e.g. R, Python, Perl, Java, C, and C++; Table 

256 S1). Essentially, such tools are used to identify DMRs from either targeted regions of the 

257 genome or from the whole genome. Critical considerations have to be made, e.g. the choice of 

258 experimental designs for experiments and statistical methods for data analysis [99]. DMRs are 

259 intricately linked to transcription and the abundance of CpG sites (CpG islands). A high 
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260 concentration of CpG sites are often found within the promoter regions of genes – so it is 

261 essential to accurately identify such sites. Methylation of promoter regions influences the level of 

262 transcription – heavy methylation disrupts transcription and de-methylation leads to transcription 

263 reactivation [100-102].

264 Peak identification and normalization are crucial initial steps in analyzing DNA methylation data 

265 and visualization and can be useful for comparing datasets and judging the performance and 

266 agreement between tools. Post-processing and visualization of (differentially) methylated sites 

267 enable high-resolution exploration and comparison of regions in the genome for variations in 

268 methylation profiles. Therefore, tools like BiQ [103] and BSeQC [104] have aided quality control 

269 and visualization of methylation data, thereby enabling researchers to explore data attributes and 

270 perform data quality control before analysis. There are many methods for clustering methylation 

271 marks such as the dynamic genome warping [105] approach which uses hierarchical clustering 

272 and the combination of different epigenomics analytic platforms and data integrative modules. 

273 Dynamic genome warping has been demonstrated to be a reliable way to get more meaningful 

274 results from datasets (for instance, Chari et al. [106]). To utilize this method, Liang et al. [54] 

275 developed a web-server to analyze whole-genome bisulfite sequencing data and their platform 

276 includes major steps for detection and mapping of the conversion rate, detection of DMRs, and 

277 their association to gene expression. Wreczycka et al. [55] discussed data requirements and 

278 computational attributes for specific software and assess bisulfite sequencing data analysis 

279 methods, alignment and data processing, detection of differential methylation, and assess 

280 strategies for handling large epigenetic datasets. In contrast, our work highlights existing 

281 asymmetries between mapping tools and contrasts their computational capabilities. 

282 Another important aspect in plant epigenetics is how hypomethylation and hypermethylation 

283 affects gene expression. The concept of hypomethylation and hypermethylation is not limited to 

284 plants as they have also been extensively studied in cancer progression in humans [107], 

Page 12 of 36

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page 13 of 30

285 coronary heart disease [108] and eukaryotes in general [109]. The division of DMRs into hypo- 

286 and hypermethylated enables investigations into the influence of both types of methylation on 

287 gene expression. Many computational tools have integrated modules that enable the extraction 

288 and quantification of the extent of hypo- and hypermethylation in genes. One such tool is 

289 MethylMix, which requires that changes in a gene’s methylation state must also agree with its 

290 expression profile. Additionally, it requires a treatment and control sample (for agricultural 

291 studies) or healthy and disease conditions (for clinical studies).

292 Downstream analyses of bisulfite methylome data

293 After data processing and calling of methylation sites, downstream analysis can be performed – 

294 including the functional annotation of differentially methylated regions and analysis of the 

295 associated pathways influenced by the targeted genes. Such analysis enables the assignment of 

296 functions and gene annotation as seen in the overviews of Bioinformatics omicX tools 

297 (https://omictools.com/epigenomics-category). Examples of tools for performing downstream 

298 analysis are given in Table 1.

299 Technical challenges: conversion rate, repetitive regions and 

300 differentially methylated regions (DMRs)

301 The main challenges in the analysis of DNA methylation data include incomplete methylation 

302 patterns and overdispersion of read-mappings [110-112]. Here, overdispersion means the 

303 presence of variability in the reads compared to the expected read distributions based on a given 

304 model structure. When epigenomics marks coincide with repetitive regions in the genome, 

305 mapping tools need to keep reads that map to multiple genomic locations – making these tools 

306 slower and computationally memory-intensive. This problem can be partly circumvented through 

307 parallel computing using multiple threads, especially for larger repetitive plant genomes. 
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308 Conversion rates

309 As a method for studying DNA methylation, bisulfite conversion involves the conversion of 

310 cytosine to uracil (while 5-methylcytosine, 5-mC remains unchanged). Bisulfite sequence 

311 conversion rates vary for different datasets. It is essential for conversion rates to be determined 

312 accurately to ensure the reliability of down-stream data analysis. Reliable results can be obtained 

313 from datasets with bisulfite-conversion rates higher than ~0.999 (see e.g. Sun et al. [113] – 

314 demonstrated using their tool MethQA). However, they urge caution for datasets with lower 

315 conversion rates. Modern commercially available bisulfite sequence conversion kits generally 

316 indicate conversion efficiencies of 90–100% [114]. An elaborate discussion on methods for 

317 estimating conversion rate from bisulfite DNA methylation data is provided in [115, 116].

318 Description of experiment: benchmarking selected tools

319 We aimed to determine how the well-established computational epigenomics methods perform 

320 on a small genome such as A. thaliana with ~130 Mbp (TAIR10) compared to a genome with a 

321 high repeat content and much larger genome size such as bread wheat – taking chromosome 1A 

322 (Chr1A) for demonstration purpose, IWGSC.v1 et al. [117]. We used bisulfite sequencing data 

323 from two studies (with accession numbers SRR429549 [118, 119] for A. thaliana and 

324 ERR1141918 [89] for T. aestivum, data from NCBI) and applied four methods: BSMap [65], 

325 Bismark [64], BS-Seeker3, and segemehl [120]. Our analysis focused on the speed and 

326 agreement of common methylated sites between the tools. BS-Seeker3 was the fastest, followed 

327 by BSMap, while Bismark and segemehl were the slowest irrespective of genome size – 

328 especially for multiple threads (Figure 1: A and B). When using a single thread, segemehl 

329 (keeping reads that mapped a maximum of 3 times) performed slowest compared with the other 

330 methods. Overall, the computation time required for the T. aestivum (Chr1A) dataset is 

331 significantly longer than those from A. thaliana (Figure 1: A and B). When comparing the 
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332 reported sites, we found that, for A. thaliana, 562,051 sites are shared amongst all four tools. 

333 While most sites were overlapping between BSMap, BS-Seeker3 and Bismark, likely because 

334 they use the same mapping software, segemehl reported only ~10% of these sites. However, for 

335 T. aestivum, ~101,944 sites were reported with most of them being reported in segemehl (Figure 

336 1: C and D). The existence of such asymmetries requires more attention and is certainly worth 

337 taking into consideration when using the different computational tools. Other studies on 

338 comparisons of the performance of epigenetics analysis tools, specifically focusing on mapping 

339 short reads for bisulfite sequencing data, can be found in the work of Tran et al. [121]. Several 

340 studies have also compared run-time and memory consumption of different epigenomics tools, 

341 such as Tran et al. [121] who compared the five bisulfite short read mapping tools BSMap, 

342 Bismark, BS-Seeker, BiSS and BRAT-BW and Bismark performed best on real data, followed by 

343 BiSS, BSMap and BRAT-BW and BS-Seeker. Recently, Huang et al. [71] proposed BS-Seeker3 

344 – a fast mapping tool for bisulfite data, and compared it performance for run-time and sensitivity 

345 to sister tools like Bismark, BRAT-nova, and BSMap. Additional to being accurate and versatile, 

346 Huang et al. concluded that BS-Seeker3 is an ultra-fast pipeline to process bisulfite-converted 

347 reads. The tool also aids visualization of methylation data; hence, justifying its comparability to 

348 the other three tools (Bismark, BRAT-nova and BSMap).

349 We simulated reads from A. thaliana and bread wheat using the tool by Sherman 

350 (https://www.bioinformatics.babraham.ac.uk/projects/sherman/) to test the performances of the 

351 four tools by comparing the precision and sensitivity along all chromosomes (Figure 2). The 

352 sensitivity, also sometimes referred to as recall, is defined as TP/(TP+FN). The precision is 

353 defined as TP/(TP+FP), where TP – true positive, FN – false negative and FP – false positive. 

354 We observed best performances for the Bismark, followed by BSMap and segemehl, while BS-

355 Seeker3 seemed to have a lower sensitivity in A. thaliana compared to the other tools. For bread 

356 wheat a similar order to performances of tools was observed when reads where simulated for 
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357 each subgenomes of chromosome 1 with the three genome copies. All scripts were provided in 

358 GitHub (https://github.com/jomony/EPItools/blob/master/README.md).

359 Feature comparison between the tools and related literature benchmarking

360 To further benchmark the performance of the tools, we used bisulfite sequencing data from five 

361 plant genomes. These genomes consist of the dicots: Arabidopsis thaliana (genome size 

362 ~0.13Gb, SRR4295494), Arabidopsis lyrata (~0.21Gb, SRR3880297) and Glycine max (~1.2Gb, 

363 SRR5079790), and also the monocots: Triticum aestivum (chromosome 1A, size ~0.67Gb, 

364 ERR1141918) and Oryza sativa (~0.43Gb, SRR7265433). Figure 3(A) shows the results of a 

365 comparative analysis of the memory footprint analysis of the performance of the four tools 

366 benchmarked using data from five genomes. These results come from mapping the bisulfite 

367 reads data to their respective reference genomes. Association analysis was performed for each 

368 of the four tools as seen in the linear regression model fits (Figure 3: B to E). The results show 

369 that the genome sizes for each of the five genomes are significantly correlated to the memory 

370 footprint analysis (p-values < 0.05).

371 The key attributes and parameters for the four tools are summarized in Table S2. This table 

372 presents a summary of the supported features in the four tools (BSMap, BS-Seeker3, Bismark, 

373 and segemehl). Such features are essential for deciding on which tool to use for mapping reads 

374 and data analysis. Examples of such features can also be found in the work of Guo et al. [70] 

375 and Tran et al. [121]. Lee et al. [122] evaluated the mapping accuracy and mapping rates for 

376 Bismark, BSMap, and BS-Seeker2 as a function of the error rates. Using whole genome bisulfite 

377 sequencing data, they assessed the influence of the error rates on the mapping rates and 

378 mapping accuracy and observed that at low error rates (<4%), BSMap had a higher mapping rate 

379 than Bismark and BS-Seeker2. On the contrary, BSMap had a lower mapping accuracy than 
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380 Bismark and BS-Seeker2. They also showed that mapping accuracy is independent of the 

381 methylation level.

382 A discussion on benchmarking approaches with a focus on short sequence mapping tools is 

383 found in the work of Hatem et al. [123]. They assess the performance of various aligners for the 

384 read mapping tools and benchmark them using criteria such as mapping percentage, running 

385 time and memory footprint. Variations in parameters such as seed length, base quality, single- or 

386 paired-end reads on the mapping quality are also evaluated. Benchmarking of tools by 

387 comparing the performance of each tool based on multiple attributes can be achieved in various 

388 ways, for instance, by assessing the: (i) effect of the read length and sequencing error, (ii) effect 

389 of data processing, and (iii) effect of varying parameters in the tools. These are some of the 

390 approaches discussed by Tran et al. [121]. They compared the performance of epigenomic 

391 mapping tools such as BSMap, Bismark, BS-Seeker, BRAT-BW [124] and the Bisulfite 

392 Sequencing Scorer (BiSS) [125]. Tran et al. primarily benchmarked the performance of the tools 

393 basing on mapping efficiency (as the percentage of reads that map uniquely to the genome) and 

394 the CPU time.

395 Outlook

396 In the near future, there is a need for more comparative analyses to explore the epigenomes of 

397 diverse plants in different development stages together with various stress factors. This would 

398 enable the discovery of exclusive and common epigenetic regulatory mechanisms. Uncovering 

399 and exploiting such mechanisms could potentially promote adaptation to changing environmental 

400 conditions. Moreover, a large number of methylomes are required to study the effect of the 

401 environment and stress conditions on the epigenomic state of a single plant [126, 127]. 

402 Resources like the 1001 epigenomes project (https://1001genomes.org/) in A. thaliana are 
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403 exciting datasets to aid in our understanding of the role of the epigenome. However, it remains 

404 unclear whether the observations in these studies are directly applicable to crops. 

405 Computational tools are instrumental for bridging the gap between mapping of sequenced reads, 

406 the accurate prediction of methylated sites, and their statistical analysis However, this effort is 

407 hampered by variations in the size of epigenomic marks and the complexity associated with 

408 normalizing peaks. The need to increase crop yield on the same amount, and in some cases 

409 dwindling, of arable land is another important aspect that requires advancements in epigenomics 

410 studies. Several studies have shown that during seed and grain development, the plant 

411 epigenome changes and leads to gene silencing. Therefore, a change in the epigenetic state of a 

412 plant would result in an increase in its likelihood of adapting from one geographical location to 

413 another or to different environmental conditions. 

414 Lämke and Bäur [128] argued that such modifications have the potential to provide a mechanistic 

415 basis for stress memory in plants. This enables plants to respond more efficiently to recurring 

416 stress from the environment, for instance drought and salinity stress [129], a topic that was 

417 reviewed by Golldack et al. [130] (and more recently by Yang and Guo [131] and Abhinandan et 

418 al. [132]). This might enable plants to prepare their offspring for future attacks from stressors and 

419 to improve their adaptation to specific stress factors [130]. Plant adaptation to stress might 

420 enable us to explore new ways to improve yield, for instance by shortening or prolonging the time 

421 for grain development, by finding ways to regulate the expression of the three homeologs in 

422 wheat, or by interfering with fruit ripening (as seen in tomatoes [133-135] and other fruits like 

423 peach, apples, and strawberries [136]). A more intriguing discussion on the epigenetic 

424 mechanisms of plant stress response and adaptation to different environmental conditions was 

425 reviewed in [137-139].

426 In this review, we have discussed the use of bioinformatics tools to study DNA methylation data 

427 in plants. Notably, several studies in humans and mouse were successfully performed using 
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428 popular tools like BSMap, BS-Seeker/BS-Seeker2/BS-Seeker3, Bismark, in mouse and 

429 segemehl in human cancer cell lines. For the analysis of bisulfite sequence data, most of the 

430 fundamentals of the chemical background and methylation principles are the same; however, the 

431 major difference between the use of such tools in plants, and animals (specifically, in humans 

432 and mouse) is the genome structure organization and the presence of predominantly more 

433 CHG/CHH methylation contexts in plants. The most predominant context of DNA methylation in 

434 mammals is the symmetric CG – estimated to be at ~70-80% of CG dinucleotides genome-wide 

435 [140]. The mechanisms of regulation and function of DNA methylation vary in animals and plants 

436 [141, 142]. These variations in regulation and function mechanism, coupled with genome 

437 structure differences and complexity levels is a motivating factor for integrating small subtle 

438 differences in mapping and analysis tools for epigenome data. Another important difference of 

439 plants and animals is how they are able to demethylate their genome. So far, enzymes removing 

440 directly the methyl group from cytosines have not been identified in plants, but they are important 

441 components of mammalian DNA methylation homeostasis. Plants use either passive 

442 mechanisms (not maintaining methylation during DNA replication) or base-excision and 

443 subsequent repair for direct removal of methylated cytosines. Unlike with the human genome, 

444 the CHG/CHH contexts which are more abundant in plants [143] need to be integrated into the 

445 mapping and analysis of methylome data. Many plants have large and repetitive genomes 

446 compared to that of humans. Such large genomes are a limiting factor in the analysis since they 

447 require a lot of computational resources. The sequence mapping to references and statistical 

448 computational time for large genomes such that of bread wheat (~17Gb) and barley (~5.3Gb) is 

449 likely to scale linearly.

450 Concluding remarks
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451 In the last decade, there has been tremendous progress in the development of tools for 

452 analyzing epigenomic data; however, numerous challenges remain. For instance, the 

453 visualization capacity of many tools remains either inadequate or lacks essential modules for 

454 handling and displaying statistical outcomes from the resulting analysis. Additionally, the of these 

455 tools to scale to handle large genomes remains an issue for further exploration. Technically, 

456 most computational tools for analyzing epigenomic data perform well for datasets from 

457 organisms with a genome size that is smaller than the human genome (~3Gb). For much larger 

458 and complex genomes, more computational resources are required and the genome structure 

459 (whether diploid, hexaploidy, or tetraploid) and repetitive nature of the genome has to be taken 

460 into consideration during mapping to a reference genome. This is demonstrated in our example 

461 where we compared the mapping efficiency for Arabidopsis and a wheat chromosome; however, 

462 the complexity in genome structure, the presence of transposable elements, and the lack of 

463 consistent gene annotations for some plants remain a major obstacle to advancing epigenetic 

464 research. 

465 In the next decade, there is likely to be a steady improvement in sequencing methods and 

466 performance of already existing computational algorithms. Recently, it was shown that even well-

467 established sequencing methods might be prone to errors, leading to misleading results, e.g. 

468 DNA immunoprecipitation sequencing (DIP-seq) [144]. Discovering and amending such errors 

469 can lead to new findings from the previous studies and limit these errors’ damage to future 

470 studies. This will aid further epigenetic research not only in plants but also in life sciences in 

471 general. Additionally, a few tools have the capability to effectively get more information out of 

472 low-coverage data. Developing new tools or improving on existing ones to attain optimal results 

473 using low coverage data and fewer replicates would save experiment and sequencing costs. A 

474 high sequence coverage allows for good data quality and enables robust statistical analysis 

475 [145]. Achieving high sequence coverage can be quite expensive and the minimum desired 
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476 coverage can depend on the research objectives at hand. Typically, a coverage value of 5-10X is 

477 sufficient for many comparative studies and for achieving reliable methylation calls [145]. 

478 However, studies have demonstrated that coverage values as low as 2X is sufficient [146]. 

479 Accurate identification of DMRs in large samples, especially between multiple conditions, 

480 remains a challenge – despite tremendous progress already made in this area.
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491 Key points

492 • We introduce the concepts of epigenetics in plants and discuss commonly used tools – 

493 with a focus on their capabilities.

494 • Integration of bioinformatics tools needed to understand epigenomics datasets in crops.

495 • The presence of repetitive elements in the genome influences the prediction of 

496 methylated sites.
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497 • We list the runtime and computational requirement for a small and large complex genome 

498 and demonstrate their overlaps in four most applied tools.

499 • Different tools have different levels of asymmetry with regards to their mapping and 

500 methylation call statistics.

501
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816 Figures

817 Figure 1. Selection of epigenomics tools. 

818 Figure panels A and B: Results of the calculation user times for four common tools, Bismark, 

819 BSMap, BS-Seeker3, and segemehl. We used data for Arabidopsis thaliana and chromosome 

820 1A in bread wheat (Triticum aestivum). n.a: values not available. Figure panels C and D: Overlap 

821 of detected sites in the two reference genomes for the four mapping tools.

822

823 Figure 2. Precision and sensitivity analysis.

824 Precision and sensitivity analysis for the A. thaliana data based on read mapping of simulated 

825 reads using the tool by Sherman (https://www.bioinformatics.babraham.ac.uk/projects/sherman/) 

826 – with the parameters (CG=24, CH=8, e=0.5). (A) There is a large difference in the sensitivity of 

827 the four tools. BS-Seeker3 was the least sensitive (sensitivity averaging ~ 48%) – Bismark was 

828 the most sensitive (sensitivity ~99.9%). The sensitivity values for BSMap and segemehl 

829 averaged ~97% and 90%, respectively. (B) For bread wheat (T. aestivum), BSMap appears to be 

830 marginally less precise and less sensitive than segemehl. There is consistency in the precision 

831 and sensitivity values for the subgenomes A, B and D in chromosome 1 of T. aestivum. Overall, 

832 the results from both (A) and (B) are in agreement. Notably, BS-Seeker3 has a wide range of 

833 precision compared to the other three tools. Each data point represents the precision-sensitivity 

834 value based on a simulation run for an individual tool. The precision and sensitivity values for 

835 Bismark, BSMap, BS-Seeker3 and segemehl averaged approximately (99%, 99%), (94%, 82%), 

836 (86%, 38%) and (97%, 87%), respectively. Five (5) simulation runs were performed for each tool 

837 – one for each of the A. thaliana chromosomes. The elliptical rings around each set of (same 

838 colored) data points represent the confidence bounds.

839
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840 Figure 3. Memory footprint analysis for the four tools – benchmarked on five genomes.

841 (A) Barplots showing variation in attained memory footprint between the tools benchmarked on 

842 different genomes. (B to E) Correlation analysis of genome size and memory footprint analysis. A 

843 benchmark of the four tools, (B) BSMap, (C) BS-Seeker3, (D) Bismark, and (E) segemehl. The 

844 genome sizes are all significantly correlated to the memory footprint analysis (p-values < 0.05). 

845 Red dotted line: fitted regression line, green-dots: data points.

846

847 Table 1. Examples of some down-stream analysis software.

848

849 Supporting information

850 Table S1. A selection of popular packages and tools for epigenome data analysis. 

851 Unranked list compiled based on high (≥100) citation and usage (October 2018). Most of these 

852 tools are freely available for download (non-commercial) and some are embedded into a web-

853 server.

854

855 Table S2. Summary of key attributes and parameters for the four benchmarked tools.

856
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tools, Bismark, BSMap, BS-Seeker3, and segemehl. We used data for Arabidopsis thaliana and chromosome 

1A in bread wheat (Triticum aestivum). n.a: values not available. Figure panels C and D: Overlap of 
detected sites in the two reference genomes for the four mapping tools. 
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Precision and sensitivity analysis. Precision and sensitivity analysis for the A. thaliana data based on read 
mapping of simulated reads using the tool by Sherman 

(https://www.bioinformatics.babraham.ac.uk/projects/sherman/) – with the parameters (CG=24, CH=8, 
e=0.5). (A) There is a large difference in the sensitivity of the four tools. BS-Seeker3 was the least sensitive 
(sensitivity averaging ~ 48%) – Bismark was the most sensitive (sensitivity ~99.9%). The sensitivity values 
for BSMap and segemehl averaged ~97% and 90%, respectively. (B) For bread wheat (T. aestivum), BSMap 
appears to be marginally less precise and less sensitive than segemehl. There is consistency in the precision 
and sensitivity values for the subgenomes A, B and D in chromosome 1 of T. aestivum. Overall, the results 

from both (A) and (B) are in agreement. Notably, BS-Seeker3 has a wide range of precision compared to the 
other three tools. Each data point represents the precision-sensitivity value based on a simulation run for an 
individual tool. The precision and sensitivity values for Bismark, BSMap, BS-Seeker3 and segemehl averaged 
approximately (99%, 99%), (94%, 82%), (86%, 38%) and (97%, 87%), respectively. Five (5) simulation 

runs were performed for each tool – one for each of the A. thaliana chromosomes. The elliptical rings around 
each set of (same colored) data points represent the confidence bounds. 
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Memory footprint analysis for the four tools – benchmarked on five genomes. 
(A) Barplots showing variation in attained memory footprint between the tools benchmarked on different 

genomes. (B to E) Correlation analysis of genome size and memory footprint analysis. A benchmark of the 
four tools, (B) BSMap, (C) BS-Seeker3, (D) Bismark, and (E) segemehl. The genome sizes are all 

significantly correlated to the memory footprint analysis (p-values < 0.05). Red dotted line: fitted regression 
line, green-dots: data points. 
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Tool Citation and descriptions
ADMIRE: Analysis and visualization 
of differential methylation in 
genomic regions using the Infinium 
HumanMethylation450 Assay

Preussner et al. [109]; Online and offline. Adds 
experimental settings, quality control, automatic 
filtering, normalization, multiple testing, and differential 
analyses genome-browser tracks, table outputs, 
summary files.

BATMAN: Bayesian automated 
metabolite analyser for NMR 
spectra

Hao et al. [110]; Uses Markov chain Monte Carlo 
algorithm for sampling. Bayesian based approach.

KEGG: Gene Ontology Pathways It is a database for mining and analysis of high-level 
functions. KEGG enables analysis and data mining on 
different biological scales (e.g. cellular and molecular-
level information, whole organism, at ecosystem level, 
etc – using data from high-throughput experiments; 
see https://www.genome.jp/kegg/).

IPA: Ingenuity Pathway Analysis Krämer et al. [111]; Platform enables exploration and 
visualization of complex omics data (e.g. microarrays 
including miRNA, metabolomics, proteomics, RNA-
seq, small RNA-seq and SNP, and small scale 
experiments). See 
https://www.qiagenbioinformatics.com/

DAVID: Database for Annotation, 
Visualization and Integrated 
Discovery

Huang et al. [112]; DAVID enables pathway mining 
and gene function classification. Input is gene list from 
high-throughput genomic experiments; 
https://david.ncifcrf.gov/ 
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Category Tool Year Software Mapping tool Method Input Output Reference/web-page

Mapping Bismark 2011 Perl Bowtie Integrates Bowtie, running four alignment processes simultaneously FASTA/FASTQ SAM format, BAM format, one entry (or line) per
cytosine

https://github.com/FelixKrueger/Bismark

BSmooth 2012 R/Perl Merman, Bowtie, Bowtie2Identification of DMRs, Walch t-test, improving previous work based on Fisher's
exact test to simulate biological replicates using merman mapper FASTQ DMRs

https://github.com/BenLangmead/bsmooth-align

https://github.com/hansenlab/bsseq
BSMap 2009 C++ SOAP Using HASH table seeding + Bitwise masking, bisulfite seq. data mapping programFASTA/FASTQ/BAM - supports paired end reads BSP/SAM/BAM https://code.google.com/archive/p/bsmap/ 
RRBSMap 2012 C++ RRBSMAP RRBS short read alignment tool BAM files n.a. http://rrbsmap.computational-epigenetics.org/ 
BS Seeker 2010 Python Bowtie2 Pipeline for mapping bisulfite sequence data, genome indexing. Accepts both RRBSand WGBS data. Available at Galaxy serverFASTA/FASTQ, qseq, pure sequence, IGV input BAM, SAM, BS_seeker and WIG files https://guoweilong.github.io/BS_Seeker2/index.html
BS Seeker2 2013 Python Bowtie2 Pipeline for mapping bisulfite sequence data, genome indexing. Accepts both RRBSand WGBS data. Available at Galaxy serverFASTA/FASTQ, qseq, pure sequence, IGV input BAM, SAM, BS_seeker and WIG files https://guoweilong.github.io/BS_Seeker2/index.html
BS Seeker3 2018 Python SNAP-aligner Pipeline for mapping bisulfite sequence data, genome indexing. Accepts both RRBSand WGBS data. Available at Galaxy serverFASTA/FASTQ, qseq, pure sequence, IGV input BAM, SAM, BS_seeker and WIG files https://github.com/khuang28jhu/bs3
Metilene 2015 Perl n.a. DMR finder (from whole genome and targeted sequencing data) FASTQ DMRs http://genome.cshlp.org/content/26/2/256.short
segemehl 2012 Perl segemehl read mapper. Analysis of: COV, MET, TXN, SNP and CNV. FASTA/FASTQ SAM format http://www.bioinf.uni-leipzig.de/Software/segemehl/
BRAT-BW 2012 Free and Open Source under GPLv3FM-index (Burrows-Wheeler transform)Mapping of bisulfite reads, supports paired-end libraries, indels, mismatches, … FASTQ for reads, FASTA for reference sequence Text files of mapping results http://compbio.cs.ucr.edu/brat/
BRAT-nova 2016 Free and Open Source under GPLv3FM-index (Burrows-Wheeler transform)Mapping of bisulfite reads, improved implementation of the mapping tool BRAT-BW, supports paired-end libraries, indels, mismatches, …FASTQ for reads, FASTA for reference sequence Text files of mapping results http://compbio.cs.ucr.edu/brat/
WALT 2016 Free and Open Source under GPLv3 Mapping bisulfite sequencing reads FASTQ for reads, FASTA for reference sequence SAM or MR files https://github.com/smithlabcode/walt

Statistical analysis
MethGo 2015 Python n.a global and gene level scalemethylation pattern around TSS sites. Accepts both RRBSand WGBS dataFASTA, BAM, GTF and CGmap SNP, CNV tables, methylation profile summaries/plots/tableshttp://paoyangchen-laboratory.github.io/methgo/
EpiGRAPH 2009 Java n.a software for genome and epigenome analysis, uses machine learning algorithms FASTA/FASTQ, genomic seq data Enable prediction of genomic regions having similar characteristics with input datasethttps://epigraph.mpi-inf.mpg.de/WebGRAPH/
CyMATE 2008 Perl and C n.a Unique mapping tool for CpG and non-CpG methylation (web-based tool) multiple sequence alignment Text files of per sequence mC, per position mC, global mChttp://www.cymate.org/
MethylMapper 2005 Perl MethylMapper High through-put mapping (web-based tool), performs QC analysis DNA methylation seq. data File with counts/tallies of methylated sites https://sourceforge.net/p/methylmapper/wiki/Home/
RnBeads 2014 R n.a., using bed filesSupported assays: WGBS, RRBS. Data QC and filtering, DMR finder, Data exploratory analysis.Illumina microarray platform bisulfite sequencing bed, bigBed and bigWig file https://rnbeads.org/
BISMA 2010 PHP code, Perl and MySQL databaseUses ClustalW algorithmAnalysis of bisulfite sequence data. Supports analysis of repetitive sequences (web-server tool)ABI, text and single multi-FASTA file formats Outputs multiple sequence alignment. Web-presented output results. Detected CpG sites.http://services.ibc.uni-stuttgart.de/BDPC/BISMA/
BSPAT 2015 Java, Tomcat Bowtie Online service to analyze methylation patterns in bisulfite sequencing data. Has integrated sequence mapping, quality control and visualized analysis.FASTA, FASTQ SAM https://github.com/lancelothk/BSPAT
MethylMix 2015 R n.a. Detects hyper- and hypomethylated regions. Uses Bayesian Information Criterion (BIC) to select number of methylation states by iteratively adding a new mixture component if the BIC score improves. Wilcoxon rank sum test.Differentially methylated regions (DMRs) https://www.bioconductor.org/packages/release/bioc/html/MethylMix.html
bumphunter 2012 R n.a Detection of DMRs FASTA, FASTQ BED, BigWig files https://github.com/rafalab/bumphunter
DMAP 2014 Bismark alignment n.a Differentially methylated  region detection. Accepts both RRBSand WGBS data SAM file from aligner tool DMRs, identifies genes and CpG features; distances to DMRshttp://biochem.otago.ac.nz/research/databases-software/

Complete pipeline
SAAP-RRBS 2012 BSMap: modules developed using Perl, Python, Java and Cuses hashing/bitwise masking reads mapping algorithmIncludes FASTQC, duplicate read removal, read alignment, and methylation calls FASTQ Bed files with CpG sites, annotation files http://bioinformaticstools.mayo.edu/research/saap-rrbs/
gemBS 2018 C, Python n.a Analysis of whole genome bisulfite sequence data (both WGBS, RRBS). FASTQ/FASTA, SAM/BAM files Supports DMRs, Yes (bigWig, bedGraph) http://statgen.cnag.cat/GEMBS/
BiQ Analyzer HiMod 2014 web server n.a Upgrade of BiQ Analyzer HT FASTA, FASTQ BED, bigBed, ... and BigWig files https://biq-analyzer-himod.bioinf.mpi-inf.mpg.de/
BiQ Analyzer HT 2011 web server n.a. Bisulfite sequence quality assessement tool. Analysis of unique sequences FASTA or BAM files Outputs multiple sequence alignment. Web-presented output results. Detected CpG sites.https://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/
QUMA 2008 n.a. EMBOSS package needleman wunschInteractive web-based tool FASTQ data, bisulfite sequence Outputs multiple sequence alignment, statistics summary, methylation status/pattern figures.http://quma.cdb.riken.jp/

Abbreviations Explanation
RRBS Reduced representation bisulfite sequencing
WGBS Whole-genome bisulfite sequence
SAM Sequence Alignment Map
BAM Binary Alignment Map
TFBS Transcription factor binding site
COV Coverage distribution of methylation sites
MET Methylation profiling
TXN Cytosine methylation levels at transcription factor binding sites (TFBSs)
SNP Single-nucleotide polymorphism
CNV Copy number variation
GTF Gene transfer format 
HT High through-put
QC Quality control
DMRs Differentially methylated regions
SAAP-RRBS Streamlined Analysis and Annotation Pipeline for RRBS data
n.a Not available (no explicitely specified)
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Comparison of fearures between the four tools

Feature BSMap BS-Seeker3 Bismark segemehl
Allows for multiple threads Yes No Yes Yes
Supports single-end(SE)/paired-end(PE) reads Yes/Yes Yes/Yes Yes/Yes Yes/Yes
Variable read length (SE/PE) Yes/Yes Yes/Yes Yes/Yes Yes/Yes
Allows for mismatches during mapping Yes Yes Yes Yes
Allows for adaptor trimming Yes No No No
Supports gapped alignments Yes Yes Yes Yes
Supports RRBS/WGBS Yes/Yes Yes/Yes Yes/Yes Yes
Outputs methylation by context (CpG/CHG/CHH) Yes Yes Yes Yes
Multiple adjustable mapping parameters (e.g. seed size, byte size, ...) Yes Yes Yes Yes
Strategy used for mapping wild-card 3-letter 3-letter 3-letter
Supports directional/non-directional libraries Yes/Yes Yes/Yes Yes/Yes Yes/Yes
Allows for priliminary quality control analysis not specified Yes Yes not specified
Provides tabular/visual summary mapping statistics Yes Yes Yes Yes
Maximum read length allowed 144nt not specified variable size not specified

Abbreviations Explanation
RRBS Reduced representation bisulfite sequencing
WGBS Whole-genome bisulfite sequencing

Tool Reference/web-page
BSMap https://code.google.com/archive/p/bsmap/ 
BS-Seeker3 https://github.com/khuang28jhu/bs3
Bismark https://github.com/FelixKrueger/Bismark
segemehl http://www.bioinf.uni-leipzig.de/Software/segemehl/
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