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Abstract 

Brite/brown adipose tissue (BAT) is a thermogenic tissue able to dissipate energy via non-shivering 
thermogenesis. It is naturally activated by cold and has been demonstrated to increase thermogenic 
capacity, elevate energy expenditure and to ultimately contribute to fat mass reduction. Thus it 
emerges as novel therapeutic concept for pharmacological intervention in obesity and other 
metabolic disorders. Therefore, the comprehensive understanding of the regulatory network in 
thermogenic adipocytes is in demand.  

The surprising findings that (1) all human protein-coding genes make up not more than 2% of our 
genome, (2) organismal complexity goes well along with the percentage of non-protein coding 
sequences, and that (3) three quarters of our genome are pervasively transcribed, provide evidence 
that non-coding RNAs (ncRNAs) are not junk, but a significant and even predominant part or our 
transcriptome representing a treasure chest worth retrieving regulatory determinants in biological 
processes and diseases.  

In this chapter, the impact of regulatory small and long ncRNAs, in particular microRNAs and lncRNAs 
on brite/brown adipose tissue formation and metabolic function and their involvement in  
physiological and pathological conditions has been reviewed.  
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Introduction 

The adipose organ is an important player in the regulation of whole-body energy homeostasis, 
including fatty acid and glucose metabolism, and contributes to many of an organism´s pivotal 
requirements of survival: fuel for metabolism, immune responses, lactation, and thermogenesis 
(Cinti 2012). The adipose organ can be divided into two distinct types of adipose tissues, white (WAT) 
and brown (BAT) adipose tissue: WAT is specialized for the storage and release of chemical energy 
(Cinti 2012; Cohen and Spiegelman 2016), while BAT is able to dissipates energy in the form of heat 
(thermogenesis). Interestingly, WAT and BAT do not display clear anatomical boundaries, as in 
rodents and humans, islands of brown-like adipocytes emerge within WAT depots after cold or β-
adrenergic receptor stimulation. These adipocytes, termed “brite” (brown-in-white) or “beige” 
adipocytes, differ by embryonic origin from genuine brown adipocytes but are functional, i.e., 
thermogenically active (Petrovic et al. 2010; Wu et al. 2012). Brite/brown adipocytes are endowed 
with high capacity of glucose and lipid oxidation thus making the brite/brown adipose tissue a 
promising target for lowering plasma levels of glucose and fatty acids thus diminishing the risks of 
overweight, obesity and follow-up complications (Nedergaard et al., 2011). Indeed, brite/brown 
adipocyte formation and activation emerge as a novel therapeutic concept for pharmacological 
intervention in obesity and other metabolic disorders (Nedergaard and Cannon 2010), and the 
identification of regulatory factors and drugs able to initiate the formation and activation of 
thermogenic adipocytes, particularly in humans, is in demand and constitutes a highly active research 
field.  

In this review, I tempt to summarize recent findings on a novel class of regulatory determinants in 
brite/brown adipose tissue biology with impact on metabolism and disease, non-coding RNAs.  

 

Non-coding RNAs 

For a long time, research on molecular mechanisms has been centered on protein-coding genes. 
However, efforts investigating our entire genome brought up surprising discoveries. Firstly, the 
Human Genome Project revealed much less protein-coding genes than previously expected, and all 
20,500 protein-coding genes known in human make up not more than 2% of our genome, raising 
questions for the majority of 98% of our genome (Lander et al. 2001; Venter et al. 2001). Secondly, 
even single cell organisms such as Tetrahymena thermophila exceed the number of human protein-
coding genes, indicating that this is not the determinant of organismal  complexity (Taft et al. 2007). 
However, organismal complexity goes well along with the increasing relative amount of non-protein-
coding sequences, suggesting indeed a function for the non-coding part of the genome in higher 
organisms (Taft et al. 2007). Thirdly, the ENCODE project intriguingly demonstrated transcriptional 
activity for 74.7% of the human genome, with many novel non-protein-coding transcripts of small 
and long non-coding RNA (ncRNA) (Birney et al. 2007; Djebali et al. 2012; Dogini et al. 2014). 
Altogether, these findings indicate that the non-coding part of the genome is not ‘junk’ DNA, but a 
significant and even predominant part of our genome representing a promising treasure chest worth 
retrieving regulatory determinants in both biological processes and diseases. 

ncRNAs are defined as RNA transcripts that do not encode a protein, and are divided into two 
primary categories: small ncRNAs (< 200 nt) and long ncRNAs (lncRNAs; > 200 nt). Some small ncRNAs 
are housekeeping RNAs, such as tRNA, snRNA and snoRNA, which are crucial for cell physiology, 
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while others, such as microRNAs (miRNAs) and piRNAs, are associated with protein-coding gene 
regulation (Figure 1). Also long ncRNAs comprise housekeeping RNAs, such as ribosomal RNAs 
(rRNAs), and  regulatory elements such as lncRNAs, including antisense RNAs (AS-RNAs) and 
enhancer RNAs (eRNAs) (Ponting et al. 2009; Wilusz et al. 2009; Vance and Ponting 2014; Sun and 
Kraus 2015; Iyer et al. 2015). 

miRNAs were first discovered in 1993 and are to date the most extensively studied class of non-
coding RNAs, with more than 2,500 candidates in human and 1,900 candidates in mouse (Lee et al. 
1993). MiRNAs are endogenous, single-stranded, non-coding, small RNAs with a length of 21-22 
nucleotides that are involved in regulating gene expression in the cytoplasm by incorporating into 
the RNA-induced silencing complex (RISC), and preferential binding to specific sequences in the 3’-
UTR of their target mRNAs suppress translation or induce mRNA degradation (Filipowicz et al. 2008).  

On the other hand, regulatory lncRNAs were already discovered in 1990, with now more than 58,000 
loci found in human (Brannan et al. 1990; Iyer et al. 2015). They are found in the cytoplasm as well in 
the nucleus where they bind to enhancer regions, promoter sequences, 5´-UTRs, exons, introns, 
intragenic regions, intergenic sequences, antisense sequences and 3´-UTRs. The regulatory role of 
lncRNAs is directly dependent on their cellular localization. In the cytoplasm, lncRNAs can act as 
molecular decoys for proteins and microRNAs, while in the nucleus, lncRNAs have been shown to 
perform as transcriptional activators or inhibitors in cis, i.e. regulating neighboring genes), or in trans, 
i.e. regulating genes from other regions or chromosomes (Zhang et al. 2014). However, in contrast to 
miRNAs, lncRNAs are poorly conserved between species and are highly tissue-specific, which makes 
them specifically and tightly regulated, even though they are found at lower abundance compared to 
mRNAs (Babak et al. 2005; Mercer et al. 2008; Guttman et al. 2009; Ramsköld et al. 2009; Derrien et 
al. 2012).  

Over the last decades, it has been unraveled that small and long ncRNAs govern the formation and 
function of tissues and organs, including the adipose organ. For the characterization of miRNAs in the 
adipose organ, several mouse models with adipose-specific knockout of key regulators of miRNA 
biogenesis were generated. Importantly, fat-selective inactivation of Dicer, an essential factor in 
miRNA biogenesis, resulted in mice which were almost devoid of WAT (Mudhasani et al. 2010, 2011). 
Moreover, adipose-specific ablation of Dicer or DGCR8 in mice, another crucial determinant in miRNA 
biogenesis, displayed enlarged but pale interscapular BAT, decreased expression of genes 
characteristic of brown fat and intolerance to cold exposure (Mori et al. 2014; Kim et al. 2014). These 
findings suggest a pivotal role of miRNAs in the formation of white, brite and brown adipocytes. In 
recent years, an explosion in the identification of ncRNAs and their functions was observed, yet one 
only began to understand the complexity of this new regulatory RNA world, in particular how ncRNAs 
control various aspects of gene expression and their involvement in diseases (Prasanth and Spector 
2007; de Almeida et al. 2016). The impact of miRNAs on diseases is acknowledged by their 
deployment as biomarkers, drugs and/or drug targets, with first candidates in clinical trials phase 1 
and 2 (Wahid et al. 2010; van Rooij et al. 2012; Hydbring and Badalian-Very 2013; Wahid et al. 2014a; 
Christopher et al. 2016), while the impact of lncRNAs as potential diagnostic markers and/or valuable 
therapeutic targets for diseases is just emerging. Here we review the regulatory impact of miRNAs 
and lncRNAs on brite/brown adipose tissue biology and thermogenic capacity and their involvement 
in metabolic disease.  
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MicroRNAs in brite/brown adipose tissue 

Brite/brown adipocyte differentiation is tightly governed in a coordinated manner using various 
regulatory pathways which finally activate several transcription factors and coactivators (Xue et al. 
2005; Kajimura et al. 2010), such as peroxisome proliferator-activated receptor α (PPARα) and γ 
(PPARγ), PPARγ-coactivators-1 (PGC-1α (Puigserver et al. 1998; Rohas et al. 2007) and PGC-1β 
(Villena 2015)), cAMP responsive element binding protein (CREB), CCAAT/enhancer-binding proteins 
(C/EBPs)(Tanaka et al. 1997; Rosen et al. 2002), PR domain containing 16 (PRDM16) (Seale et al. 
2008, 2011), and activating transcription factor 2 (ATF2) (Cao et al. 2004), but can also repress 
transcriptional repressors, such as the corepressor receptor-interacting protein 140 (RIP140) (Kiskinis 
et al. 2014) in order to induce the expression of browning genes, with UCP1 as the hallmark of 
brite/brown adipocytes. These transcriptional factors drive the brite/brown adipogenic program, 
which ultimately leads to the remodeling of the adipocyte including increased mitochondrial density 
and size, altered mitochondrial morphology with laminar cristae, lipid droplets of smaller size but of 
higher number per adipocyte, and increased oxidative capacity of carbohydrates and fatty acids. The 
pathways which are known to be targeted by miRNAs are illustrated in Figure 2. 

miRNAs targeting PPARγ and PRDM16 in brite/brown adipogenesis 

In this context, miR-27 was found to be endogenously downregulated during white and brite/brown 
adipocyte differentiation, as well as in BAT and WAT. Moreover, miR-27 was identified as central 
upstream inhibitor of PPARγ in white adipocyte differentiation (Karbiener et al. 2009) and was shown 
to directly target and repress a number of essential factors of the brite/brown transcriptional 
network, e.g. PRDM16, CREB, PGC-1α/β, PPARα and PPARγ, during brite/brown adipogenesis (Figure 
2) (Sun and Trajkovski 2014; Zhu et al. 2014). Under pathophysiological conditions, miR-27 was less 
abundant in mature adipocytes of obese compared to lean mice (Kim et al. 2010), thus probably 
allowing adipose tissue hyperplasia, while miR-27 was found to be more abundant in the adipose 
tissue of hyperglycaemic Goto-Kakizaki rats compared to normoglycaemic Brown Norway rats, which 
could also be corroborated by elevated miR-27 levels in 3T3-L1 adipocytes, a murine adipogenesis 
model, upon exposure to increased glucose concentrations (Herrera et al. 2010).  

The muscle-enriched miR-133 was found to be markedly downregulated in BAT and subcutaneous 
WAT. This repression is a result of decreased expression of the myocyte enhancer factor 2 (MEF2), its 
transcriptional regulator, which is also repressed upon elevated cAMP levels after cold exposure. In 
line with this, inhibition of miR-133 or Mef2 promotes brite and brown adipogenesis. 
Mechanistically, miR-133 directly targets and represses PRDM16 (Trajkovski et al. 2012).  

The targeted deletion of the RNA-binding protein KSRP, that regulates gene expression at several 
levels, caused a reduction in adiposity, with elevated expression of brite/brown marker genes in 
subcutaneous WAT, and in reduced expression of miR-150. In this context, forced expression of miR-
150 indeed attenuated the browning program. Mechanistically, miR-150 directly targets and 
represses PRDM16 and PGC-1α (Chou et al. 2014).  

miRNAs targeting the cAMP-PKA-CREB and p38-ATF2 signaling pathways in BAT 

β-adrenergic receptor signaling leads to elevated levels of cyclic AMP (cAMP), followed by p38/MAPK 
signaling, which all play a vital role in BAT thermogenic response leading to ATF2 activation, thus 
promoting transcription of downstream targets such as PGC-1α, UCP1, and FGF21 (Cao et al. 2004; 
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Robidoux et al. 2005). Conversely, repressors of p38/MAPK signaling, such as TOB1, are able to 
silence the pathway under normal conditions (Sun et al. 2013; Wu et al. 2015).  

In this context, miR-378/378* is a miRNA encoded within the PGC-1β gene and was the first miRNA 
found to increase BAT mass and is sufficient to prevent both genetic and high fat diet-induced 
obesity. Mechanistic studies at the molecular level revealed that miR-378/378* directly targets the 
phosphodiesterase (PDE) (Figure 2), which then leads to diminished degradation of cAMP to AMP, 
thus leading to elevated cAMP levels which activate PKA and downstream signaling pathways (Pan et 
al. 2014). Moreover, another study demonstrated that the ω-3 fatty acid eicosapentaenoic acid (EPA) 
binds and activates the free fatty acid receptor (FFAR4), a functional receptor for n-3 
polyunsaturated fatty acids (PUFA), which positively modulates miR-378 leading to elevated cAMP 
levels and ultimately UCP1 expression (Kim et al. 2016).      

Another miRNA, miR-32, was identified to be expressed selectively in BAT, and its levels were 
elevated by cold exposure. Mechanistically, miR-32 directly targets the p38/MAPK signaling repressor 
TOB1, thus diminishing the repressive effect of TOB1 on p38/MAPK signaling which leads to 
phosphorylation and activation of ATF2 with enhanced BAT thermogenesis (Figure 2). Interestingly, 
this also drives FGF21 expression and secretion from BAT, thereby also trans-activating the browning 
of WAT (Ng et al. 2017).  

miRNAs ultimately modulating C/EBPβ activity 

C/EBPβ is a critical transcription factor that activates transcription of C/EBPα and PPARγ, two 
important transcriptional inducers of the adipogenic brite/brown transcriptional program. C/EBPβ 
cooperates with PRDM16 in a complex that initates both brown adipocyte differentiation from 
myoblastic precursors and brite adipocyte formation in subcutaneous WAT (Kajimura et al. 2009; 
Seale et al. 2011; Jimenez-Preitner et al. 2011).  

In this context, miR-155 has been demonstrated to be enriched in BAT, highly enriched in 
proliferating brown preadipocytes, and declines after induction of brown adipogenesis. Thus 
inhibition of miR-155 enhanced brite and brown adipogenesis and increased BAT thermogenesis and 
browning of WAT in mice, while mice transgenically overexpressing miR-155 exhibited reduced BAT 
mass and function. Interestingly, as direct target of miR-155, C/EBPβ was identified, with C/EBPβ 
repressing again miR-155 expression, thus forming a self-inhibitory feedback loop that tightly 
governs brite/brown adipogenesis (Figure 2) (Chen et al. 2013).  

miR-196a was found to be specifically required for the induction of the browning program of WAT, 
not BAT, progenitor cells. Mechanistically, HOXC8 was identified as direct miR-196a target and was 
repressed post-transcriptionally (Figure 2). HOXC8 is a white-fat gene, which represses C/EBPβ and 
UCP1. In line with that, transgenic mice with elevated miR-196a levels exhibited enhanced energy 
expenditure and resistance to diet-induced obesity. Thus, these data indicate that the induced brite 
adipocytes in the inguinal WAT are indeed metabolically functional (Mori et al. 2012).  

The first described miRNAs in murine brown adipogenesis was the miRNA cluster miR-193b-365 
which was enriched in BAT. Blocking miR-193b and/or miR-365 in brown preadipocytes impaired 
brown adipogenesis and promoted the expression of myogenic markers, while forced expression in 
C2C12 myoblasts blocked the entire program of myogenesis and promoted brown adipogenesis (Sun 
et al. 2011). The runt-related transcription factor 1 (RUNX1T1) was identified as direct miR-193b-365 
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target, which is known to act as inhibitor of C/EBPβ and consequently of white adipogenesis (Figure 
2) (Rochford et al. 2004). However, another study challenged these in vitro results by demonstrating 
that in mice with an inactivated miR-193b-365 locus the development, differentiation and function of 
BAT was unaffected, indicating that BAT do not require the presence of miR-193b and miR-365 
(Feuermann et al. 2013).  

Another miRNA, which also targets RUNX1T1, besides other direct targets such as Necdin, and 
promotes brown and brite adipocyte differentiation, is miR-455. This miRNA exhibited a BAT-specific 
expression pattern and is induced by cold and the browning inducer bone morphogenetic protein 7 
(BMP7). In adipose-specific transgenic mice, elevated miR-455 levels led to marked browning of 
subcutaneous WAT upon cold exposure by activating the hypoxia inducible factor 1 α inhibitor 
(HIF1an), that further activates AMPK, which then promotes the browning program including PGC-1α 
expression and mitochondrial biogenesis (Zhang et al. 2015).   

miRNAs modulating the transcriptional coactivator PGC-1α 

The thermogenic program of BAT includes mitochondrial biogenesis, and PGC-1α is a key regulator of 
mitochondrial biogenesis, oxidative metabolism and UCP1 (Puigserver et al. 1998; Cannon and 
Nedergaard 2004). However, the transcriptional repressor RIP140 is able to block PGC-1α effects, as 
mice devoid of RIP140 are lean, show resistance to high fat diet (HFD)-induced obesity and have 
increased oxygen consumption, with a marked increase in expression of genes involved in energy 
dissipation and mitochondrial uncoupling, including UCP1 (Leonardsson et al. 2004).  

MiRNA miR-34a has been shown to be elevated in WAT and BAT upon obesity, associated with 
inhibited browning of WAT and pale BAT. Mechanistically, miR-34a directly targets the fibroblast 
growth factor receptor 1 (FGFR1), reduces expression of βklotho and SIRT1, which results in reduced 
FGF21/SIRT1-dependent deacetylation of PGC-1α, finally repressing the browning program (Figure 2). 
Thus, lentiviral-mediated repression of miR-34a levels in adipose depots of mice with diet-induced 
obesity to levels which were detected in lean mice reduced adiposity and improved mitochondrial 
biogenesis and oxidative metabolism (Fu et al. 2014). However, global miR-34a knockout mice are 
again susceptible to diet-induced obesity (Lavery et al. 2016).    

Members of the miR-30 family, miR-30b and miR-30c, were greatly elevated in expression levels 
during adipocyte differentiation and are stimulated by cold or β-adrenergic receptor stimulation. 
Interestingly, the corepressor RIP140 was identified as direct target of miR-30b/c (Figure 2). 
Consequently, overexpression of miR-30b/c induced the browning program, including UCP1 and 
mitochondrial respiration, in the development of white and brown adipocytes. Moreover, miR-30b/c 
was able to potentiate β-adrenergic receptor stimulation-induced browning, suggesting a positive 
feedback loop of miR-30 family members on the β-adrenergic receptor signaling and action (Hu et al. 
2015).  

miRNA targeting ADAM17 and PTEN 

The miR-26 family members miR-26a and miR-26b have been identified to be upregulated in murine 
WAT upon cold exposure. So far, they are the first in-depth characterized miRNAs able to shift 
human adipocyte differentiation from white to brite via inducing UCP1 expression, increasing 
mitochondrial density, changing mitochondrial morphology towards brown adipocyte characteristics, 
and elevating coupled and uncoupled respiration (Karbiener et al. 2014). The identified and validated 
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target that at least partially mediates the miR-26 effects on both adipocyte differentiation and 
browning, is ADAM17, also known as TNFα converting enzyme (TACE), which upon knockdown 
causes a lean, hypermetabolic phenotype in mice (Gelling et al. 2008)(Figure 2). However, how 
ADAM17 mediates mechanistically the browning of WAT yet needs to be elucidated. On the other 
hand, miR-26b has been identified to directly target the phosphatase and tensin homolog (PTEN), 
thereby improving insulin sensitivity in human mature adipocytes (Xu et al. 2015), which is in line 
with results from in vivo studies where transgenic mice, which globally or liver-specifically 
overexpress miR-26a, also exhibited increased insulin sensitivity (Fu et al. 2015). Interestingly, in 
these mice HFD-induced obesity is not ameliorated upon liver-specific overexpression, but upon 
global miR-26a overexpression. This indicates that this obesity resistant phenotype of miR-26 action 
is dependent on its function in another organ than the liver. 

miRNA targeting the β-secretase BACE1 

miR-328 has recently been identified to promote the shift in cell commitment from muscle to BAT. 
Repressed miR-328 function blocked adipogenesis, and miR-328 overexpression promoted brown 
adipogenesis while diminishing myogenesis. Mechanistically, the β-secretase BACE1 was identified as 
direct target of miR-328 (Oliverio et al. 2016)(Figure 2). Reduced BACE1 levels are known to decrease 
body weight, to protect against diet-induced obesity, at least partially via UCP1 induction, and to 
enhance insulin sensitivity in mice (Meakin et al. 2012), and to control the G-protein coupled 
receptor 5b (GPRC5b), a known link between diet-induced obesity and type 2 diabetes (Kim et al. 
2012). 

miRNAs with impact on brite/brown adipocyte function and formation but with unknown direct 
targets 

There are a number of further miRNAs with impact on brite/brown adipocyte formation and 
function, however, they still lack a known direct target by which the miRNA effects are mediated 
(Figure 2).  

For example, let-7i is a repressor of brite adipocyte function, as inhibition was able to promote the 
conversion of adipocytes from white to brite in mouse and human, while let-7i mimic injection in 
murine subcutaneous WAT partially blocked β-adrenergic activation of the browning process (Giroud 
et al. 2016a). Another miRNA that was characterized in humans and rodents, is miR-125b, which was 
found to be downregulated upon β-adrenergic receptor stimulation in WAT and BAT and lower 
expressed in BAT than in WAT. While miR-125b overexpression led to decreased mitochondrial 
biogenesis and respiration, miR-125b inhibition promoted both in human adipocytes (Giroud et al. 
2016b). However, a direct target has not been validated yet. 

miR-19b has recently been identified to be transcriptionally upregulated by glucocorticoids (GC) 
which are known to inhibit the function of BAT and browning of WAT (Kong et al. 2015). While miR-
19b overexpression had the same effect as GC treatment, miR-19b inhibition blocked 
dexamethasone-mediated suppression of the browning program, placing miR-19b as an essential 
target for GC-mediated control of adipose tissue browning (Lv et al. 2018). 

Expression levels of the miRNA cluster miR-106b-93 were found to be elevated in BAT of HFD-fed 
mice compared to mice fed a low fat diet, and knockdown of miR-106b and miR-93 significantly 
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induced the adipogenic browning program, while ectopic expression of both miRNAs suppressed 
brown marker genes, such as UCP1 (Wu et al. 2013).  

The miRNAs miR-182 and miR-203 were found in brown adipocytes of DGCR8 KO mice to be among 
the 10 most downregulated miRNAs. Inhibition of both miRNAs in brown adipogenesis led to a 
reduction in brown adipogenic marker genes, including UCP1, PGC-1α, CIDEA and PPARα, but not 
common adipogenic marker genes. Thus these two miRNAs are required for brown adipocyte 
differentiation (Kim et al. 2014).  

miRNAs as serum biomarker 

Beyond functioning as energy buffer, the adipose organ vitally cross-talks with other organs as 
adipocytes are endowed with secretory abilities of different bioactive compounds which can act in a 
paracrine, autocrine, and/or endocrine manner (Ailhaud 2000; Villarroya et al. 2017). This also 
includes the brown adipose depots contributing 87% of the total amount of exosomes under cold 
exposure (Chen et al. 2016). Profiling of miRNAs in these exosomes revealed miR-92a to be inversely 
correlated with human BAT activity which is usually measured by 18F-fluorodeoxyglucose (18F-FDG) 
positron emission tomography coupled with computer tomography (PET/CT). Thus exosomal miR-92a 
represents a potential serum biomarker for BAT activity in mice and humans (Chen et al. 2016). 

 

LncRNAs in brite/brown adipose tissue 

Increasing the thermogenic capacity of adipose tissue has been proposed as a strategy for combating 
obesity and its associated metabolic disorders. As various small ncRNAs have been implied in the 
formation and function of brite/brown adipocytes, it is also worth to pay attention to long ncRNAs 
and their regulatory functions in thermogenic adipocytes. And indeed, lncRNAs have been 
demonstrated to have a regulatory impact on brite/brown adipose tissue biology, however, only a 
few candidates have been functionally characterized so far which we review in the following (Figure 
3).  

LncRNA BLNC1  

PPARγ cooperates with C/EBPα to control the expression of a large number of adipogenic genes, and 
PRDM16, PGC-1α and the early B-cell factor 2 (EBF2) have been identified as transcription factors 
that work with PPARγ to selectively promote the formation of adipocytes with thermogenic capacity. 
In this context, the first lncRNA named brown fat lncRNA 1 (BLNC1) was identified, which has a 
length of 965 nucleotides, does not associate with ribosomes, is not translated into a protein and is 
highly conserved between mice and humans. Overexpression of BLNC1 promoted the browning 
program in white and brown adipocytes, including elevated UCP1 expression, mitochondrial content, 
total respiratory capacity, and uncoupled respiration, while BLNC1 inhibition impaired these 
characteristics. Mechanistically, BLNC1 has been found to be strictly dependent on EBF2, forming a 
ribonucleoprotein complex with EBF2, which on the one hand promotes expression of BLINC1 itself, 
and on the other hand facilitates binding to the UCP1 promoter leading there to higher activity 
(Jones and Tontonoz 2014; Zhao et al. 2014)(Figure 3). This BLNC1/EBF2 complex is formed by 
support of the heterogeneous nuclear ribonucleoprotein U (hnRNPU) (Mi et al. 2017). Moreover, the 
zinc finger and BTB domain-containing protein 7b (ZBTB7B) has been identified as potent 
transcription factor of brite and brown adipocyte differentiation and thermogenic capacity. 
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Interestingly, ZBTB7B is able to recruit the BLNC1/hnRNPU ribonucleoprotein complex to drive the 
browning program (Li et al. 2017).  

LncRNA BATE1 

Another transcriptomics study comparing three different murine adipose depots (BAT, subcutaneous 
WAT, visceral WAT) revealed 127 lncRNAs with an expression pattern restricted to BAT that are often 
targeted in their promoter region by the transcriptional regulators C/EBPα, C/EBPβ, and PPARγ. One 
of them is lnc-BATE1, which has been found to be enriched 10-20 fold during brown adipogenesis. 
Functional studies elucidated that lnc-BATE1 is required for the establishment and maintenance of 
BAT identity and thermogenic capacity. Interestingly, also lnc-BATE1 interacts with hnRNPU to form a 
functional ribonucleoprotein complex to regulate brown adipogenesis (Alvarez-Dominguez et al. 
2015) (Figure 3).  

LncRNA BATE10 

Another BAT-enriched lncRNA is lnc-BATE10, which was found to be highly upregulated during brown 
adipogenesis, is higher expressed in brown compared to white adipocytes, is induced upon BAT 
activation in cold exposed mice as well as in subcutaneous WAT by β-adrenergic receptor 
stimulation. Inhibition of lnc-BATE10 depleted the response to norepinephrine and significantly 
impaired the expression of BAT-selective genes such as UCP1 and PGC-1α. Thus lnc-BATE10 is 
required for BAT-selective gene expression in white and brown adipocytes. Mechanistically, lnc-
BATE10 has been shown to be regulated by the cAMP-CREB signaling pathway and interacts with the 
CUG-binding protein and ELAV-like family member 1 (CELF1) to finally compete with PGC-1α for 
CELF1 binding (Bai et al. 2017). CELF1 is known to bind the 3′-UTR of its target mRNAs to promote 
RNA degradation and to repress translation. By competing with CELF1, lnc-BATE10 blocked its 
inhibitory function on PGC-1α mRNA thus promoting brite/brown adipogenesis. 

lncRNAs in circulation as potential biomarkers 

Moreover, also circulating lncRNAs have been studied in lean and obese human subjects, as well as in 
obese patients submitted to diet for 12 weeks. It appeared that three lncRNAs, lncRNA-p5549, 
lncRNA-p21015, and lncRNA-p19461, are inversely correlated with body mass index (BMI), waist 
circumference, waist-to-hip ratio, and fasting insulin levels (Sun et al. 2016). 

 

Outlook 

The worldwide epidemic of obesity is inexorably progressing and thus demands the development of 
novel and more effective therapeutic approaches. Adipose tissue is the core unit in energy 
metabolism which can cope with a positive energy balance either by energy storage in white 
adipocytes or an increase in energy expenditure via non-shivering thermogenesis in brite/brown 
adipocytes. The latter has ameliorating impact on blood glucose and triglyceride levels as well as on 
insulin sensitivity. However, the comprehensive regulatory network of brite/brown adipocyte 
formation remains to be elucidated.  

In this context, small and long ncRNAs are an emerging novel regulatory layer in energy metabolism, 
involved in physiological and pathological conditions. So far, numerous miRNAs have been identified 
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and characterized to govern brite/brown adipose tissue biology, while for lncRNAs only three 
candidates have been revealed. Interestingly, while miRNAs have been shown to promote or impair 
brite/brown adipocyte formation and function, the so far all identified lncRNAs promote brite/brown 
adipogenesis and thermogenic capacity (Table 1). While most endogenous miRNAs and all lncRNAs 
which are known so far to be involved in brite/brown adipose tissue biology are characterized in 
mouse models, only three miRNAs, miR-26, let-7i and miR-125b, have also been functionally 
characterized in human. ncRNA candidates that also have a protective role in diet-induced obesity 
are still rare, and will further shrink when criteria for therapeutic applications are applied, such as 
cross-species conserved function and a comprehensive list of validated direct targets and mediators 
in order to allow and extrapolate animal studies to humans and to minimize adverse side effects in 
the long run. Thus the list of ncRNA candidates is far from being exhaustive, with plenty of space for 
further research in that field. 

At the moment, anti-RNA treatments are currently being developed to expand the options available 
to clinicians (Wahid et al. 2010, 2014b; Kole et al. 2012; Slaby et al. 2017). However, from the current 
perspective, lncRNAs seem to be more challenging than miRNAs, as lncRNAs can have high turnover 
rates, lower transcriptional expression and less cross-species conservation, and a lack of mechanistic 
understanding hinders further investigation into the application of targeted therapeutics. 
Nevertheless, miRNAs and lncRNAs as drug targets can be targeted by RNA interference technology, 
while both classes of ncRNAs as drugs have, in contrast to small molecules and antibodies, very 
similar physico-chemical properties which will emerge as advantage in targeted drug delivery. The 
reason is that once a targeted ncRNA delivery system has been developed for one specific cell type, it 
could be easily loaded with any other member of this ncRNA class, thus changing the paradigm from 
one delivery system per drug to one delivery system per class of drugs. Moreover, due to the 
substantial number of lncRNA loci in the mammalian genome, lncRNAs are a treasure chest yet to be 
discovered and applied for therapeutic applications. To conclude, despite the currently existing 
obstacles, we have reached the point where modulating ncRNA expression and function has become 
a viable option for the modulation of energy metabolism and metabolic diseases. Moreover, it will be 
interesting to determine whether miRNA/lncRNA-targeting therapeutics could be combined with 
other chemical or biological drugs for multidrug therapy.  
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Figures 

Figure 1: Classification of non-coding RNAs: ncRNAs with less than 200 nucleotides (nt) in length are 
small ncRNAs, while non-coding transcripts with a length of more than 200 nt are defined as long 
ncRNAs. tRNAs: transfer RNAs, snRNAs: small nuclear RNAs, snoRNAs: small nucleolar RNAs, miRNAs: 
microRNAs, piRNAs: piwi-associated RNAs, rRNAs: ribosomal RNAs, lncRNAs: long non-coding RNAs. 

 

Figure 2: miRNAs in brite/brown adipose tissue. miRNAs with a positive impact on brite/brown 
adipocyte formation and function is displayed in green, while miRNAs with a repressive role are 
displayed in red. miRNAs which are known to be secreted are indicated in yellow.  

 

Figure 3: LncRNAs in brite/brown adipose tissue. LncRNAs with a positive impact on brite/brown 
adipocyte formation and function are displayed in green. LncRNAs which are known to be secreted 
are indicated in yellow.  

 

 

Table 

Table 1: miRNAs and lncRNAs with impact on brite/brown adipose tissue biology. 



Non-coding RNAs

Long ncRNAs (> 200 nt)Small ncRNAs (< 200 nt)

tRNAsHousekeeping:

Regulatory:

snRNAs snoRNAs

miRNAs piRNAs

rRNAs
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Figure 1: Classification of non-coding RNAs



Figure 2: miRNAs in brite/brown adipose tissue
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Figure 3: lncRNAs in brite/brown adipose tissue
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