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Objective. To identify single-cell transcriptional signatures of dendritic cells (DCs) that are associated with auto-
immunity, and determine whether those DC signatures are correlated with the clinical heterogeneity of autoimmune 
disease.

Methods. Blood-derived DCs were single-cell sorted from the peripheral blood of patients with rheumatoid ar-
thritis, systemic lupus erythematosus, or type 1 diabetes as well as healthy individuals. DCs were analyzed using 
single-cell gene expression assays, performed immediately after isolation or after in vitro stimulation of the cells. In 
addition, protein expression was measured using fluorescence-activated cell sorting.

Results. CD1c+ conventional DCs and plasmacytoid DCs from healthy individuals exhibited diverse transcrip-
tional signatures, while the DC transcriptional signatures in patients with autoimmune disease were altered. In par-
ticular, distinct DC clusters, characterized by up-regulation of TAP1, IRF7, and IFNAR1, were abundant in patients 
with systemic autoimmune disease, whereas DCs from patients with type 1 diabetes had decreased expression of 
the regulatory genes PTPN6, TGFB, and TYROBP. The frequency of CD1c+ conventional DCs that expressed a sys-
temic autoimmune profile directly correlated with the extent of disease activity in patients with rheumatoid arthritis 
(Spearman’s r = 0.60, P = 0.03).

Conclusion. DC transcriptional signatures are altered in patients with autoimmune disease and are associated 
with the level of disease activity, suggesting that immune cell transcriptional profiling could improve our ability to 
detect and understand the heterogeneity of these diseases, and could guide treatment choices in patients with a 
complex autoimmune disease.

INTRODUCTION

Autoimmunity occurs when the immune system mounts an 
unfavorable response toward a self antigen, which may lead to 
tissue damage and disease. The pathogenesis of autoimmune 
diseases is complex and the clinical manifestation of each dis-
ease varies between patients, which makes it difficult to predict 
the effectiveness of treatments or preventative strategies (1). For 
type 1 diabetes (T1D), a pancreas-specific autoimmune disease, 
immunotherapy has had limited success in reversing the disease 
or preventing progression to end-stage disease (2–4). In contrast, 
in many systemic autoimmune diseases, such as rheumatoid 
arthritis (RA) and systemic lupus erythematosus (SLE), treatment 

with immunomodulatory and immunosuppressive agents has 
optimally achieved clinical remission. However, even with contin-
ued therapy, remission will often not last, and therefore regular, life-
long reassessment of disease activity may be required. Moreover, 
the very same drug that yields measurable benefits in one patient 
with the disease may have no measurable effect in other patients 
with the same disease.

Dendritic cells (DCs) are important regulators of immunity that 
provide immunogenic and tolerogenic signals, which shape the 
adaptive immune response (5,6). In animal models, the absence 
of DCs or their abnormal function has been shown to induce 
autoimmunity, while alterations in the number of DCs, cytokine 
secretion, transcriptional signaling, and cell migration have been 
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associated with development and progression of autoimmune 
diseases in humans (7–9). The DC compartment in mice and 
humans comprises several specialized subsets with different ori-
gins, localizations, morphologies, cytokine secretion patterns, and 
immunologic functions (5,6). Because these functionally distinct 
subsets have the potential to influence autoimmune responses 
in multiple ways, it has been proposed that diverse DC abnor-
malities could explain the broad spectrum of immunopathologic 
features and therapeutic responses in patients with autoimmune 
disease (7). Therefore, altered DC profiles may be associated with 
disease heterogeneity and could serve as a useful biomarker for 
monitoring disease pathogenesis or for predicting the response 
to treatment.

To explore this hypothesis, we used single-cell gene expres-
sion assays to analyze the diversity of blood-derived DCs, assess 
how the DC phenotype is altered in autoimmunity, and determine 
whether the alterations are correlated with the extent of disease 
activity. We profiled blood-derived CD1c+ conventional (or classi-
cal) DCs (cDCs) and plasmacytoid DCs (pDCs) from patients diag-
nosed as having either RA, SLE, or recent-onset T1D, using single-
cell reverse transcription–polymerase chain reaction (RT-PCR) with 
a select panel of genes. The transcriptional profile of both of these 
DC subsets was altered in patients with systemic autoimmunity. 
Moreover, the frequency of CD1c+ cDCs that were characterized 
by a transcriptional signature associated with autoimmune disease 
varied among RA patients and was correlated with the extent of 
disease activity. Thus, our study shows a relationship between DC 
transcriptional profiles and autoimmune disease, and highlights the 
feasibility of profiling DCs or other immune cells to better under-
stand the clinical heterogeneity of these diseases.

PATIENTS AND METHODS

Subjects. Samples of peripheral blood were collected from 
children with recent-onset T1D who were enrolled in the Diabe-
tes Mellitus Incidence Cohort Registry  (DiMelli) study (10), and 
from age-matched healthy children from the Prospective Evalu-
ation of Risk Factors for the Development of Islet Autoimmunity 
and Type 1 Diabetes during Puberty (TEENDIAB) study (11). Pro-
tocols were approved by the Ethikkommission der Bayerischen 
Landesärztekammer (approval no. 08043) and the Ethikkommis-
sion der Fakultät für Medizin der Technischen Universität München 
(approval no. 2149/08). In addition, blood samples were collected 
from consenting patients with SLE or RA who fulfilled the respec-
tive American College of Rheumatology (ACR) (12) or ACR/Euro-
pean League Against Rheumatism (13) classification criteria, with 
approval provided by the ethics committee of TU Dresden (pro-
tocol no. EK 337122008). Routine clinical assessment parame-
ters and C-reactive protein (CRP) values were obtained from the 
patients’ charts.

Blood samples from healthy adults were provided by the 
Deutsches Rotes Kreuz Blutspendedienst Ost (Dresden, Ger-

many) after the subjects had given their informed consent and 
approval was provided by the ethics committee of TU Dresden 
(protocol no. EK 240062016). All research was performed in 
accordance with the Declaration of Helsinki.

Cell stimulation with Toll-like receptor 7 (TLR-7). Fro-
zen peripheral blood mononuclear cells (PBMCs) were thawed 
and seeded into a 48-well tissue culture plate at 2.5 × 106 cells/ml 
in RPMI medium containing 10% fetal bovine serum, 1% strepto-
mycin, 1% penicillin, and 1% l-glutamine with or without 2.5 μg/
ml R848, a TLR-7 agonist (InvivoGen). Thereafter, the cells were 
incubated at 37°C in an atmosphere of 5% CO2 for 3 hours, and 
then harvested, washed, and prepared for single-cell sorting of 
pDCs.

Intracellular staining. PBMCs were isolated by density 
centrifugation of sodium-heparinized peripheral venous blood 
samples over Ficoll-Hypaque. PBMCs were incubated with a Live/
Dead Fixable Blue Dead Cell Stain Kit (ThermoFisher) for 20 min-
utes, and then washed, fixed, permeabilized, and incubated with 
a cocktail of anti-human monoclonal antibodies (mAb) (allophy-
cocyanin [APC]–conjugated LIN, BV650-conjugated CD123, and 
V450-conjugated GZM mAb [BioLegend], phycoerythrin [PE]–
Cy7–conjugated HLA–DR and BV785-conjugated CD303 mAb 
[BD Biosciences], AF700-conjugated IFNAR1 mAb [R&D Sys-
tems], PerCP–eF710–conjugated IRF8 mAb [eBioscience], and 
PE-conjugated IRF7 and PE–Vio770–conjugated IRF7[pS477/
pS479] mAb [Miltenyi]) using the Foxp3/Transcription Factor 
Staining Buffer Set (eBioscience).

Cells were acquired and analyzed using a BD LSRII 
fluorescence-activated cell sorter, with the results analyzed using 
FACSDiva and FlowJo software (BD Biosciences). Aliquots of fro-
zen PBMCs from a healthy donor were stained and analyzed con-
currently with the study samples to control for interexperimental 
variation (see Statistical Analysis for more details). CST beads (BD 
Biosciences) were used to calibrate the instrument before each 
analysis.

Single-cell sorting of DC populations. PBMCs were 
isolated by density centrifugation of sodium-heparinized 
peripheral venous blood samples over Ficoll-Hypaque. Non-
specific binding was blocked by incubating cells with a human 
Fc blocking reagent (Miltenyi) before adding a cocktail of 
anti-human mAb (APC-conjugated CD3, APC-conjugated 
CD19, PE–Cy7–conjugated CD14, PE–Cy7–conjugated 
CD56, and APC–Cy7–conjugated HLA–DR mAb [BD Bio-
sciences], AF700-conjugated CD11c mAb [eBioscience], and 
BV650-conjugated CD123, BV605-conjugated CD15, BV421-
conjugated CD141, and AF488-conjugated CD1c mAb [Bio-
legend]). Ten minutes before acquisition, 7-aminoactinomycin 
D (BD Biosciences) was added to the samples to enable dis-
crimination of dead cells. Cells were acquired and sorted using 
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a BD FACSAria III, with results analyzed using FACSDiva soft-
ware (BD Biosciences). Doublets and clumps were excluded 
using the side scatter–height versus side scatter–width plot. 
Two DC subsets, pDCs (CD3−CD19−CD56−CD14−CD16−
HLA–DR+CD11c−CD123+) and CD1c+ cDCs (CD3−CD19−
CD56−CD14−CD16−HLA–DR+CD11c+CD141−CD1c+), 
were single-cell sorted into 96-well PCR plates containing 5 
μl of EB elution buffer (Qiagen). The cells were then frozen at 
−80°C for RT-PCR analysis.

Gene expression analysis. Gene expression analysis of 
single-cell–sorted DCs was performed as previously described, 
with some modifications (14). Total complementary DNA was 
preamplified for 20 cycles (1 cycle at 95°C for 1 minute, 20 
cycles at 95°C for 15 seconds, 60°C for 1 minute, and 72°C 
for 1.5 minutes, and 1 cycle at 72°C for 10 minutes) with TATAA 
GrandMaster Mix (TATAA Biocenter) and 29 primer pairs (see 
Supplementary Table 1, available on the Arthritis & Rheuma-
tology web site at http://onlinelibrary.wiley.com/doi/10.1002/
art.40793/abstract) at a final concentration of 25 nM in a total 
reaction volume of 35 μl. Raw data were preprocessed as pre-
viously described (14) to regress out plate effects on each indi-
vidual gene while controlling for group effects. Thus, all gene 
expression values are shown as regressed Ct values, where a 
value of 0 indicates no gene expression.

Statistical analysis. Gene and protein expression levels 
are reported as the mean with 95% confidence intervals (95% CIs) 
or mean ± SEM. Various statistical tests were used (as described 
in the figure legends). To adjust for interexperimental variability, 
the fluorescence intensity values recorded during index sorting 
are displayed as the z-scores of data from each independent 
experiment. Single-cell gene expression correlation analyses 
were performed using corrplot, with a significance threshold of 
0.001 (15). To identify biologically meaningful transcriptional pro-
files, t-distributed stochastic neighbor embedding (t-SNE) dimen-
sions were calculated with Rtsne (16,17), and unsupervised Ward 
hierarchical clustering was performed with hclust.

The significance of differential gene expression was deter-
mined using the Hurdle model (18), with correction for false-
discovery rate and with a significance threshold of 0.001. Protein 
expression, as measured by the mean fluorescence intensity 
(MFI), was normalized for each fluorescence channel by dividing 
the MFI by the value for an internal control and then multiplying 
by the mean MFI value for all samples. All statistical analyses 
were performed using GraphPad Prism version 5 or RStudio 
software.

RESULTS

Single-cell expression analysis of DC populations. To 
investigate the transcriptional profile of DCs, CD1c+ cDCs and 

pDCs were freshly isolated from PBMCs by single-cell sorting 
(Figure  1A) and then individually analyzed for gene expression 
using single-cell RT-PCR analysis, as previously described (14). 
We selected a panel of 29 genes involved in various aspects of 
DC function, including pathogen recognition, antigen uptake and 
processing, type I interferon (IFN) signaling and response, nega-
tive regulation, and cytokine/chemokine signaling.

The analysis of 327 CD1c+ cDCs and 325 pDCs isolated 
from 9 healthy adults (1 male, 8 female; median age 47 years 
[interquartile range (IQR) 30 to 59 years]) showed subset-specific 
expression of several genes, including CD1C in CD1c+ cDCs and 
GZMB in pDCs (Figure 1B). A common pDC marker at the protein 
level, NRP1, was included in the gene panel, but limited and var-
iable expression of NRP1 was observed in single cells, suggest-
ing that the detection of this gene may be compromised in this 
single-cell assay. Furthermore, t-SNE analysis based on our gene 
panel showed that the gene signatures of the 2 DC subsets were 
distinct (Figure 1C).

The CD1C transcript was exclusively, but not universally, 
detected in CD1c+ cDCs (Figure 1B) and its abundance was cor-
related with CD1c protein expression, which was recorded as the 
fluorescence intensity (i.e., the MFI) by index sorting (for results, 
see Supplementary Figure 1, available on the Arthritis & Rheu-
matology web site at http://onlinelibrary.wiley.com/doi/10.1002/
art.40793/abstract). CD1c protein expression was significantly 
lower in CD1c+ cDCs with undetectable CD1C transcript expres-
sion than in CD1c+ cDCs with CD1C transcript expression (MFI 
4,486 [95% CI 3,629, 5,344] versus MFI 8,258 [95% CI 7,310, 
9,206]; P < 0.0001) (Supplementary Figure 1A [http://onlinelibrary.
wiley.com/doi/10.1002/art.40793/abstract]). In cells with detect-
able CD1C transcripts, the gene expression was positively cor-
related with CD1c protein expression (Spearman’s r = 0.26, P < 
0.0001) (Supplementary Figure 1B [http://onlinelibrary.wiley.com/
doi/10.1002/art.40793/abstract]), indicating that the quantitative 
difference in transcript expression measured using this analytic 
method is likely to be a reflection of true biologic variation.

Heatmap analysis based on the restricted gene panel 
revealed genetic heterogeneity in both DC subsets (Figure 1B). For 
example, we observed a subpopulation of pDCs that expressed 
CD86 but not GZMB. These CD86-expressing DCs within the 
pDC flow cytometry gate also displayed reduced CD123 protein 
expression and increased CD141 protein expression (Supple-
mentary Figure 1C [http://onlinelibrary.wiley.com/doi/10.1002/
art.40793/abstract]). This subset of cells may correspond to the 
newly identified pre-DC subset, which is functionally distinct from 
pDCs (19,20).

We examined the coexpression of genes at the single-cell 
level using Spearman’s correlation analysis (Figure 1D). The reg-
ulatory genes PTPN6, TYROBP, STAT3, IRF8, and TGFB were 
significantly coexpressed in both DC subsets. Expression of 
TGFB and TYROBP in pDCs was also significantly correlated with 
the expression of other genes, including the type I IFN–related 

http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
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http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
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genes IFNAR1, IRF7, and IRF3. The pDCs also significantly 
coexpressed TLR3, CCR3, and IFNA1/13, and this correlation 
appeared to arise from a distinct subpopulation of cells observed 
on the heatmap (Figure 1B).

These findings confirm that there is marked diversity within 
the CD1c+ cDC and pDC populations in peripheral blood. This 
diversity can be defined based on a relatively small number of 

genes, and the quantitative differences in transcript expression 
are likely to be biologically relevant.

DC transcription phenotypes in systemic and organ-
specific autoimmunity. To investigate the changes in DC 
transcriptional profiles in patients with autoimmune disease, we 
sorted fresh peripheral blood–derived pDCs and CD1c+ cDCs 

Figure 1.  Transcriptional profiles of dendritic cell (DC) subsets isolated from the peripheral blood of healthy adults. A, Subsets of DCs were 
prepared by single-cell sorting of fresh peripheral blood mononuclear cells (PBMCs). After removing doublets, dead cells, and cells expressing 
CD3, CD56, CD19, CD14, and CD16, plasmacytoid DCs (pDCs) were identified as CD11clowCD123+ cells, and CD1c+ conventional DCs 
(cDCs) were identified as CD11chighCD141−CD1c+ cells. B, Heatmaps of single-cell gene expression data in CD1c+ cDCs and pDCs from the 
PBMCs of healthy adults are shown. Unsupervised Ward hierarchical clustering was applied to cells and genes. Clusters of gene coexpression 
are denoted by adjoining lines on the top and left. C, Analysis by t-distributed stochastic neighbor embedding shows gene expression data in 
CD1c+ cDCs (gray-shaded circles) and pDCs (black circles). Each circle represents a single cell. D, Correlation matrices of genes expressed by 
CD1c+ cDCs (top) and pDCs (bottom) from the PBMCs of 9 healthy adults are shown. Different colors represent the significance of the correlations  
(P < 0.001) by Spearman’s correlation analysis.
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from patients with systemic or organ-specific autoimmunity as 
well as age-matched healthy individuals. Our previous data set 
obtained from healthy adults was reanalyzed in combination with 
pDCs and cDCs from patients with RA (550 pDCs and 524 cDCs 
from 13 patients [2 male, 11 female]; median age 59 years [IQR 45 
to 62 years]), patients with SLE (286 pDCs and 282 cDCs from 7 
patients [2 male, 5 female]; median age 40 years [IQR 32 to 50.5 
years]), patients with recent-onset T1D (248 pDCs and 245 cDCs 
from 7 patients [3 male, 4 female]; median age 13.7 years [IQR 
11.2 to 15.8 years]), and a second group of healthy individuals 
comprising healthy children who were age-matched to the T1D 

cohort (262 pDCs and 265 cDCs from 7 healthy children [4 male, 
3 female]; median age 9.8 years [IQR 2.8 to 12.4 years]).

We identified 6 clusters of CD1c+ cDCs and 9 clusters of 
pDCs, based on unsupervised Ward hierarchical clustering of 
t-SNE dimensions generated from the single-cell gene expres-
sion data (Figures 2A–D and 3A–D). These clusters had distinct 
gene signatures. Within the CD1c+ cDC population, cluster 1 was 
defined by a lack of CD1C transcript and, along with cluster 2, 
exhibited reduced expression of IRF3 relative to the other clusters. 
Clusters 2, 4, 5, and 6 were defined by increased expression of 
CD86 transcript as compared to clusters 1 and 3. Clusters 4 and 

Figure 2.  Distinct gene signatures of cDCs from patients with systemic autoimmune diseases. CD1c+ cDCs were single-cell sorted from 
freshly isolated PBMCs from a control cohort of healthy adults (HCAdult), patients with rheumatoid arthritis (RA), patients with systemic lupus 
erythematosus (SLE), or patients with recent-onset type 1 diabetes (T1D) and a second healthy control cohort of children (HCChild) age-matched 
to the T1D cohort. Sorted cells were subjected to single-cell reverse transcription–polymerase chain reaction analysis. A, Analysis by t-distributed 
stochastic neighbor embedding reveals CD1c+ cDC gene expression clusters (6 clusters, determined according to unsupervised Ward clustering 
analysis) in all cohorts and in each individual cohort. B, Heatmaps of single-cell gene expression data are sorted into the clusters defined in A. 
C, Transcriptional profiles of the clusters defined in A are shown. Colored bars represent the percentage of cells expressing the indicated gene 
(expression defined as a corrected Ct >0). Solid bars = >75% of cells expressing the indicated gene in that cluster; hatched bars = 25–75% of 
cells expressing the indicated gene in that cluster. D, Frequency of CD1c+ cDCs in each cluster from PBMCs from each cohort is shown. Results 
are the mean ± SEM of 7–13 individuals per cohort. * = P < 0.05 versus HCAdult, by two-way analysis of variance. See Figure 1 for other definitions.



ASHTON ET AL 6       |

6 were further defined by overexpression of TAP1, while clusters 5 
and 6 were defined by overexpression of IFNAR1.

Within the pDC population, clusters 1, 2, and 4 were charac-
terized by lower transcript expression of most of the genes ana-
lyzed, relative to that in clusters 3, 5, 6, 7, 8, and 9. The expression 
profiles of pDCs were similar between clusters 1 and 2, although 
cells in cluster 2 lacked CXCR4 expression. Cluster 4 had a dis-
tinct profile characterized by expression of CCR3 and IFNA1/13. 
Compared with clusters 3 and 5, clusters 6, 7, 8, and 9 were 
defined by increased expression of IRF3, PTPN6, and STAT3. 
Other distinguishing genes for these clusters included IRF7 
(absent from cluster 5), IFNAR1 (absent from clusters 3 and 8), 

and TAP1 (up-regulated in clusters 6 and 7), while pDCs in cluster 
7 were characterized by low expression of TLR7 and GZMB as 
well as increased expression of CD86.

When we separated the t-SNE data (shown in Figures 2A and 
3A) into the separate cohorts, we found that the profiles of CD1c+ 
cDCs and pDCs were altered in patients with RA and patients 
with SLE relative to those in healthy adults. In particular, we found 
a higher proportion of CD1c+ cDCs and pDCs in cluster 6 in sam-
ples from patients with RA (CD1c+ cDCs, mean 42.5% [95% CI 
29.5%, 55.4%], P < 0.0001; pDCs, mean 31.8% [95% CI 22.4%, 
41.1%], P < 0.0001) and patients with SLE (CD1c+ cDCs, mean 
40.7% [95% CI 22.3%, 59.1%], P < 0.0001; pDCs, mean 19.2% 

Figure 3.  Distinct gene signatures of plasmacytoid dendritic cells (pDCs) from patients with systemic autoimmune disease. The pDCs were 
single-cell sorted from freshly isolated peripheral blood mononuclear cells (PBMCs) from a control cohort of healthy adults (HCAdult), patients with 
rheumatoid arthritis (RA), patients with systemic lupus erythematosus (SLE), or patients with recent-onset type 1 diabetes (T1D) and a second 
healthy control cohort of children (HCChild) age-matched to the T1D cohort. A, Analysis by t-distributed stochastic neighbor embedding reveals 
pDC gene expression clusters (9 clusters, determined according to unsupervised Ward clustering analysis) in all cohorts and in each individual 
cohort. B, Heatmaps of single-cell gene expression data are sorted into the clusters defined in A. C, Transcriptional profiles of the clusters 
defined in A are shown. Colored bars represent the percentage of cells expressing the indicated gene (expression defined as a corrected Ct 
>0). Solid bars = >75% of cells expressing the indicated gene in that cluster; hatched bars = 25–75% of cells expressing the indicated gene in 
that cluster. D, Frequency of pDCs in each cluster from PBMCs is shown for each cohort. Results are the mean ± SEM of 7–13 individuals per 
cohort. * = P < 0.05 versus HCAdult, by two-way analysis of variance.
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[95% CI 6.3%, 32.0%], P < 0.01) relative to that in healthy adults 
(CD1c+ cDCs, mean 14.1% [95% CI 5.7%, 23.5%]; pDCs, mean 
4.4% [95% CI 1.4%, 7.3%]) (Figures 2D and 3D). For the pDCs, 
this was accompanied by a relative decrease in cells within clus-
ters 3 and 4 in patients with RA (pDCs in cluster 3, mean 17.1% 
[95% CI 11.8%, 22.6%], P < 0.05; pDCs in cluster 4, mean 0.4% 
[95% CI −0.2%, 1.0%], P < 0.01) and a relative decrease in cells 
within cluster 4 in patients with SLE (mean 0.7% [95% CI −0.4%, 
1.8%], P < 0.05) relative to that in healthy adults (pDCs in cluster 
3, mean 27.9% [95% CI 20.8%, 35.0%]; pDCs in cluster 4, mean 
13.9% [95% CI 7.0%, 20.8%]).

In contrast, the t-SNE profiles of both cell types were sim-
ilar between patients with T1D and the corresponding healthy 
children (Figures 2A and 3A). A significant difference in the fre-
quency of DC clusters between patients with T1D and healthy 
children was seen only for pDC cluster 4, which was decreased 

in patients with T1D compared with healthy children (mean 
25.2% [95% CI 11.0%, 39.3%] versus 8.6% [95% CI 1.0%, 
16.2%], P < 0.001) (Figure 3D).

DC gene transcription in autoimmunity. In addi-
tion to analyzing the gene signatures, we compared expres-
sion levels of individual genes between the disease cohorts 
and healthy subjects by applying the Hurdle model, which 
accounts for the bimodal expression of single-cell populations 
(Table  1 and Supplementary Figures 2A and B, available on 
the Arthritis & Rheumatology web site at http://onlinelibrary.
wiley.com/doi/10.1002/art.40793/abstract). The up-regulated 
genes in CD1c+ cDCs from patients with RA were IFNAR1, 
CD1C, and IRF3, which is consistent with the transcription 
profile observed for CD1c+ cDCs in cluster 6 (Figures  2B 
and C). CXCR4 was down-regulated in CD1c+ cDCs from 

Table 1.  Differential gene expression in dendritic cells from patients versus age-matched healthy controls*

CD1c+ cDCs pDCs

RA SLE T1D RA SLE T1D

CD1C <0.0001† 0.132 0.7068 – – –
IRF8 <0.0001† <0.0001† <0.0001‡ <0.0001† <0.0001† 0.2383
IFNAR1 <0.0001† 0.0497 0.0001† 0.0001† 0.1021 0.0024
IRF3 <0.0001† 0.0655 0.1584 0.0037 0.3604 0.6945
IRF7 0.0254 0.1255 0.6804 <0.0001† <0.0001 0.4884
IRF4 0.0014 0.166 0.3764 <0.0001† <0.0001‡ 0.0015
GZMB 0.5951 0.3435 0.343 0.0006† 0.1829 0.6353
TLR7 0.0093 0.0073 0.0001† 0.0002† 0.6607 0.8875
TAP1 0.0014 0.0039 0.0142 0.0412 0.0008† 0.6353
CD86 0.0025 0.1206 <0.0001† 0.6789 0.1259 0.001†
LAMP3 0.1816 0.1055 <0.0001† 0.207 0.6494 0.6335
CCR3 0.0732 0.4197 <0.0001† 0.0004‡ 0.5867 0.1565
IFNA1/13 0.0189 0.8275 0.0005† 0.0002‡ 0.1591 0.6353
TNF 0.137 0.0206 0.3357 <0.0001‡ <0.0001‡ 0.6353
TLR3 0.006 0.1055 0.4132 0.0007‡ 0.0057 0.0002†
XCR1 0.0165 0.132 0.7921 0.0005‡ 0.0128 0.1565
CXCR4 <0.0001‡ 0.0001‡ 0.0019 0.0048 0.6607 0.4884
TYROBP 0.0114 0.0039 <0.0001‡ 0.0679 0.1591 <0.0001‡
PTPN6 0.0024 0.0206 <0.0001‡ 0.8917 0.5867 0.4884
TGFB 0.3466 0.01 <0.0001‡ 0.9009 0.2105 0.6353
CD40 0.0027 0.0039 0.013 0.9009 0.9518 0.9201
FCGR1 0.0016 0.0014 0.0688 – 0.6607 0.6353
IDO1 0.0025 0.0028 0.1135 0.2997 0.6607 –
Ly75 0.1061 0.4245 0.3349 0.3066 0.1114 0.6353
NRP1 – – – 0.1331 0.0738 0.6353
STAT3 0.0025 0.8054 0.1135 0.2153 0.498 0.641

* Values are P values from the Hurdle model for the significance of differential gene expression between patients with rheumatoid 
arthritis (RA), patients with systemic lupus erythematous (SLE), and patients with type 1 diabetes (T1D) compared with age-matched 
healthy controls. cDCs = conventional dendritic cells; pDCs = plasmacytoid dendritic cells. 
† Up-regulated genes. 
‡ Down-regulated genes. 

http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
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patients with RA and/or patients with SLE. Although we found 
no robust gene signature in patients with T1D, the transcripts 
IFNAR1, CCR3, CD86, IFNA1/13, LAMP3, and TLR7 were up-
regulated and IRF8, PTPN6, TGFB, and TYROBP were down-
regulated in CD1c+ cDCs from patients with T1D relative to 
the expression levels in healthy children (Table 1 and Supple-
mentary Figure 2A [http://onlinelibrary.wiley.com/doi/10.1002/

art.40793/abstract]).
In pDCs, transcript levels of IRF7 and IRF8, TAP1, GZMB, 

IFNAR1, and TLR7 were up-regulated (P < 0.0001) in patients 
with SLE or patients with RA (Table 1 and Supplementary Fig-
ure 2B [http://onlinelibrary.wiley.com/doi/10.1002/art.40793/
abstract]). Again, the up-regulated genes corresponded to 
those that were highly expressed in cluster 6 (Figures 3B and 
C). IRF4 and TNF were down-regulated (P < 0.0001) in patients 
with RA and patients with SLE relative to healthy adults. Addi-
tionally, pDCs from patients with RA exhibited lower expres-
sion levels of CCR3, IFNA1/13, XCR1, and TLR3 (Table  1 
and Supplementary Figure 2B [http://onlinelibrary.wiley.com/
doi/10.1002/art.40793/abstract]), all of which are genes that 
are characteristic of cluster 4. Similar to the findings in CD1c+ 
cDCs, CD86 was up-regulated (P = 0.001) and TYROBP was 
down-regulated (P < 0.0001) in pDCs from patients with T1D 
relative to healthy children.

We subsequently analyzed the protein expression levels 
of IFN regulatory factor 7 (IRF-7; total protein or phosphoryl-
ated IRF-7 [pS477/pS479]), IRF-8, IFN-alpha-1/13 receptor 1 
(IFNAR-1), and granzyme B by flow cytometry in pDCs from 
a second cohort of healthy adults (n = 9 [3 male, 6 female]; 
median age 49 years [IQR 30 to 59 years]), patients with RA 
(n = 10 [1 male, 9 female]; median age 60.5 years [IQR 57.3 
to 67 years]), and patients with SLE (n = 9 [2 male, 7 female]; 
median age 43 years [IQR 36 to 48 years]) (see results in Sup-
plementary Figures 3A–C, available on the Arthritis & Rheuma-
tology web site at http://onlinelibrary.wiley.com/doi/10.1002/
art.40793/abstract). Consistent with the gene expression data, 
protein expression levels of IRF-7 and IRF-8 were increased 
in pDCs from patients with RA (for IRF-7, MFI 347.4 [95% CI 
326.9, 367.9], P < 0.01; for IRF-8, MFI 12,909 [95% CI 10,936, 
14,882], P < 0.05) and pDCs from patients with SLE (for IRF-
7, MFI 354.9 [95% CI 311.7, 398.2], P < 0.01; for IRF-8, MFI 
13,002 [95% CI 10,710, 15,293], P < 0.05) relative to that in 
healthy adults (for IRF-7, MFI 288.9 [95% CI 262.3, 315.5]; for 
IRF-8, MFI 9,422 [95% CI 8,078, 10,768]).

Gene expression of IFNAR1 and GZMB showed a trend 
toward up-regulated transcription in patients with SLE, and both 
were up-regulated at the protein level in pDCs from patients with 
SLE (for IFNAR-1, MFI 1,547 [95% CI 1,232, 1,861], P < 0.05; 
for granzyme B, MFI 793.2 [95% CI 623.3, 963.1], P < 0.05) 
relative to that in healthy adults (for IFNAR-1, MFI 1,124 [95% 
CI 835.7, 1,412]; for granzyme B, MFI 567.5 [95% CI 488.3, 
646.7]). In patients with RA, both IFNAR1 and GZMB were up-

regulated at the transcript level, but not at the protein level (for 
IFNAR-1, MFI 1,428 [95% CI 1,234, 1,621]; for granzyme B, 
MFI 662.2 [95% CI 552.1, 772.3]).

Taken together, these results indicate that the changes in 
gene expression for individual genes are reflected in the gene sig-
natures characteristic of DCs from patients with RA and patients 
with SLE, and these gene signatures partially translated into pro-
tein signatures. DCs from patients with T1D exhibited altered 
expression of individual genes, but this did not yield an observable 
gene signature based on the gene panel studied herein.

Gene expression response of pDCs to stimulation 
with TLR-7 in patients with organ-specific autoimmunity. 
The robust differences in DC gene signatures in healthy adults 
compared with that in patients with RA or patients with SLE, in 
whom a systemic inflammatory environment is present, were not 
unexpected. However, only subtle changes were observed in 
patients with T1D. Therefore, we investigated how DC stimulation 
with the TLR-7 agonist R848 could affect pDC transcripts, and 
whether stimulation elicited more robust differences in gene signa-
tures in patients with T1D. We chose R848 because we expected 
it to affect the expression of several genes in our panel based on 
the results of a previous study (21), and we used pDCs, which 
have high TLR-7 expression (22).

We cultured previously frozen PBMCs from 4 patients with 
recent-onset T1D (2 male, 2 female; median age 14.5 years [IQR 
13.2 to 15.7 years]) and 4 age-matched healthy individuals (2 
male, 2 female; median age 14.5 years [IQR 13.3 to 15.6 years]) in 
the presence or absence of the TLR-7 agonist R848 for 3 hours, 
and then sorted pDCs (CD3−CD19−CD14−CD56−CD16−HLA–
DR+CD11clowCD123+CD303+) for single-cell gene expression 
analysis. Stimulation with R848 in pDCs from healthy children 
significantly altered the expression of 10 genes in our restricted 
panel (Figure 4A). As expected from the results of a prior study 
(21), TNF, LAMP3, and CD40 were up-regulated and CXCR4 was 
down-regulated by R848 stimulation.

Analysis with t-SNE and unsupervised Ward hierarchical 
clustering of R848-stimulated pDCs from healthy individuals and 
patients with T1D identified 5 pDC clusters, including cluster 1, that 
reflected the transcriptional changes induced by R848 stimulation 
(Figures 4B and C). The frequency of pDCs in each cluster was not 
significantly different between patients with T1D and healthy chil-
dren (Figure 4D). It can also be noted that the expression profiles 
of the R848-stimulated pDCs differed from those of pDCs from 
patients with SLE, patients with RA, and patients with T1D (shown 
in Figure 3), indicating that the transcriptional profiles of patients 
are unlikely to reflect the response to a single stimulus or pathway.

Correlation of DC gene signatures with disease 
activity level in RA. The frequency of pDCs or CD1c+ cDCs 
in cluster 6 was increased in patients with RA and patients with 
SLE. However, there was substantial variability between individual 

http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40793/abstract
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patients (Figure 5A). Therefore, we investigated whether this vari-
ability might be related to disease activity. Since disease activity in 
SLE is more difficult to measure, due to the multiorgan pattern of 
the disease, we focused on the larger cohort of patients with RA 
and used the Clinical Disease Activity Index (CDAI) as a measure 
of disease activity (23).

The frequency of CD1c+ cDCs in cluster 6 was positively cor-
related with the CDAI score in patients with RA (Spearman’s r = 

0.60, P = 0.03) (Figure 5B). Furthermore, in the group of patients 
with at least moderate disease activity (CDAI >10, n = 5) and a 
CRP concentration of >1 mg/liter, the frequency of CD1c+ cDCs 
in cluster 6 was higher (mean 65.6% [95% CI 57.5%, 73.7%]) 
than in the 8 patients with less severe inflammation (mean 28.0% 
[95% CI 18.1%, 38.0%], P < 0.0001) (Figure 5C). In contrast, the 
frequency of pDCs in cluster 6 was not correlated with the CDAI 
(Spearman’s r = 0.22, P = 0.47) (Figure 5B), and segregation of 

Figure 4.  Single-cell analysis of R848-stimulated pDCs from patients with recent-onset type 1 diabetes (T1D) and healthy children. PBMCs 
from patients with recent-onset T1D and age-matched healthy children were cultured for 3 hours with a Toll-like receptor 7 agonist, R848. 
Single-cell–sorted pDCs were subjected to single-cell gene expression analysis. A, Heatmaps of gene expression in pDCs from healthy children 
are shown, separated according to the presence of stimulation with R848 or absence of stimulation (medium alone), with ordering according to 
unsupervised Ward hierarchical clustering analysis. Only genes that were significantly up-regulated (top) or down-regulated (bottom) after R848 
stimulation are shown, based on the Hurdle model with correction for the false-discovery rate and a significance threshold of 0.001. B, Analysis 
by t-distributed stochastic neighbor embedding reveals gene expression clusters (5 clusters, determined according to unsupervised Ward 
hierarchical clustering analysis). C, Heatmaps of single-cell gene expression data are sorted into the clusters defined in A. D, Frequencies of 
cells in each cluster are shown for the healthy children (gray-shaded circles) and patients with T1D (green circles), where each circle represents 
an individual and the horizontal line represents the mean. There were no significant differences in the gene expression data, as determined by 
one-way analysis of variance. See Figure 3 for other definitions.
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patients based on the CDAI and CRP level did not reveal a rela-
tionship between inflammation markers and cluster frequency 
(Figure 5C). However, the highest frequency of pDCs in cluster 
3, which is characteristic of pDCs from healthy individuals (Fig-
ure 5A), was found in patients with RA who had low CDAI scores 
and a CRP concentration of <1 mg/liter (Figure 5C).

A relationship between increased disease activity and high 
frequency of cD1c+ cDCs in cluster 6 or a low frequency of pDCs 
in cluster 3 was observed in an individual patient over 3 consec-
utive years (Figure 5D). These findings suggest that the DC tran-
scriptional profile is correlated with the severity of inflammation 
and disease.

DISCUSSION

In this study using single-cell gene expression analysis, we 
identified transcriptome heterogeneity of blood-derived DC sub-
sets, and found transcriptional profiles of DC subsets that are 
associated with autoimmunity. We also found that the transcrip-
tional profiles of the DC subsets are associated with disease activ-
ity in patients with RA.

We could identify distinct subpopulations of DCs using 
a restricted gene set, which was selected on the basis of DC 
markers and DC function. We observed transcriptionally distinct 
subpopulations within the pDC and CD1c+ cDC subsets. This 
included a population within the pDC subset with gene and pro-
tein expression patterns that corresponded to a T cell–activating 
DC population that has been newly identified by single-cell RNA 
sequencing (19,20). We also observed a unique pDC subpop-
ulation characterized by increased expression of IFNA1/13 and 
CCR3, which has not been previously described. Further studies 
are required to identify protein markers that may enable us to iso-
late these cells for functional characterization.

Our novel findings include identification of a DC gene expres-
sion signature with the potential to become a measure of disease 
activity in systemic autoimmune diseases such as RA and SLE, 
and a subtle alteration of DC gene expression in patients with T1D, 
an organ-specific autoimmune disease. We chose SLE and RA as 
systemic autoimmune disease models because these diseases, 
when active, often show systemic inflammation and immune 
complex–mediated IFN signatures (24–26). Consistent with this, 
patients with RA and those with SLE had a significantly greater 

Figure 5.  Correlation between cluster frequency and disease status. A, CD1c+ conventional dentritic cells (cDCs) and plasmacytoid DCs 
(pDCs)  in cluster 6 (top and middle, respectively) and pDCs in cluster 3 (bottom) were examined for the frequency of enrichment in peripheral 
blood mononuclear cells (PBMCs) from healthy adults (HCAdult), patients with rheumatoid arthritis (RA), and patients with systemic lupus 
erythematosus (SLE). Circles represent individual subjects, and the horizontal line represents the mean. B, Correlations between the frequency 
of CD1c+ cDCs and pDCs in cluster 6 and pDCs in cluster 3 and the Clinical Disease Activity Index (CDAI) in patients with RA were assessed by 
Spearman’s correlation analysis. Circles represent individual subjects. P values are 2-tailed. C, Frequencies of CD1c+ cDCs and pDCs in cluster 
6 and pDCs in cluster 3 were examined in patients with RA stratified according to CDAI score (+ = CDAI >10) and C-reactive protein (CRP) 
concentration in the blood (+ = >1 mg/liter). Symbols represent individual subjects, and the horizontal line represents the mean. D, Longitudinal 
changes in the frequencies of CD1c+ cDCs in cluster 6 and pDCs in clusters 3 and 6 in a single RA patient over 3 years are shown, including 
the patient’s CDAI score (+ = CDAI >10) and CRP concentration in the blood (+ = >1 mg/liter) at each time point.
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proportion of DCs with a transcriptional profile characterized by 
the concomitant up-regulation of multiple genes (cluster 6), such 
as CD86 in CD1c+ cDCs, TLR7 and IRF7 in pDCs, and TAP1 and 
IFNAR1 in both subsets. Overexpression of these genes suggest 
that DCs with this cluster profile have an increased capacity to 
activate T cells, produce type I IFNs, and process antigens; these 
observations have previously been reported in RA and/or SLE 
(27–31). The profiles observed in patients could not be attributed 
to responses to a single stimulus, such as a TLR-7 agonist.

In contrast to that seen in patients with RA or SLE, the cluster 
profile of DCs isolated from patients with recent-onset T1D was 
not distinct from that of DCs from healthy children. Instead, we 
found changes in the expression of a small number of genes in 
CD1c+ cDCs and pDCs. As in patients with RA or SLE, CD86 
expression was increased in both DC subsets from patients 
with T1D. However, unlike in RA and SLE, we found decreased 
expression of PTPN6 and TGFB in CD1c+ cDCs and decreased 
expression of TYROBP in both DC subsets from patients with 
T1D. These genes encode proteins with important roles in the 
negative regulation of the immune response, and their down-
regulation or abnormal function can promote inflammatory or 
autoimmune responses (32–37). We speculate that the subtle 
changes in DCs from patients with T1D may occur downstream of 
genetic susceptibility, rather than being a reflection of generalized 
inflammation, and could therefore represent therapeutic targets.

Transcriptional profiles that can be used to monitor dis-
ease development or predict response to treatment would 
be valuable for developing personalized therapies for auto-
immune diseases. Multiple studies have attempted to identify 
signatures that can clinically stratify patients for this purpose 
(38–41). A recent study, for example, showed that the IFN-
stimulated genes associated with SLE were markedly different 
between populations of European ancestry and those of East 
Asian ancestry (42). Most of these studies used microarray or 
RNA sequencing to analyze bulk mixed-cell populations, but 
this approach can mask clinically relevant biologic complex-
ity and heterogeneity at the single-cell level. In our study, we 
found that disease activity in patients with RA was correlated 
with the frequency of DCs expressing particular transcriptional 
signatures. Patients with more severe inflammation had higher 
frequencies of CD1c+ cDCs expressing an “autoimmune” pro-
file and lower frequencies of pDCs expressing a “healthy” tran-
scriptional profile. These are promising findings that require 
validation in prospective studies. It will also be important to 
determine whether the changes in DC transcriptional profile 
are secondary to changes in the inflammatory environment, 
and therefore might provide an indirect measure of the degree 
of inflammation, or whether they reflect functional abnormali-
ties that may affect the choice and outcome of treatment.

Single-cell gene expression analyses can identify heteroge-
neity and distinct cell populations within phenotypically similar 
cells. As these technologies improve and downstream analyses 

become more robust and standardized, it is becoming more 
feasible to screen patients based on their immune cell tran-
scriptional profiles. As we have shown in the present study, this 
approach may yield new disease markers and therapeutic tar-
gets in patients with autoimmune disease.

ACKNOWLEDGMENTS

We thank all of the participants who provided blood samples 
for this research.

AUTHOR CONTRIBUTIONS

All authors were involved in drafting the article or revising it criti-
cally for important intellectual content, and all authors approved the final 
version to be published. Dr. Bonifacio had full access to all of the data 
in the study and takes responsibility for the integrity of the data and the 
accuracy of the data analysis.
Study conception and design. Ashton, Eugster, Aringer, Bonifacio.
Acquisition of data. Ashton, Dietz, Loebel, Lindner, Kuehn, Taranko, 
Heschel, Gavrisan, Ziegler, Aringer, Bonifacio.
Analysis and interpretation of data. Ashton, Eugster, Aringer, Bonifacio.

REFERENCES
	1.	 Cho JH, Feldman M. Heterogeneity of autoimmune diseases: patho-

physiologic insights from genetics and implications for new thera-
pies. Nat Med 2015;21:730–8.

	2.	 Bayry J, Gautier JF. Regulatory T cell immunotherapy for type 1 dia-
betes: a step closer to success? Cell Metab 2016;23:231–3.

	3.	 Pozzilli P, Maddaloni E, Buzzetti R. Combination immunotherapies 
for type 1 diabetes mellitus. Nat Rev Endocrinol 2015;11:289–97.

	4.	 Ziegler AG, Danne T, Dunger DB, Berner R, Puff R, Kiess W, et al. 
Primary prevention of β-cell autoimmunity and type 1 diabetes: the 
Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) 
perspectives. Mol Metab 2016;5:255–62.

	5.	 Steinman RM. Decisions about dendritic cells: past, present, and 
future. Annu Rev Immunol 2012;30:1–22.

	6.	 Mildner A, Jung S. Development and function of dendritic cell sub-
sets. Immunity 2014;40:642–56.

	7.	 Coutant F, Miossec P. Altered dendritic cell functions in autoimmune 
diseases: distinct and overlapping profiles. Nat Rev Rheumatol 
2016;12:703–15.

	8.	 Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in 
autoimmunity. Nat Rev Immunol 2013;13:566–77.

	9.	 Mollah ZU, Pai S, Moore C, O’Sullivan BJ, Harrison MJ, Peng J,  
et al. Abnormal NF-κ B function characterizes human type 1 diabetes 
dendritic cells and monocytes. J Immunol 2008;180:3166–75.

	10.	Thumer L, Adler K, Bonifacio E, Hofmann F, Keller M, Milz C, et al. Ger-
man new onset diabetes in the young incident cohort study: DiMelli 
study design and first-year results. Rev Diabet Stud 2010;7:202–8.

	11.	Ziegler AG, Meier-Stiegen F, Winkler C, Bonifacio E. Prospective 
evaluation of risk factors for the development of islet autoimmuni-
ty and type 1 diabetes during puberty—TEENDIAB: study design. 
Pediatr Diabetes 2012;13:419–24.

	12.	Hochberg MC. Updating the American College of Rheumatology re-
vised criteria for the classification of systemic lupus erythematosus. 
Arthritis Rheum 1997;40:1725.

	13.	Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 
III, et al. 2010 rheumatoid arthritis classification criteria: an American 
College of Rheumatology/European League Against Rheumatism 
collaborative initiative. Arthritis Rheum 2010;62:2569–81.



ASHTON ET AL 12       |

	14.	Heninger AK, Eugster A, Kuehn D, Buettner F, Kuhn M, Lindner 
A, et al. A divergent population of autoantigen-responsive CD4+ 
T cells in infants prior to β cell autoimmunity. Sci Transl Med 
2017;9:eaaf8848.

	15.	Wei T, Simko V. Corrplot: visualization of a correlation matrix. 2016;R 
package version 0.77.

	16.	Van der Maaten L. Accelerating t-SNE using tree-based alogrithms. 
J Mach Learn Res 2014;15:3221–45.

	17.	Krijthe J. Rtsne: T-distributed stochastic neighbor embedding using 
Barnes-Hut implementation. 2015;R package version 0.13.

	18.	McDavid A, Finak G, Yajima M. MAST: model-based analysis of sin-
gle cell transcriptomics. 2015;R package version 0.931.

	19.	See P, Dutertre CA, Chen J, Gunther P, McGovern N, Irac SE,  
et al. Mapping the human DC lineage through the integration of 
high-dimensional techniques. Science 2017;356:eaag3009.

	20.	Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, 
Fletcher J, et al. Single-cell RNA-seq reveals new types of hu-
man blood dendritic cells, monocytes, and progenitors. Science 
2017;356:eaah4573.

	21.	Birmachu W, Gleason RM, Bulbulian BJ, Riter CL, Vasilakos JP, Lipson 
KE, et al. Transcriptional networks in plasmacytoid dendritic cells stim-
ulated with synthetic TLR 7 agonists. BMC Immunol 2007;8:26.

	22.	Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, 
Giese T, et al. Quantitative expression of Toll-like receptor 1-10 
mRNA in cellular subsets of human peripheral blood mononuclear 
cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 
2002;168:4531–7.

	23.	Aletaha D, Nell VP, Stamm T, Uffmann M, Pflugbeil S, Machold K, 
et al. Acute phase reactants add little to composite disease activity 
indices for rheumatoid arthritis: validation of a clinical activity score. 
Arthritis Res Ther 2005;7:R796–806.

	24.	Crow MK. Type I interferon in the pathogenesis of lupus. J Immunol 
2014;192:5459–68.

	25.	Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus.  
J Clin Pathol 2003;56:481–90.

	26.	Noack M, Miossec P. Selected cytokine pathways in rheumatoid ar-
thritis. Semin Immunopathol 2017;39:365–83.

	27.	Blomberg S, Eloranta ML, Magnusson M, Alm GV, Rönnblom L. Ex-
pression of the markers BDCA-2 and BDCA-4 and production of 
interferon-α by plasmacytoid dendritic cells in systemic lupus erythe-
matosus. Arthritis Rheum 2003;48:2524–32.

	28.	Conigliaro P, Perricone C, Benson RA, Garside P, Brewer JM, 
Perricone R, et al. The type I IFN system in rheumatoid arthritis. 
Autoimmunity 2010;43:220–5.

	29.	Crispin JC, Vargas-Rojas MI, Monsivais-Urenda A, Alcocer-Varela J. 
Phenotype and function of dendritic cells of patients with systemic 
lupus erythematosus. Clin Immunol 2012;143:45–50.

	30.	Obermoser G, Pascual V. The interferon-α signature of systemic lu-
pus erythematosus. Lupus 2010;19:1012–9.

	31.	Ramos PS, Langefeld CD, Bera LA, Gaffney PM, Noble JA, Moser 
KL. Variation in the ATP-binding cassette transporter 2 gene is a 
separate risk factor for systemic lupus erythematosus within the 
MHC. Genes Immun 2009;10:350–5.

	32.	Chu CL, Yu YL, Shen KY, Lowell CA, Lanier LL, Hamerman JA. In-
creased TLR responses in dendritic cells lacking the ITAM-containing 
adapters DAP12 and FcRγ. Eur J Immunol 2008;38:166–73.

	33.	Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD. Human 
dendritic cells produce TGF-β 1 under the influence of lung carcino-
ma cells and prime the differentiation of CD4+CD25+Foxp3+ regula-
tory T cells. J Immunol 2009;182:2795–807.

	34.	Hall HT, Sjolin H, Brauner H, Tomasello E, Dalod M, Vivier E,  
et al. Increased diabetes development and decreased function of 
CD4+CD25+ Treg in the absence of a functional DAP12 adaptor 
protein. Eur J Immunol 2008;38:3191–9.

	35.	Kaneko T, Saito Y, Kotani T, Okazawa H, Iwamura H, Sato-
Hashimoto M, et al. Dendritic cell-specific ablation of the protein 
tyrosine phosphatase Shp1 promotes Th1 cell differentiation and 
induces autoimmunity. J Immunol 2012;188:5397–407.

	36.	Melillo JA, Song L, Bhagat G, Blazquez AB, Plumlee CR, Lee C,  
et al. Dendritic cell (DC)-specific targeting reveals Stat3 as a negative 
regulator of DC function. J Immunol 2010;184:2638–45.

	37.	Sjolin H, Robbins SH, Bessou G, Hidmark A, Tomasello E, Johansson 
M, et al. DAP12 signaling regulates plasmacytoid dendritic cell ho-
meostasis and down-modulates their function during viral infection. 
J Immunol 2006;177:2908–16.

	38.	Burska AN, Roget K, Blits M, Soto Gomez L, van de Loo F, 
Hazelwood LD, et al. Gene expression analysis in RA: towards per-
sonalized medicine. Pharmacogenomics J 2014;14:93–106.

	39.	Irvine KM, Gallego P, An X, Best SE, Thomas G, Wells C, et al. 
Peripheral blood monocyte gene expression profile clinically stratifies 
patients with recent-onset type 1 diabetes. Diabetes 2012;61:1281–
90.

	40.	Nakamura S, Suzuki K, Iijima H, Hata Y, Lim CR, Ishizawa Y,  
et al. Identification of baseline gene expression signatures predict-
ing therapeutic responses to three biologic agents in rheumatoid 
arthritis: a retrospective observational study. Arthritis Res Ther 
2016;18:159.

	41.	Nikpour M, Dempsey AA, Urowitz MB, Gladman DD, Barnes DA. 
Association of a gene expression profile from whole blood with dis-
ease activity in systemic lupus erythaematosus. Ann Rheum Dis 
2008;67:1069–75.

	42.	Mostafavi S, Yoshida H, Moodley D, LeBoite H, Rothamel K, Raj T, 
et al. Parsing the interferon transcriptional network and its disease 
associations. Cell 2016;164:564–78.


