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Abstract

Fate and transport of solutes in heterogeneous porous media is largely affected by diffu-
sive mass exchange between mobile and immobile water zones. Since it is difficult to directly
measure and determine the effect in the aquifers, multi-tracer experiments in combination
with mathematical modeling are used to obtain quantitative information about unknown
system parameters such as the effective mobile and immobile porosity, and the diffusive
mass exchange between mobile and immobile water zones. The Single Fissure Dispersion
Model (SFDM) describing nonreactive transport of solutes in saturated dual-porosity media,
has been employed as a modeling approach to explain dual-porosity experiments in the field
and laboratory (column experiments). SFDM optimization with conventional methods of
minimization was immensely difficult due to its complex analytical form. Thus, previous
studies used a trial and error procedure to fit it to the experimental observations. In this
study, a rigorous optimization technique based on the newly developed scatter search method
is presented that automatically minimizes the SFDM to find the optimal values of the hy-
drogeologically related parameters. The new program (OptSFDM) is accompanied with an
easy-to-use graphical user interface (GUI) that is flexible and fully integrated. The pro-
gram usability is showcased by a few, previously presented experimental case studies, and
compared against the currently available, trial-and-error based, command-line executable,
SFDM code.

Keywords: Single Fissure Dispersion Model (SFDM); Nonlinear Minimization; Scatter
Search; Tracer Experiments; Nonreactive Transport
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1 Introduction

Fate and transport of contaminants in groundwater depends on physical and chemical properties

of contaminants as well as aquifer characteristics. Since subsurface transport processes are closely

linked to aquifer characteristics, their effect on contaminant movement can be used as a measure

to gain knowledge about aquifer. This is particularly beneficial, as it is difficult to quantify aquifer

characteristics directly and to determine the value of relevant parameters in-situ. Needless to

mention that structural heterogeneities as indigenous features of sedimentary basins and aquifers

often add more complexity to direct quantification of those characteristics, resulting in increased

measurement uncertainty.

A common way to identify dominating transport processes in an aquifer is to use tracer tests

(Flury and Wai, 2003; Knorr et al., 2016a). A tracer is a chemically inactive substance with

properties such as low biodegradability, good detectability, and existing at low or constant con-

centration levels in nature. Measured tracer breakthrough curves form a specific shape according

to method of injection which is either continuous, instantaneous or pulsed. The shape of a tracer

breakthrough curve is closely related to so called process of matrix diffusion in aquifer (Chap-

man and Parker, 2005; Parker et al., 2008). Matrix diffusion is the passive exchange of solute

between the water in highly permeable zones (mobile water) and the water in impermeable zones

(stagnant or immobile water). Solute transport is dominated by advection and hydraulic dis-

persion in mobile water zones, whereas in stagnant or immobile water zones active flow of water
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is considered negligible. In dual-porosity aquifers, the concentration gradients between the two

zones allow solutes transported by water in fissures (or mobile water zones) to diffuse into the

less-porous stagnant-water zones and to persist there much longer than some other areas of the

aquifer. As a consequence, immobile water zones act as storage of contaminants (Lipson et al.,

2005) and proceed as source of contaminant when concentration gradients switch (due to back

diffusion, see e.g., Carrera et al., 1998; Chapman et al., 2012; Parker et al., 2008). The reverse

diffusion of contaminant from already polluted immobile water into mobile water is commonly

referred to as contaminant rebound (Geyer et al., 2007; McGuire et al., 2006). This process has

been considered as the main control factor of remediation time (Seyedabbasi et al., 2012; West

and Kueper, 2010). Since the process strongly depends on the diffusion coefficient of the solutes,

often experiments with two or more tracers (with different diffusion coefficients) are conducted

(Knorr et al., 2016b; Reimus et al., 2003). The multi-tracer data are then used to quantify the

matrix diffusion through the optimization of relevant mathematical models.

Various deterministic(e.g., Cirpka and Kitanidis, 2000) and stochastic-based models (e.g.,

Lanoiselée et al., 2018; Chechkin et al., 2017), either numerical or analytical have been devel-

oped to describe solute migration in heterogeneous systems, and to simulate and thus quantify

the observations. While the majority of efforts have concentrated on Fickian-based advection-

dispersion models for defining the patterns of transport and dispersion in porous and fractured

media, non-Brownian and particle-tracking based models such as continuous-time random walk

(CRTW) or the time-fractional advection-dispersion equation (FADE) have equally attracted

attention (e.g., Berkowitz et al., 2006; Edery et al., 2014; Metzler and Klafter, 2000; Scher et al.,

2002). In this study, we focus on the deterministic-based approaches that solve Fickian-based

advection-dispersion models which consist of a set of partial differential equations (PDEs) de-

scribing the transport of a reactive or conservative solute in porous media (Cirpka et al., 1999;

Gharasoo et al., 2012, 2015; Maloszewski and Zuber, 1985, 1990). To make the calculations

easier, many contributions have provided analytical form of solutions for these PDEs for specific

cases of fixed initial and boundary conditions. Although the suggested analytical models are

limited to the specified conditions, they are preferred in hydrological applications over the nu-

merical models since their optimization is easier due to the existence of a closed-form solution.

Two types of modeling approaches have been suggested for dual-porosity systems depending on

how the term for the exchange rate between the immobile and mobile water is defined (Carrera

et al., 1998). In the first approach, the exchange term is described by a first-order mass transfer

coefficient (Bond and Wierenga, 1990; Gaudet et al., 1977; Geyer et al., 2007; van Genuchten and
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Wierenga, 1976) while in the second approach it is described by Fick’s first law (van Genuchten

et al., 1984; Young and Ball, 1998). Depending on the shape of experimental setup, the second

approach solves the Fickian law for different geometries. For instance, it solves radial outward

diffusion to the surroundings in a cylindrical core for the dual-porosity column setups where the

permeable sediments at center are encircled by aquitard layers. These analytical models when

describing the non-reactive transport of a tracer in fissured aquifers are divided in two major

groups according to the boundary conditions assumed: continuous injection (Neretnieks, 1980;

Sudicky and Frind, 1982; Tang et al., 1981) and instantaneous pulse injection (Maloszewski and

Zuber, 1985, 1990). The latter approach is called the Single-Fissure Dispersion Model (SFDM)

and has been used in combination with multi-tracer tests to inversely estimate the parameters

describing the tracer’s effective diffusion coefficient, the fracture aperture, and the porosities of

both mobile and immobile water zones in dual-porosity aquifers (Einsiedl and Maloszewski, 2005;

Knorr et al., 2016a; Maloszewski and Zuber, 1993; Witthüser et al., 2003).

Optimization of the SFDM with conventional methods of minimization (Coleman and Li,

1996; Ehrl et al., 2018; Gharasoo et al., 2019) was highly infeasible due to the complex form of the

analytical solution. Therefore, a trial and error approach was used in the previous applications

of SFDM optimization (e.g., Knorr et al., 2016a,b, 2017), which was time-consuming and highly

subject to the computer skills of the user, requiring knowledge of how the values of fitting

parameters affect the final form of the breakthrough curve. Previously used programs were

only executable in a command-line environment and their practicality was an issue similar to

many early programs in the MS-DOS environment. For instance, the user had no access to the

previously obtained fitting schemes which could easily lead to a cycle of repetition. Preparation

of input files and the export of graphical illustrations were tedious and a visual comparison

between the ensembles was not possible. Moreover, the user could not assess whether the obtained

goodness of fit was sufficient since it was not possible to explore the entire space of parameters.

Here, we present a program (OptSFDM) that automatically optimizes the SFDM using a

scatter search optimization technique (Glover, 1998; Ugray et al., 2007) in which the entire space

of parameters can be scanned. The ultimate aim was to introduce a comprehensive tool for

optimizing the complex analytical formula of the SFDM suggested by Maloszewski and Zuber

(1985, 1990), enabling hydrologists and hydrogeologists to more easily estimate and quantify the

hydrogeological parameters of their heterogeneous dual-porosity environments. The presented

approach is not limited to the SFDM and in principle can be used for optimization of other

dual-porosity models. The potential of the presented tool is demonstrated and verified through
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several case studies that were previously presented in Knorr et al. (2016a).

2 Materials and Methods

In natural aquifers, it is difficult to quantify sedimentological heterogeneities which are respon-

sible for geostatistical arrangement of high- and low-permeable zones. The SFDM was originally

developed to describe the flow and the transport of a conservative solute in coupled fracture-rock

matrix systems. It was also proven to be applicable in porous aquifers (Knorr et al., 2016b). The

use of the SFDM in combination with multi tracer tests allows quantifying the effect of solute

diffusion into and from immobile water zones as well as estimating hydrological properties of

dual-porosity systems such as heterogeneous aquifers. It also helps to better envisage the impact

of immobile water regions on the risk of contaminant rebound.

2.1 The SFDM background

The dual-porosity medium is considered as a semi-infinite system where identical and parallel

fissures are equally spaced in the rock matrix. Fissures are considered as the regions within which

the mobile water flows while the immobile water is assumed to be present only in the rock matrix.

Non-reactive transport of a tracer in fissures is therefore described by advection, dispersion, and

a diffusive mass exchange with the rock matrix. Advection is presumed negligible in the rock

matrix, thus, the transport of the tracer in the rock matrix is governed only by diffusion in a

direction perpendicular to the fissures. In addition, adsorption effects are assumed negligible and

the tracers are considered kinetically non-reactive. It is also assumed that the distance between

fractures is sufficiently high, resulting in unlimited penetration depths of solute diffusion into the

immobile water zone and thus, the interactions between fractures are excluded. Considering the

above assumptions, the following equations describe the mass balance in the fissures and in the

matrix (Maloszewski and Zuber, 1985, 1990):

∂Cf

∂t
+ v

∂Cf

∂x
−D

∂2Cf

∂x2
− φpDp

2b

∂Cp

∂y

∣∣∣
y=b

= 0 for 0 ≤ y < b (1a)

∂Cp

∂t
−Dp

∂2Cp

∂y2
= 0 for b ≤ y <∞ (1b)

where Cf [ML−3] and Cp[ML−3] are the tracer concentrations in water in the mobile (fissures)

and immobile zones (rock/silt/clay matrix) respectively, v[LT−1] is the mean water velocity in

fissures, x[L] is the coordinate in the direction of flow in fissures (along the axis of cylinder),

y[L] is the coordinate perpendicular to x, t[T ] is the time variable, φp[−] is the porosity of
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matrix, Dp[L
2T−1] is the effective molecular diffusion coefficient in the matrix, D[L2T−1] is the

dispersion coefficient in the fissures, b[L] is a geometrical parameter characterizing the mobile

water zone. The analytical solution of Eq. (1) with initial and boundary conditions stated in

Maloszewski and Zuber (1990) for a Dirac injection of a tracer is given by:

Cf (t) =
aM

√
t0/Pd

2πQ

∫ t

0
exp

(
− (t0 − u)2

4ut0Pd
− a2u2

t− u

) du√
u(t− u)3

(2)

where Q[L3T−1] is the volumetric flow rate, u is the integration variable, t0[T ] = Vf/Q is the

mean transit time of water in fissures, Vf [L3] is the volume of water in fissures (mobile water),

M [M ] is the total mass of the injected tracer, a[T−0.5] = 0.5φp
√
Dp/b is the diffusion parameter,

and Pd[−] = D/vx is the dispersion parameter, or the multiplicative inverse of the dimensionless

Péclet number. Although the SFDM was originally developed for describing transport in fissured

aquifers, it was shown to be also applicable in describing transport in dual-porosity sediments

(Knorr et al., 2016b). Of special interest to the SFDM and related analytical solutions is the

geometrical parameter b. The definition of this parameter varies throughout studies, depending

on the geometry of the experimental designs. In the presented analytical solution Eq. (2), b is

defined as the half-aperture of the single fracture so that y = b reaches the interface between

mobile and immobile water zone (Maloszewski and Zuber, 1985, 1990; Nolte et al., 1991). For

column experiments following the design of Young and Ball (1998), the parameter b is described

as the radius of the mobile water zone (the cylindrical and permeable inner zone) which is drained

by water (Knorr et al., 2016a). A more general approach describes b as the ratio of an aquifer

unit column to matrix surface area (Carrera et al., 1998; Reimus and Callahan, 2007). The

careful assessment of b is of great importance for the derivation of the porosity of the immobile

water zones and for the validation of the model results (as shown in Knorr et al. (2016a)).

The unknown parameters a, Pd, and t0 are estimated through the fitting of analytical solution

Eq. (2) to the measured concentrations of tracer in mobile water Cf . This has been done so far

through a trial and error procedure (e.g., Knorr et al., 2016a,b, 2017), and the goodness of fit

was evaluated by calculating the R-squared values,

R2 = 1−

∑
i

(Cexp,i − Cf,i)
2

∑
i

(Cexp,i − C̄exp)
2

(3)

where Cexp,i denote the experimental observations, Cf,i denotes the corresponding fit of Eq. (2)

at data points, and C̄exp is the mean of the observed data. Once the values of these parameters
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(a, Pd, and t0) are determined, the values of parameters describing characteristics of the aquifer,

such as b, D, and φp can be derived from them.

2.2 Optimization technique

Due to the presence of multiple local minima and high non-linearity of Eq. (2), the optimization

was difficult using standard minimization techniques, such as Levenberg and Marquardt (Lev-

enberg, 1944; Marquardt, 1963) or interior-reflective Newton methods (Coleman and Li, 1996;

Gharasoo et al., 2017). Here, a new minimization technique based on the scatter search algo-

rithm is employed for fitting. Scatter search described in Glover (1998) and Ugray et al. (2007)

is a population-based global approach that has recently been shown highly effective in solving

nonlinear optimization problems. The mechanism is based on maintaining a group of diverse

and high-quality candidate solutions. For this purpose, the algorithm first generates a set of trial

points within the space of parameters and uses them as potential start points. Every trial point

is evaluated by the minimization function and obtains a score. The best scored points are then

selected as high-quality candidate solutions. Using an iterative procedure, the basins of solution

that attract high number of candidate solutions are recombined and weighted. The results of

recombination are refined and further evaluated using an embedded heuristic until the global

optima is found. Traditional optimization techniques execute iteratively by comparing various

solutions till an optimum or a satisfactory solution is found. The success of such methods for

minimizing complicated functions with multitude of local minima highly depends on the choice of

parameters’ initial guess. Since the presented scatter search algorithm fully scans the parameter

space (that is the combination of all parameter values within their lower and upper bounds), it

is independent to the choice of initial values and as a result less prone to fall into a local optima

and thus highly capable of finding the global optimum.

Previous studies (e.g., Knorr et al., 2016a,b, 2017) have calculated and used relative recovery

rates R(t) = Q
∫ t
0 Cf (t)dt/M to improve the trial and error procedure of fitting. This is a

redundant exercise using the presented fitting approach as the new procedure directly minimizes

Eq. (2).

2.3 Case studies

We used the new tool to estimate the value of parameters a, Pd, and t0 from the data for dual-

porosity column experiments presented in Knorr et al. (2016a) which were performed using three

different tracers (Uranin, Bromide, and Deuterium) at three different injection/pore velocities.
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The estimated values are then compared with the reported values that were obtained through a

trial and error fitting procedure.

3 Results and Discussion

As shown in supporting information (Fig. S1), the new program (OptSFDM) facilitates the user

interactions with the system via a graphical interface. In average, it takes about two minutes to

optimize each case study presented in Knorr et al. (2016a) on a quad-cores Intel Core i5-4590

CPU at 3.30GHz with 16GB RAM. The program also provides the opportunity for the user to

do a trial and error fitting procedure by solving Eq. (2) with the parameter values provided by

the user. R-squared values (Eq. (3)) for every fit are also calculated and shown as a measure for

the goodness of fits.

We, unfortunately, do not have access to the the old SFDM source-code, or know the details

of how the fits were done by Piotr Malozewski in Knorr et al. (2016a). However, there are

small differences between the solution of Eq. (2) obtained in this study with those illustrated

in Knorr et al. (2016a). We suspect that due to higher numerical tolerances of solving integrals

in older programming environments, the obtained solutions were not as accurate as nowadays.

Therefore, the current solution of Eq. (2) with the previously reported parameter values looks

slightly different (when comparing the dashed lines in Fig. 1 with the fits in Fig. 2 of Knorr

et al. (2016a)). For completeness, we included our MATLAB solution for Eq. (2) in supporting

information (Listing S1).

3.1 Comparison with previously presented results

The new algorithm was proven remarkably efficient in solving the SFDM optimization. The

goodness of fits were found more accurate than the conventional results which were done by

a hydrogeological expert through a trial and error procedure. Fig. 1 shows the comparison

between the results obtain in this study and those in Knorr et al. (2016a). Furthermore, Table 1

lists the parameter values obtained in this study and compares them to the previously reported

values. As shown in Fig. 1, the fits to the data from experiments A and B (performed with pore

velocities of 7.1 m.d−1 and 1.5 m.d−1, respectively) are conveniently good and slightly improved

in comparison to the previously presented fits. The estimated parameter values for the fits are

also in a good agreement with those reported. However, the fits to the data of experiment C

with the lowest flow velocities of 0.55 m.d−1 (except for the case of Uranine) do not match the

experimental results well, reflected also by the R-squared values calculated according to Eq. (3).
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Since further refinement of the fitting scheme did not improve the goodness of fit, the observed

differences are speculated to be related to the uncertainties in tracer mass recovery (which is

assumed to be 100% in Eq. (2)).

Logarithmic plots (log of concentrations vs. linear time) are occasionally supplied as this type

of plots provides a better measure for the goodness of fit at the tailing section (Edery et al., 2014)

and thus gives a better perspective on sorption processes. Since sorption was considered negligible

here, we avoided this sort of details in general. So in the current setup, root-mean-square errors

(RMSE) are minimized with no data scaling (weighting). As a result, the fits preferably pass

through the peak of the breakthrough curves (to minimize the error at high concentrations) in

which the methodology is identical to the strategy was employed by (Knorr et al., 2016a). If a

fit to the tailing or to the starting points is more important, then RMSE at those points can be

scaled up (weighted higher). Such adjustments are easily possible within the current potentials

of the tool and shown here for specific case of Bromide data (Fig. 2). As illustrated in logarithmic

plots of Fig. 2, weighting gave a better fit to the tailing section for experiments A and B. However,

this was achieved in cost of a less desirable fit at the breakthrough peak as shown in linear plots.

Estimated parameter values for weighted fits (a = 0.089 hr−0.5, Pd = 0.0068, t0 = 1.77 hr

for the experiment A, and a = 0.08 hr−0.5, Pd = 0.0025, t0 = 8.2 hr for the experiment B)

were, however, not significantly different from those listed in Table 1 for non-weighted fits. For

the case of experiment C, the weighted fit was nearly identical to the non-weighted fit and so

were the estimated parameter values. As it is discussed in the next section, the uncertainty

related to the tracer mass recovery was found majorly influential in this case. Hence, without

the consideration of correcting mass recovery by taking it as another fitting parameter, the fits

could have not been further improved independent to the technique of optimization and data

weighting. It is also worth mentioning that the data scaling (or weighting) only changes the final

shape of the objective function and has no effect on the ability of the model in fully scanning

the parameter space.

3.2 Four parameters fit including a mass correction factor

Previous SFDM-based studies has mentioned that additional fitting of recovery rates is useful

in order to improve reliability of fitting parameters for experimental results where the tracer

recovery is low to moderate (Maloszewski and Zuber, 1990). Since model calibration is embedded

in the trial-and-error procedure of Maloszewski and Zuber (1990), the exact procedure remains

unknown. To tackle this in the new program OptSFDM, a fourth fitting parameter Mcor (or the
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mass-recovery correction factor) is introduced to minimize calibration difficulties that arise from

low tracer recoveries. This parameter acts as a scaling parameter and expresses the relationship

between the injected mass of tracer and the actual mass recovered. Inclusion of this extra fitting

parameter changes the form of Eq. (2) to the following with four fitting parameters a, Pd, t0,

and Mcor:

Cf (t) =
aMcorM

√
t0/Pd

2πQ

∫ t

0
exp

(
− (t0 − u)2

4ut0Pd
− a2u2

t− u

) du√
u(t− u)3

(4)

The value of Mcor was set to vary between 0.5 and 2. As shown in Fig. 3, the introduction of

Mcor led to a more realistic set of parameter values and a better fit to the data of experiment C.

It is worth noting that the optimization algorithm was slightly refined by decreasing the radius

of basins of attraction (Glover, 1998; Ugray et al., 2007) to handle the four-parameters fitting

procedure more efficiently. As shown in Table 2, Mcor did not change drastically for Uranine

case confirming that the fit with three parameters is already sufficiently perfect. For Bromide,

a good fit was obtained with Mcor = 0.8 meaning that the mass recovery was approximately

20% less than it was assumed. For Deuterium, Mcor = 0.55 suggests that the mass recovery

was estimated even lower (about 45% less than expected). It is also clear from the fits (compare

the results of experiment C in Fig. 3 with those in Fig. 1) that the inclusion of mass-recovery

correction factor helped obtaining much better fits. The quality of fits were also improved for the

previously reported parameter values in Knorr et al. (2016a) when Mcor was taken into account.

3.3 Further notes in using the SFDM

It is essential to validate the results obtained from the SFDM as there is a chance of over-

fitting with four or even three fitting parameters. The obtained parameter values should not

thus be regarded as absolutely correct without further considerations. As previously done in

Knorr et al. (2016a,b), system parameters need to be verified for reliability, for instance by

comparing with literature, direct measurements, or theoretical approximations (e.g., porosity

can be roughly estimated from particle size distribution in a system). Another way to verify the

estimated parameter values is to repeat the experiments with multiple tracers and at different

flow velocities. All multi-tracer tests should result in more and less similar values for medium-

related parameters. The estimated parameter values from a decent fit can still be questionable

due to several possibilities such as describing the experimental setup with an invalid model and

assumptions, or the existence of processes that are not yet addressed in the model.

Furthermore, it should be noted that the use of multiple tracers with different diffusion coef-
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ficients is highly crucial in order to unambiguously determine whether the interactions between

mobile and immobile water and thus diffusion of solutes between them play an important role

in an aquifer. The SFDM was employed for parameter estimation of Knorr et al. (2016a) only

when it was evident that immobile water drastically influenced solute transport and as the result

all the three tracers formed different breakthrough curves. Note that the tracer with the lowest

diffusion coefficient must produce the highest peak and the lowest tailing, and vise-versa.

3.4 Potentials of the presented optimization approach

The presented tool only optimizes the analytical SFDM solution provided by Maloszewski and

Zuber (1990) for conservative transport of a solute in form of a pulsed input (Dirac injection)

through a dual-porosity medium. Since all previously introduced analytical solutions for fissured

aquifers have a comparably complicated form (Neretnieks, 1980; Sudicky and Frind, 1982; Tang

et al., 1981), a similar optimization technique can be used to effectively minimize them. Further-

more, a similar application of the scatter search algorithm can serve as a reliable optimization

procedure for all suggested analytical models for dual-porosity porous environments (e.g., Bond

and Wierenga, 1990; Geyer et al., 2007; Leij et al., 1993; van Genuchten and Wierenga, 1976;

van Genuchten et al., 1984; van Genuchten, 1985; Young and Ball, 1998).

Although the presented technique was shown highly effective for optimizing deterministic-

based Fickian advectiion-dispersion models that have a closed-form solution, it is not currently

clear if the method can be equally functional for analytical forms of non-Fickian (or anomalous)

transport models (see e.g., Neuman and Tartakovsky, 2009). It is however evident that this

method cannot be employed for optimizing the stochastic-based models (e.g., Berkowitz et al.,

2006; Lanoiselée et al., 2018; Scher et al., 2002) due to the different nature of their setup and

simulations.

4 Summary and Conclusions

The new program OptSFDM, presented in this contribution, allows automatic optimization of

the complex analytical model suggested by Maloszewski and Zuber (1985, 1990) for dual-porosity

media. User interactions with OptSFDM are guided through a graphical user interface (GUI) that

provides a platform for importing/exporting data from/to Excel. The simple but effective design

of the interface helps users to focus more on the experimental and applied aspects of the research,

and less on the mathematical and computational details. The new program further allows the

user to practice a trial and error fitting method similar to the old SFDM program. OptSFDM
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is easy to operate and flexible, allowing users to concentrate better on data interpretation than

on rather elaborate and complicated procedures of manual data fitting by trial and error. It

thus offers an invaluable platform to investigate the exchange of solute between immobile and

mobile water in heterogeneous media, efficiently quantify the multi-tracer experimental data,

and estimate the hydrogeologically related parameters of a system such as the porosity of mobile

and immobile water zones and the mean transient time. The results can be employed to evaluate

the risk of contaminant rebound in a system. The presented approach of using scatter search

algorithm can be further extended to optimize similarly complex analytical solutions in field of

hydrology and hydrogeology.
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Table 1: Summary of fitting parameters both from this study and from Knorr et al. (2016a)
(values in parenthesis). The fits associated with this values are shown in Fig. 1.

Uranine Bromide Deuterium Mean±Stdv

Experiment A

a(hr−0.5)× 102 4.8(4.3) 8.8(7.5) 11.6(9.4)

Pd × 103 8.7(7) 5(6) 4.8(6) 6.2±2.2

t0(hr) 1.72(1.69) 1.73(1.73) 1.7(1.71) 1.72±0.01

R2(%) 97.8(94.6) 98.7(97.6) 99.1(97.4)

Experiment B

a(hr−0.5)× 102 5.5(4.5) 10.2(8) 13(10)

Pd × 103 4.4(4) 2(3) 1.6(2) 2.6±1.5

t0(hr) 8.3(8.1) 7.9(8.1) 7.7(8) 7.9±0.3

R2(%) 98.7(89.7) 99.8(96.5) 98.9(92.9)

Experiment C

a(hr−0.5)× 102 6.1(4.5) 11.4(8.5) 18.6(10.5)

Pd × 103 2.8(4) 0.7(3) 0.8(2) 1.2±1

t0(hr) 22.4(23) 20.9(22) 17.8(21) 20.4±2.3

R2(%) 99.4(94.6) 98.3(83.3) 87.5(-11)
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Table 2: Summary of fitting parameters both from this study and from Knorr et al. (2016a)
(values in parenthesis) using Eq. (4). Here the mass recovery rate is corrected by the parameter
Mcor of which the estimated values are shown for each tracer. The fits associated with this values
are shown in Fig. 3.

Experiment C

Uranine Bromide Deuterium Mean±Stdv

a(hr−0.5)× 102 6.3(4.5) 9(8.5) 10.1(10.5)

Pd × 103 2.6(4) 1.4(3) 1.4(2) 1.8±0.7

t0(hr) 22.3(23) 21.9(22) 21(21) 21.7±0.6

Mcor 1.02 0.8 0.55

R2(%) 99.5(93.1) 99.6(97.7) 98.3(97)
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Figure 1: Fits to the data of Knorr et al. (2016a). Estimating the hydrogeological parameters
(a, Pd and t0) by fitting analytical solution Eq. (2) to the data. Solid lines shows the fits from
this study while the dashed lines illustrate the fits obtained by trial and error method in Knorr
et al. (2016a).
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Figure 2: Non-weighted fit (dashed lines, shown also in Fig. 1) vs. weighted fit to the tailing of
breakthrough curve (solid lines). Top row shows the fits in logarithmic scale while the bottom
row shows them in linear scale. Only Bromide data as an example was used for weighted fitting.
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Figure 3: Four parameters fit using Eq. (4). Correction of the mass recovery rate by including
another fitting parameter Mcor resulted in a better fit and more reasonable parameter values
for a and Pd in experiment C. Solid lines shows the fits from this study while the dashed lines
illustrate the fits obtained by trial and error procedure in Knorr et al. (2016a). Table 2 lists the
obtained parameter values for the fits.
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