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ABSTRACT

In recent years, hundreds of novel RNA-binding pro-
teins (RBPs) have been identified, leading to the dis-
covery of novel RNA-binding domains. Furthermore,
unstructured or disordered low-complexity regions
of RBPs have been identified to play an important role
in interactions with nucleic acids. However, these ad-
vances in understanding RBPs are limited mainly to
eukaryotic species and we only have limited tools to
faithfully predict RNA-binders in bacteria. Here, we
describe a support vector machine-based method,
called TriPepSVM, for the prediction of RNA-binding
proteins. TriPepSVM applies string kernels to directly
handle protein sequences using tri-peptide frequen-
cies. Testing the method in human and bacteria,
we find that several RBP-enriched tri-peptides oc-
cur more often in structurally disordered regions of
RBPs. TriPepSVM outperforms existing applications,
which consider classical structural features of RNA-
binding or homology, in the task of RBP prediction
in both human and bacteria. Finally, we predict 66
novel RBPs in Salmonella Typhimurium and validate
the bacterial proteins ClpX, DnaJ and UbiG to asso-
ciate with RNA in vivo.

INTRODUCTION

Gene regulation in eukaryotes occurs at several levels and
involves the action of transcription factors, chromatin,
RNA-binding proteins (RBPs) and other RNAs. RBPs and
messenger RNAs (mRNAs) form ribonucleoprotein com-
plexes (RNPs) by dynamic, transient interactions, which
control different steps in RNA metabolism, such as RNA

stability, degradation, splicing and polyadenylation. Fur-
thermore, numerous diseases like neuropathies, cancer and
metabolic disorders have also been linked to defects in RBPs
expression and function (1–3).

Interactome Capture (RIC) has enabled proteome-wide
identifications of RBPs (4). RIC utilizes UV cross-linking
to induce stable RNA-protein interactions in living cells,
followed by poly(A) RNA selection via magnetic oligo
d(T) beads and subsequent protein identification by mass-
spectrometry. RIC studies yielded hundreds of novel RBPs
in e.g. human HeLa (5), HEK293 (6), Huh-7 (7) and in
K562 (8) cells but also in worm and yeast (7,9), which do not
harbor canonical RNA-binding domains (RBDs), as well as
factors which were not previously associated with RNA bi-
ology. Among them we find enzymes, cell cycle regulators
and dual specificity DNA–RNA binders, including tran-
scription factor and chromatin components (3). The discov-
ery of these unconventional RBPs without known RNA-
binding motifs suggests the existence of new modes of RNA
binding and the involvement of RBPs in previously unex-
plored biological processes (10).

Intrinsically disordered regions (IDRs) are widespread in
the proteome and have been shown to be involved in regu-
latory functions, including direct RNA binding (11). RBPs
identified by RIC are highly enriched in disordered regions
compared to the whole human proteome and are character-
ized by low complexity, repetitive amino acid sequences. In
particular, a low content of bulky hydrophobic amino acids
and a prevalence of small, polar and charged amino acids
are found in unstructured regions of RBPs. These amino
acids, such as glycine (G), arginine (R) and lysine (K), as
well as the aromatic residue tyrosine (Y), form shared se-
quence patterns among RBPs. For example RGG box bind-
ing motifs and glycine/tyrosine boxes YGG are broadly
used platforms for RNA binding and can work alone or in
combination with classical RBDs (11).
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The occurrence of IDRs within RBPs appears to be con-
served from yeast to humans. In earlier work, we defined a
core set of RBPs conserved from yeast to human and iden-
tified [K]- and [R]-rich tripeptide repeat motifs as conserved
across evolution, making IDRs plastic components of RBP
co-evolution (7). Importantly, we proposed that the num-
ber of repeats in IDRs of RBPs considerably expands from
yeast to human, while the number of RBDs remains the
same, linking repeat motifs in RBP IDRs to the functional
complexity of regulation in higher eukaryotes.

Research over the past two decades has revealed extensive
post-transcriptional control in bacteria as well, with reg-
ulatory networks comprising RBPs and small non-coding
RNAs (sRNAs). Bacterial RBPs are relatively simple, of-
ten possessing only a few or even a single RBD per pro-
tein, which recognizes a short RNA sequence (12). This
is unlike eukaryotic RBPs, whose modular architecture
enables versatility and combinatorial RBP-RNA interac-
tions. Classical RBDs, such as the S1 domain, cold-shock
domain, Sm and Sm-like domains, the double-stranded
RNA binding domain, the K-homology domain and oth-
ers, are widespread among bacteria (12). One third of anno-
tated bacterial RBPs are ribosomal proteins. Other bacte-
rial RBPs are involved in regulatory functions of transcrip-
tion termination, RNA synthesis, modification and transla-
tion, like the well-known Hfq protein. The latter is a protein
platform to mediate mRNA:sRNA interaction in Gram
negative bacteria and the protein was shown to have sev-
eral modes of RNA interaction, involving translational in-
hibition and repression, protection and induction of degra-
dation by RNases or priming mRNAs for polyadenylation
and subsequent degradation (13,14).

Since interactome capture relies on the use of oligo(dT)
to isolate proteins bound to mRNA, the method is not ap-
plicable to bacterial species which generally lack polyadeny-
lation (except for degradation purposes). Although experi-
mental approaches have been developed recently to extend
RBP catalogs to include RBPs not identified by RIC tech-
niques (15,16), bacterial RBPs remain poorly annotated.
Therefore, computational approaches able to predict new
RBPs in both pro- and eukaryotes in a proteome-wide man-
ner are in high demand, in order to identify putative can-
didate RBPs for further experimental investigation. Sev-
eral in silico methods have been developed to predict RBPs
from primary sequence and/or protein structure (17–20).
Approaches that characterize RBPs by predicting RNA
binding residues from known protein-RNA structures are
computationally expensive (21). Further, they can only be
trained on the small subset of RBPs for which the struc-
ture is known, therefore performing well only on specific
datasets (20,21). Such methods do not generalize well to
proteins whose structure is still unknown, which is the case
for most bacterial RBPs.

Computational prediction tools such as SPOT-Seq (17),
RNApred (22), RBPPred (19), catRAPID (18) and APRI-
COT (20), either derive sequence-structure features such as
biochemical properties and evolutionary conservation and
train a supervised classifier to distinguish RBPs from non-
RBPs or classify proteins based on whether they harbor a
known RBD or other RNA binding motifs (1). However, in
silico methods that identify RBPs based on known domains

might have some limitations, as one third of RBPs from re-
cent experimental studies do not have prior RNA-binding
related homology or domain annotation (5,7). Therefore
such methods might generate a high percentage of false neg-
atives, i.e. RNA-binders which lack an RBD and therefore
are not predicted as such, as well as false positive, RBPs
with classified RBDs that perform non-RNA binding func-
tions (3). A recently developed method, SONAR, exploits
the fact that proteins that interact with many others RBPs
from a protein-protein interaction (PPI) network are more
likely to be RBPs themselves (23). Although SONAR is
also suitable for the prediction of ‘unconventional’ RBPs,
it heavily depends on the quality and depth of the underly-
ing PPI network.

The many newly characterized RBPs, their nontypical
RBDs (or the lack of them), as well as the observation
that IDRs are subject to strong sequence constraints un-
der the form of conserved amino acid triplets conserved in
the RBPs, prompted us to explore the possibility that RBPs
might be confidently predicted based purely on the occur-
rence of short amino acid k-mers.

We set up to predict whether a protein is likely to be an
RBP or not based on primary sequence using a string ker-
nel (spectrum kernel) support vector machine (SVM). The
spectrum kernel in combination with SVMs was first suc-
cessfully introduced by Leslie et al. in the context of protein
family classification (24). Support vector machine classifiers
have been used successfully in other biological tasks, for
example the identification of specific regulatory sequences
(25) and in RBP prediction as well (19).

In this paper, we describe our newly developed RBP pre-
diction method TriPepSVM. It applies for the first time
string kernel support vector machines for RBP prediction.
The model uses exclusively k-mer counts to classify RBPs
versus non-RBPs in potentially any species. It does not de-
pend on any prior biological information such as RBD an-
notation or structure, and therefore allows RBP prediction
in an unbiased manner. We show that TriPepSVM performs
better than other methods in RBP prediction in human and
the bacteria Escherichia coli and Salmonella Typhimurium.
In addition, it also reliably predicts RBPs across related
species. Our method recovers RBPs characterized previ-
ously in RIC studies with high sensitivity and finds both,
RBPs adopting classical RNA-binding architectures as well
as RBPs lacking known RBDs.

MATERIALS AND METHODS

Data sets

In the following, we describe the data collection pipeline to
derive the data sets for training and evaluating TriPepSVM
on human, E. coli and Salmonella. It is based on the Unipro-
tKB database (26) and derives data automatically for a
given taxon (see Supplementary Figure S1). We used the
taxon identifier 9606 to collect data for Homo sapiens, taxon
identifier 590 for the Salmonella clade and the identifier 561
for E. coli.

Collection of annotated RNA-binding proteins (positive set).
We utilize the gene ontology database QuickGO (27) to
collect annotated RBPs from UniprotKB. We apply the
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term RNA-binding (GO:0003723), also including all asso-
ciated sub-terms, i.e. tRNA binding, snRNA binding and
poly(A) RNA binding. The number of annotated RBPs in
the QuickGO database is limited for some organisms, there-
fore our pipeline also supports a recursive mode to col-
lect positive data from all members of a specified taxon
or branch. For example, taxon 590 will retrieve annotation
for all Salmonella strains. In order to avoid duplicate an-
notations or paralogs in UniprotKB, the software CD-Hit
(28) was used to remove proteins with a sequence similarity
higher than 90%.

This way, we collect 1812 known RBPs for human, 306
for Salmonella and 512 for E. coli.

Collection of non-RNA-binding proteins (negative set).
Since it is challenging to define a non-RNA-binding pro-
tein, we developed a strict filtering to generate the negative
set for our method. We first collect the whole Swiss-Prot
proteome of a given taxon and then remove all nucleotide-
binding proteins in a step-wise manner. First, we remove
proteins with an amino acid sequence length smaller than
50 AA or greater than 6000 AA. Short sequences result in
very sparse representations of k-mer count vectors for SVM
training while very long sequences might bias the SVM
learning. Secondly, we utilize the Uniprot keyword database
and QuickGO annotations to remove annotated nucleotide-
binding proteins (both filtering steps are adopted from (29);
see full list in Supplementary Table S4 and Table S5). Fi-
nally, we discard proteins containing at least one annotated
or potential RBD from collected Pfam (30) domains (see
Supplementary Table S6). Similarly to the positive set, CD-
Hit was used to remove redundant protein sequences.

We obtain 12 038 non-RNA-binding proteins for human,
1415 for Salmonella and 3783 non-RNA-binders for E. coli.

Independent validation set from RIC studies. We collected
a set of experimentally confirmed RBPs from three inde-
pendent interactome capture studies (6–8) and from a re-
view on RBPs (3) to evaluate the sensitivity of our model
in human. First, we excluded protein sequences that were
already present in our training data set. Secondly, we eval-
uated TriPepSVM on the human proteome independently
for all four data sets and then on their union. The sensitiv-
ity was computed as the fraction of experimentally detected
RBPs which are also predicted by our model.

TriPepSVM prediction model

TriPepSVM is a discriminative machine learning model
based on Support Vector Machines (SVMs) which is trained
to classify RBPs versus non-RBPs based on sequence con-
tent alone. SVMs are a class of supervised learning algo-
rithms which, given a set of labelled training vectors (pos-
itive and negative input examples) learn a linear decision
boundary by finding the optimal hyperplane to discriminate
between the two classes (31). The result is a linear classifica-
tion rule that can be used to classify new test points, in our
case new protein sequences, into one of the two classes, RBP
or non-RBP (see Figure 1). When using a kernel in con-
junction with an SVM, input points are implicitly mapped
into a high-dimensional vector space where coordinates are

Figure 1. TriPepSVM schematic. TriPepSVM is a support vector machine
trained on tri-peptide frequencies from RBPs and non-RBPs to discrimi-
nate between these two proteins. A protein-sequence is split into a set of
overlapping k-mers. All of the k-mers of a sequence form a vector which is
then fed into the SVM classifier that learns a decision boundary to separate
RBPs from non-RBPs.

Table 1. Sizes of training and test sets for all three organisms

Training Test

Data Set Pos Neg Pos Neg Pos. Ratio

Human 1625 10834 181 1204 15%
Salmonella 275 1273 31 142 22%
E. coli 460 3404 52 379 14%

given by feature values. The SVM produces then a linear
decision boundary in this high-dimensional space. In our
model we use the spectrum kernel (24) for classification, a
linear kernel that allows the application of SVMs to strings
(and therefore to amino acid sequences). Given a number k
≥ 1, the k-spectrum of an input sequence is the set of all the
k-length (continuous) sequences, also called k-mers, that it
contains (see figure 1). The high-dimensional feature repre-
sentation for a sequence x, �(x), is then a vector where each
entry counts the number of times each k-mer, from a pool
of |�|k possible k-mers from an alphabet of size �, occurs
in the given sequence. The k-spectrum kernel is denoted as
the dot product between two sequence feature vectors:

Kk(x, y) =< �k(x),�k(y) > (1)

Model training. We randomly split the collected data into
training (90%) and testing (10%) data sets, and stratified the
data such that training and test data contain both roughly
the same ratio of positives to negatives (see Table 1 for the
exact sizes of training and test data sets for all organisms).

As both, training and test sets are heavily imbalanced,
i.e. they contain many more negatives than positives, we
chose a class-weighted SVM (32) approach, which accounts
for class imbalance by weighting the cost parameter C dif-
ferently for positive and negative data points. The class-
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weighted SVM was used together with the spectrum kernel
from the KeBABS-package in R (33). To obtain the optimal
values of the hyperparamters k, the sub-string length and
C, the SVM cost parameter, we perform cross-validation,
splitting the data into n equally sized subsets as illustrated
in Supplementary Figure S2. We also run a separate ‘outer’
loop to select the optimal combination of weights W + and
W − for the positive and the negative class, respectively (see
Supplementary Paragraph 1.3.3 and 2.1 for more details).

For comparison, and to better asses the effect of the im-
balanced dataset on TriPepSVM performance, we applied
a bootstrap approach and alternatively train our model on
balanced data by randomly sub-sampling the negative set
10 times to match the size of the positive set. We then av-
erage the performance on the test set over the 10 runs (as
described in detail in Supplementary Paragraph 2.3).

Feature importance scores. Since the spectrum kernel � is
a linear kernel, we can obtain meaningful feature weights
from the solution of the SVM optimization problem, similar
to a linear regression scenario. The weight vector w for all
k-mers, whose entries are the single k-mer contributions to
the classification problem can be computed as:

w =
(

n∑
i=1

yiαiφk-mer (xi )

)
k-mer∈|�|k

(2)

for n points (xi , yi ), where xi ∈ R
m is a m-dimensional data

point and yi ∈ {0, 1} is the associated label. The values of
α are the results from the SVM optimization problem, and
contain non-zero values for important data points, the so-
called support vectors, which are the points closest to the
SVM decision boundary (24).

Important k-mers show large absolute values in w and
the sign of the weight indicates to which class, positive or
negative, a k-mer contributes to.

Application of existing methods for RBP classification

We apply different RBP prediction tools for the perfor-
mance comparisons. We focus on approaches that allow
for proteome-wide predictions, such as SPOT-Seq-RNA,
RNAPred and RBPPred. We excluded catRAPID because
the web-server does not allow submission of >100 protein
sequences, making proteome-wide predictions not feasible
in this setting.

Pfam-domain-recognition. We collect profile Hidden
Markov Models (HMMs) for known RBDs from the Pfam
database (PFAM 27.0). We obtain 219 different HMMs
annotated as ‘RNA binding/recognition’ in the Pfam
description, quickGO or Protein Data Bank (34). We then
use the HMMER software (35) for scanning the proteomes
for proteins containing at least one of the collected RBDs.
We run HMMER with default parameters, i.e. using an
E-value cutoff ≤10.

SPOT-Seq-RNA. SPOT-Seq-RNA is a template-based
technique to predict RNA-binding potential of a query pro-

tein (17). It employs a library of non-redundant protein-
RNA complex structures and attempts to match a query
sequence to the protein structure in the protein–RNA com-
plexes by fold recognition. More specifically, SPOT-Seq-
RNA requires a protein sequence in FASTA format, it
passes it to PSI-BLAST to search for homologous se-
quences and to generate a position-specific scoring matrix
(PSSM). The PSSM is used to predict several structural
properties and the structural profile is matched against the
known templates to compute a matching score (Z-score).
Statistically significant matching templates with low free en-
ergy of the RBP-RNA complex are then used in order to as-
sign a putative RNA-binding function to the query protein.
We used a local version of the tool, with E-value < 0.001
from PSI-BLAST, a minimum template matching Z-score
of at least 8.04 and maximum binding free energy of –0.565,
as proposed by the authors.

RNApred. RNApred is an SVM-based approach to pre-
dict RBPs (22) and its application supports three differ-
ent modes based on: (i) amino acid composition only, (ii)
evolutionary information under the form of a PSSM built
from PSI-BLAST and (iii) a combination of the previ-
ous two modes with some additional refinements. Unfor-
tunately mode (i) is the only one that can be efficiently ap-
plied proteome-wide from the RNApred web server (as the
other two modes only supported submission of one protein
sequence per time) and therefore mode (i) was chosen.

RBPPred. RBPPred is also based on Support Vector Ma-
chines for the classification task of RBPs versus non-RBPs
(19). Compared to the other earlier tools, it uses compre-
hensive feature representation which includes protein phys-
iochemical properties, as well as evolutionary information
under the form of a PSSM derived from PSI-BLAST, sim-
ilarly to SPOT-Seq-RNA. We downloaded the command
line version of RBPPred from the author’s website and ap-
plied it on our test data set.

Performance metrics

The performance of all methods was evaluated using two
metrics: the area under the receiving operating characteris-
tics curve (AUROC) and the area under the precision-recall
curve (AUPR). Both metrics require a set of proteins which
have been scored according to their likelihood of being an
RBP or not, as well as the known protein class. However,
PR curves give a better idea of the false discovery rate of
each method as they can better account for class imbalance
(36) compared to ROC curves (see Supplementary Para-
graphs 1.3.1 and 1.3.2 for more details). Most of the evalu-
ated methods, except for SPOT-Seq-RNA, return a score or
probability for each protein to be RNA-binding and there-
fore could be assessed via these two metrics.

We also computed sensitivity, specificity, precision, bal-
anced accuracy and Matthews correlation coefficient (37)
(MCC, see Supplementary Figure S4) for the different
methods, using the optimal cutoff to distinguish RBPs from
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non-RBPs from the PR curve, as described in Supplemen-
tary Paragraph 1.4.

Classification of tripeptides in ordered/disordered protein re-
gions

We analysed the relative abundance of all tripeptides in
structurally disordered versus ordered regions of RBPs with
the IUPred tool (38), which allows to characterize disor-
dered protein regions lacking well-defined tertiary struc-
ture. IUPred provides a mode to predict globular domains
with an average disorder score smaller than 0.5. We used
this mode to classify each amino acid as ‘structured’ if it
occurred in a predicted domain and disordered if it did not.
From there, we were able to estimate the fraction of struc-
tural disorder for each tripeptide defined as the number of
times that the tripeptide was found in disordered regions of
RBPs divided by the number of times the same tripeptide
was found in RBPs.

Cell culture and strains

Salmonella enterica subsp. enterica serovar Typhimurium
strain SL1344 was cultivated in standard LB medium if not
stated otherwise. We generated chromosomal insertions of
FLAG-encoding sequences downstream of candidate genes
using the Lambda Red technique (39,40). For details see
Supplementary Methods Paragraph 1.5.

Molecular biology techniques

Western blotting. We performed western blotting using
standard techniques. Samples were electrophoresed on
SDS-PAGE gradient gels 4–20% (TGX stain free, Bio-
Rad) and proteins transferred onto nitrocellulose mem-
branes (BioRad). Membranes were blocked during 30 min
with PBST-M (10 mM phosphate, 2.7 mM potassium chlo-
ride, 137 mM sodium chloride, pH 7.4 0.1% tween 20
(Sigma), 5% milk) and incubated with dilutions 1:1000 of
anti-FLAG (Sigma, F1804 1 �g/�l) overnight at 4◦C (or
2 h room temperature). Antibody binding was detected
using the respective anti-mouseHRP secondary antibody
(Proteintech) and Clarity ECL Western Blotting Substrate
for chemiluminescence in a ChemiDocMP imaging system
(BioRad).

UV crosslinking. For each strain, 100 ml bacterial cultures
were grown to an OD600 of 2.0. Cultures were either directly
irradiated in LB (no centrifugation step before irradiation)
by placing on Petri dishes which were kept on ice, exposure
to UV light (� = 254 nm) at 5 J/cm2 in a CL-1000 ultravio-
let crosslinker device (Ultra-Violet Products Ltd) and cen-
trifuged at 4◦C for 10 min or centrifuged at room temper-
ature for 10 min at 15 000 g and the pellets resuspended in
0.1 vol. of the original volume with water irradiated, and
then centrifuged again (note that LB medium strongly ab-
sorbs UV light at 254 nm wavelength, resulting in inferior
cross-linking efficiency).

Immunoprecipitation and PNK assay. Immunoprecipita-
tion and PNK assay of bacterial FLAG-tagged proteins and
radioactive labeling of RNA by PNK was performed as de-
scribed (14). For details see Supplementary Methods Para-
graph 1.5.

RESULTS

TriPepSVM accurately recovers known RBPs with few false
positives

We propose TriPepSVM, a SVM-based model to discrimi-
nate RNA-binding proteins from non-RNA binders based
on the amino acid sequence of the protein of interest. We
apply it to the proteomes of human, Salmonella and E. coli.

After collection of the data (see Paragraph Data Sets),
we compute the best combination of hyper-parameters k (k-
mer length), C (model cost) and W+ and W− (class weights)
during model training by conducting a grid search in a 10-
fold cross-validation setting (see Paragraph Model training).
We select C = 1 and k = 3 for all three taxa, as this com-
bination always yielded the best balanced accuracy during
the hyper-parameter tuning. We further identify the opti-
mal class weights for human and Salmonella of W+ = 1.8
and W− = 0.2. For E. coli, we identify W+ = 1.0 and W− =
0.1.

With the optimal combination of parameters at hand,
we evaluated TriPepSVM on a held-out test set, which was
neither used for training, nor hyper-parameter tuning (see
paragraph Model training). We show that TriPepSVM is ca-
pable of recovering most known RBPs in the test set while
still maintaining a good specificity (few false positives),
yielding an area under the ROC curve (AUROC) of 0.83 and
an Area under the Precision Recall Curve (AUPR) of 0.53
in human (see Figure 2). We compared the performance
of TriPepSVM with formerly introduced methods for RBP
prediction, namely SPOT-seq-RNA, RNApred and RBP-
Pred and show that TriPepSVM outperforms all competing
methods by a considerable margin in human (see Figure 2).
SPOT-seq-RNA outputs a single classification result and no
confidence score for it, hence its performance reduces to a
single point on both of the curves.

We further investigated if the class-weight SVM performs
similarly to a down-sampling approach and found that both
approaches give similar results on the held-out test set (Sup-
plementary Figure S5).

Performance measures for all tools computed at the op-
timal PR curve cutoff (reported in Table 2 and deter-
mined as described in Supplementary Paragraph 1.4) are
given in Supplementary Figure S4, for human, E. coli and
Salmonella. TriPepSVM outperformed all other methods
in terms of MCC on all three species and had a slightly
higher balanced accuracy compared to the best and most
recent tool RBPPred. In addition, TriPepSVM reaches a
good compromise between sensitivity and specificity at the
optimal cutoff (Supplementary Figure S4). In comparison,
SPOT-Seq-RNA has a high specificity, especially for E. coli
(Figure 2 F) but low sensitivity, i.e. it misses a large amount
of known RNA-binders. On the other hand, RNAPred ex-
hibits a high sensitivity, relying only on amino acid compo-
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Figure 2. Performance of TriPepSVM in comparison to other RBP prediction methods. We compared our method TriPepSVM to RNAPred, RBPPred
and SPOT-seq-RNA on human, Salmonella and E. coli test sets. Each column shows the ROC and PR curves of one organism (A & D for human, B &
E for Salmonella and C & F for E. coli). SPOT-seq-RNA only outputs a class and no probability or score associated with the predictions and is hence
represented only as a dot in the PR/ROC curves.

Table 2. Optimal classification cutoff for the tested prediction tools and
organisms

Application Human Salmonella E. coli

TriPepSVM 0.68 0.28 0.3
RBPPred 0.81 0.34 0.35
RNAPred − 0.24 − 0.18 − 0.84

sition, at the expenses of a poor specificity. The optimal cut-
offs determined by TriPepSVM on human, Salmonella and
E. coli were used to carry on proteome-wide predictions on
the three species.

Runtime comparison

We measured the runtime in predicting RBPs on sequence
sets of increasing size (Supplementary Figure S7). Equally
to RNApred, TriPepSVM exhibited the best performance,
with a constant runtime in the order of seconds on a sin-
gle CPU. On the other hand, the runtime of RBPPred and
SPOT-seq-RNA increased linearly with the size of the data
sets, up to 83 hours and 12 days for 250 sequences, re-
spectively (Supplementary Figure S7). This highlights that
structure template-based methods do not scale sufficiently
well when applied in a proteome-wide fashion.

TriPepSVM results are consistent with interactome capture
studies

We found 2944 proteins with a predicted RNA-binding ca-
pability in the human proteome (see Supplementary Ta-
ble S13). To assess whether these proteins are really likely
to bind RNA, we overlapped our predictions with interac-
tome capture studies from recent years. Figure 3 shows the
overlap between our predictions (TripPepSVM Predicted),

Figure 3. Overlap between four different interactome capture studies
and predictions from TriPepSVM.We computed the overlap between our
proteome-wide predictions (orange, top right), the union of identified pro-
teins from four independent RIC studies (gray, top left) and proteins con-
taining RBDs according to the Pfam database (blue, bottom). The table
shows the sensitivity between our predictions and the four different RIC
studies and their union.

the union of discovered RBPs by four different interactome
capture studies and proteins that contain a Pfam RBD. The
table in Figure 3 reports the fraction of proteins from the
interactome capture studies which our model was able to re-
cover for the tuned cutoff of 0.68. For all of the four studies,
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we were able to recover >75% of the experimentally identi-
fied RBPs, and for three of these studies this percentage was
higher or equal to 85%.

TriPepSVM predicts novel human RBPs

It should be taken into account that the vast majority of
RIC-RBPs are mRNA-binders since they were identified
using poly-A RNA selection and eukaryotic mRNA only
constitutes for a small subset of cellular RNA (around
5%). TriPepSVM, however, was trained on a superset of all
known RBPs. Consistent with this, we also identify 14 cy-
tosolic and 6 mitochondrial tRNA ligases, 6 tRNA/rRNA
methyltransferases (NSUN2-6) and the majority of riboso-
mal proteins (31 out of 33 small subunit proteins and 44 out
of 47 large subunit proteins (41)).

The recent consensus for human RBPs ranges from hun-
dreds (1) to >2000 (3) RBPs. From the 2944 proteins pre-
dicted by TriPepSVM, 990 (34%) were not previously de-
scribed in the aforementioned RIC studies, do not contain
a known RNA-binding domain or were not annotated as
RBPs.

Among the 990 predicted RNA-binders are >200 pro-
teins with ATP-binding capacity, from these are 13 proteins
of the AAA ATPase family. The overlap between RNA- and
single nucleotide binding is generally very high among the
established RBPs as well (8). Also enriched are kinases, pro-
teins harboring WD40 domains and bromodomain folds.
During the writing of this manuscript, we and others pub-
lished work in which RBPs were identified by biochemi-
cal techniques (called PTex (42) and XRNAX (43)) in a
poly-A independent fashion. The findings in these studies
are largely confirmatory to our results as proteins of the
AAA ATPase family, WD40 and bromodomain proteins
were likewise identified as novel RBPs.

Important sequence patterns in RBPs and their biological sig-
nificance

We next set out to identify those k-mers that contributed
the most to classifying RBPs versus non-RBPs in human, E.
coli and Salmonella, using Equation 2 (see Paragraph Fea-
ture importance scores). The highest ranked k-mers (top 50
ranking) are listed in the Supplementary Tables S7–S9 for
human, Salmonella and E. coli, while in Supplementary Ta-
bles S10–S12 all k-mers with their corresponding weights
are reported. In all three organisms, k-mers containing ly-
sine (K), arginine (R) and glycine (G) are found to have
the largest SVM weight. Finding K and R enriched among
the triplets was expected since positively charged residues
are known to be involved in direct RNA interaction; e.g.
the RGG box is a known RNA-binding motif in unstruc-
tured regions of proteins (11). Although an aromatic motif
YGG has been identified as RNA-binding site by Castello
and colleagues (11), in our dataset YGG is not among the
top k-mers which contribute to RBP classification with a
weight close to 0. YGG repeats (also called [G/S]Y[G/S]
motif) can bind to RNA and promote hydrogel formation
in vitro as well as liquid-liquid phase separations (LLPS)
in vivo (44,45). GYG, SYS, GYS and SYG triplets, which
are potentially part of the [G/S]Y[G/S] motif, although not

among the top 50 important k-mers in our human model,
have all positive weights, indicating that they contribute to
the recognition of the RBP class. Nearly all k-mers with a
negative weight (contributing to classification as non-RBP)
contain leucine (L) and/or glutamic acid (E). Consistent
with this, E and L are the residues most absent from RNA-
binding sites in human cells (11). In particular, the k-mer
LLL is depleted in the RBP class of all three organisms
(Supplementary Tables S7–S9).

To investigate whether the rules learned by the three clas-
sifiers are universal or unique to the organism which it was
trained on, we inspected the top k-mer features learned by
TriPepSVM for human, Salmonella and E. coli (Supplemen-
tary Table S7–S9). As expected, the pairwise correlation be-
tween all learned k-mer weights for two organisms is much
higher for Salmonella and E. coli (Pearson correlation of
0.63) than between human and Salmonella (Pearson corre-
lation of 0.11) or human and E. coli (Pearson correlation of
0.12) (Figure 4A–C).

Next, we compared the weights of all k-mers from hu-
man, E. coli and Salmonella to our previously identified
triplets conserved in eukaryotic evolution (7) (see red tri-
angles in Figure 4A–C). Our findings independently con-
firm that those triplets are not only conserved among RBPs
but are also important to correctly identify these proteins as
RNA-binders by TriPepSVM, given that most of them have
a positive weight (Figure 4A–C). Interestingly, a high por-
tion of k-mers found to be conserved in eukaryotic RBPs
(mainly KR- and RG-containing triplets) seem to be impor-
tant not only for human, but also for bacterial RBP classi-
fication.

Following on the presence of k-mers which are known to
bind RNA in unstructured regions, including those contain-
ing G/Y and R/G, we probed for all three species whether
overall the top k-mers identified by our SVM model had a
higher propensity to be found in structured domains or un-
structured parts of proteins (see Figure 4D–F) using IUPred
prediction (38). Strikingly, k-mers with the biggest contri-
bution to classify a protein are more often found in disor-
dered regions in human, but not in Salmonella and E. coli.
This indicates that different properties are encoded in the
sequence features of eukaryotic versus bacterial RBPs. In
addition, we predict known human RBPs, such as HNRPU,
PTBP1, FUS, SRSF1, U2AF2 and DDX4, that are known
to mediate RNA binding via disordered regions and are im-
plicated in several aspects of RNA processing (see Supple-
mentary Table S13).

Searching a bacterial proteome for RBPs

We next used TriPepSVM to predict potential RBPs in
a prokaryotic organism. As for most bacteria, RBPs are
poorly annotated in Salmonella Typhimurium despite re-
cent advances such as the identification of the Csp pro-
teins or ProQ as RNA-binders by Smirnov and colleagues.
The same study, however, indicated that more, so far un-
identified proteins harbor the potential to bind RNA (46).
After training TriPepSVM on bacteria from the Salmonella
clade (using the recursive mode for UniprotKB taxon 590)
to obtain a larger positive training set, we searched the com-
plete Salmonella Typhimurium proteome for RBPs. We cor-
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Figure 4. TriPepSVM classifiers apply highly conserved tripeptides that are enriched in structurally disordered regions of RBPs in human. A, B, C show
tripeptides (red triangles) identified by Beckmann et al. (7) as conserved in eukaryotic RBPs and expanded from yeast to human with their corresponding
weights for A Salmonella vs. E.coli, B human vs. E. coli and C human vs. Salmonella. Most of the conserved tripeptides from (7) harbor positive weights
not only in human but also in Salmonella and E. coli, and are therefore important in characterizing RNA-binders in human and bacteria. We report
pearson’s correlation coefficient for all pairwise comparisons and show high correlation (r = 0.63) between the feature weights extracted from the classifiers
trained on bacteria. D, E, F show the structural disorder fraction of each tripeptide ranked by the absolute feature importance score. The resulting curve
is smoothed using LOESS regression (span = 0.2) where the shading shows the standard deviation. The dashed line marks the value of the 80%-quantile
of the smooth LOESS regression values. The frequency indicating how often a tripeptide is observed in the structural disordered part of an RBP increases
with the feature importance score in D human, but not in E Salmonella and F E. coli.

rectly identify 108 of the Uniprot-annotated 115 RBPs, re-
sulting in a 94% recovery rate. We correctly predict Hfq
(14), and ProQ (46) which are bacterial mRNA- and sRNA-
binding proteins. Recently, cold schock proteins CspC and
CspE were described as RNA-binding proteins in bacteria
(47) and Salmonella (48). Unfortunately, cspE is still not
present in the reviewed section of SwissProt and therefore,
we did not include it in our proteome data (see Paragraph
Methods). CspC, on the other hand, is present in SwissProt
but was not yet marked as RNA-binding and we fail to pre-
dict it for Salmonella. In E. coli, however, we correctly pre-
dict CspC as RNA-binder.

Using the tuned cutoff of 0.28 for Salmonella (see Table
2), we additionally predict 66 additional proteins to bind to
RNA (see Supplementary Table S14). Among those are 8 ri-
bosomal proteins and 14 other proteins involved in RNA bi-
ology all of which are not annotated as ‘RNA-binding’ such
as the GTPase Der which is involved in ribosome biogenesis
(49), ribosomal methyltransferases RimO and RlmE (50),

RNA pyrophosphohydrolase RppH (51), or transcription
elongation factors GreA/B (52). Furthermore, we predict
20 known DNA-binding proteins and 18 proteins with doc-
umented ATP-binding activity to be RNA-interacting. Ad-
ditionally, 18 predicted proteins are not implicated to in-
teract with RNA or any other nucleic acid; 12 of those have
enzymatic activity, consistent with a growing list of enzymes
from diverse species to be associated with RNA (7,10,53).

Experimental validation of predicted RBPs in Salmonella

Next, we set out to experimentally validate TriPepSVM pre-
dictions in vivo. We generated Salmonella mutant strains
carrying FLAG-tagged RBP fusion in its genomic context
using the � Red method; resulting in bacterial mutants that
exclusively express the predicted FLAG-tagged RBP candi-
date at their respective physiological levels (40). We chose
ClpX (a subunit of the Clp protease regulating expression
of the flagellum (54)), DnaJ (a chaperone responding to
hyperosmotic and heat shock (55)), UbiG (a ubiquinone
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biosynthesis O-methyltransferase (56)) and CysN (Sulfate
adenylyltransferase subunit 1 (57)) as predicted RBPs and
YigA which TriPepSVM predicts as non-RBP and we tested
for RNA-binding in vivo using the PNK assay (see Figure
5A). As demonstrated by a radioactive signal from 5’ end
labeled co-immunoprecipitated RNA (see Figure 5B, C),
we can confirm that we correctly predicted ClpX, DnaJ,
UbiG (RNA-binding) and YigA (true negative) but not the
candidate CysN which was also not predicted as RBP by
the human or E. coli models. The validation of four out
of five proteins is therefore also matching with our calcu-
lated balanced accuracy of 73% (see Supplementary Figure
S4). Importantly, ClpX has ATP-binding activity and DnaJ
is able to bind to DNA and ATP (54,55). To exclude self-
phosphorylation or direct binding from ATP-binders to the
radioactive isotope in our assay (58), we also included con-
ditions in which PNK was omitted but P32-� -ATP was pro-
vided (see Figure 5B, C). However, our validation demon-
strates that both are bona-fide RNA-interactors in vivo from
which we conclude that TriPepSVM is unlikely to incor-
rectly predict DNA- or single nucleotide binders as RBPs.

Cross-species predictions

Finally, we investigated how well a classifier trained on one
organism can predict RBPs in another organism. This is
particularly useful because it potentially allows us to im-
prove RBP annotation in species whose genomic sequence
is known but RBP annotation is scarce, as it is the case for
many bacterial genomes. As expected and shown in Sup-
plementary Figure S7, TriPepSVM achieves the best BACC
when training and testing on the same species. In general,
Salmonella RBPs are well predicted by TriPepSVM trained
on E. coli and viceversa (BACC of 80% in both cases), in
line with the observation that the sequence k-mers required
to identify RBPs are very similar in both organisms (Figure
4A). However, a human classifier, where sequence features
are more complex and related to structurally disordered re-
gions (Figure 4D), performs less well in cross-species pre-
diction when tested on both E. coli and Salmonella (Sup-
plementary Figure S7).

In a second step, we used TriPepSVM trained separately
on Salmonella, E.coli and human to assess how they behave
proteome-wide in cross-species RBP prediction. When ap-
plied to the whole human proteome, the human model pre-
dicts 2944 RBPs, but only 38% and 40% of those are pre-
dicted by the E.coli and Salmonella model as well (Sup-
plementary Figure S8A). This is best exemplified by the
Pumilio proteins PUM1 and PUM2, both members of the
PUF protein family and highly conserved from human to
fly (59). They are correctly predicted as RBP by the human-
trained model but not by bacterial-trained TriPepSVM.
Next to the RNA-interacting Pumilio-homology domain
(Pum-HD) both human proteins contain a large N-terminal
unstructured part (59). PUM3 however, which contains the
Pum-HD but lacks the disordered region of PUM1 and
PUM2, is correctly identified by the bacterial models as
well. On the contrary, on the Salmonella proteome the E.
coli and the Salmonella models exhibit a large overlap and
can predict up to 84% of common RBPs, while the hu-
man classifier can only predict 34% of those (Supplemen-

tary Figure S8B). Similar results are found when applying
all three models on the E. coli proteome, with the E. coli
and Salmonella models having 74% of common RBP pre-
dictions (Supplementary Figure S8C). Here, the human-
trained model identifies conserved RBPs such as several ri-
bosomal proteins but fails to correctly predict the bacte-
rial RBPs Hfq, ProQ and CsrA. In conclusion the over-
lap between the predictions of the two bacterial models is
much higher than with the human model in all cross-species
comparisons. This is expected given the low correlation be-
tween the learnt sequence features from the human and the
bacterial models versus the high correlation of learned fea-
tures between E. coli and Salmonella models. The results
clearly show that cross-species prediction works best across
evolutionary-related species.

DISCUSSION

What defines a RNA-binding protein? Apart from the ob-
vious functionality to bind to RNA, other elements within
a protein can be important to exert its physiological role in
the cell. With TriPepSVM, we are presenting an approach
which reduces a protein to its combination of short amino
acid k-mers, in our case triplets, and use machine learning
to find patterns in these combinations that align with RNA-
binding. Escherichia coli is a well-studied gram-negative
bacterium of the intestinal microflora and used as model
organism in several studies. Its genome and proteome have
been extensively annotated, providing therefore also hun-
dreds of annotated RBPs for training predictive models.
Salmonella Typhimurium is also a well-studied bacterium;
not the least due to its role as Gram-negative model organ-
ism to study infection by prokaryotic pathogens. Despite
its importance, only a very limited set of RNA-interacting
proteins has been identified in Salmonella and other bac-
teria beyond the canonical set of proteins which make up
the transcription machinery, the ribosome or interact with
tRNA. In recent years, novel approaches such as Grad-
Seq (46) identified additional proteins that can interact
with bacterial mRNA. So far, 5 mRNA-binding proteins
have been confirmed in Salmonella: Hfq, CsrA, ProQ and
CspC/E. This limited data set renders prediction and dis-
covery of novel RBPs in bacteria a challenging task since
most bioinformatic prediction tools depend on either struc-
tural similarity to protein folds that are known to be in-
volved in RNA interaction or on homology based on phy-
logeny. In both cases, the limited availability of known bac-
terial RBPs represents an important obstacle - also for
our method. Still, our approach correctly identifies most
known RNA-binders and predicts 66 novel candidate RBPs
in Salmonella from which we tested ClpX, DnaJ, UbiG and
CysN for validation. Indeed, three (ClpX, DnaJ and UbiG)
out of the four could be confirmed to bind RNA in vivo (see
Figure 5).

In our approach, we reduce the search space to the most
basic feature of any protein: its primary sequence. Fol-
lowing the observation that i) many recently-found RBPs
lack known RNA-binding domains (11) and ii) our earlier
work showed an expansion of short triplet amino acid mo-
tifs in RBPs throughout evolution (7), TriPepSVM rather
searches for combinations of triplet peptides in proteins

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/9/4406/5421814 by G

SF Forschungszentrum
 user on 13 M

ay 2019



Nucleic Acids Research, 2019, Vol. 47, No. 9 4415

15 -

PNK+ +-

UV

PNK

UV

++-

+ +-

++-

cross-link
in

LB-medium

cross-link
in
H O2

+- +-

-

FLAG-IP Input

15 -

kDa

CsrA

Autoradiography

Western blotP
os
iti
ve
co
nt
ro
l

+ +-

++-

+ +-

++-

cross-link
in

LB-medium

cross-link
in
H O2

+- +-

-- - -

FLAG-IP Input

YigA

30 -

kDa

30 -

50 -

25 -

Autoradiography

Western blot

PNK+ + - + + -

UV++- ++-

cross-link
in

LB-medium

cross-link
in
H O2

+- +-

FLAG-IP Input

50 -

50 -
kDa

ClpX

P
re
di
ct
ed
R
B
P
s 50 -

50 -

30 -

30 -

50 -

50 -

DnaJ

UbiG

CysN

A B C
254 nm

UV cross-linking

RNAprotein

cross-link

Immunoprecipitation (IP)

RNase digestion &
Radiolabeling (PNK)

Autoradiography

Western blot
P
re
di
ct
ed
no
n-
R
B
P

- - -

Figure 5. Experimental validation of predicted bacterial RBPs. (A) Schematic view of the PNK assay. After UV cross-linking of ribonucleoprotein com-
plexes in vivo, cells were lysed. UV irradiation can result in a covalent link (orange star) between RNA and proteins that are in close physical proximity (zero
distance cross-link). Individual candidate RBP-FLAG fusions were then immunoprecipitated (IP) with a FLAG-specific antibody. After trimming of the
co-imunoprecipitated RNA using RNase digestion, polynucleotide kinase (PNK) was used to enzymatically add a radioactive phosphate (32P) to 5’-ends
of transcripts. Finally, input controls as well as the IPs were separated by SDS-PAGE. After blotting to a membrane, protein amounts were analysed by
Western blotting; presence of a radioactive signal at the same molecular mass as the protein then serves as indirect proof of RNA-binding. (B) PNK assay
of CsrA (positive control) and YigA (predicted non-RBP). UV cross-linking was performed in LB medium and water independently. A radioactive signal
can only be detected for RBPs (here: CsrA) after UV cross-linking and in presence of PNK. (C) PNK assay of four candidate RNA-binding proteins in
Salmonella Typhimurium predicted by TriPepSVM. ClpX, DnaJ and UbiG could be confirmed to interact with RNA in vivo, but not CysN.

then for full domains. This reduction in complexity has the
advantage that TriPepSVM is independent on prior (and
potentially biased) knowledge on RBDs or homology. We
demonstrate that highly informative sequence features are
contained within RBPs of both, human and the two bacte-
ria Salmonella and E. coli. Using annotated RBPs for both
training and evaluation of our method, we are able to show
that protein sequences can be confidently used as a predic-
tor for RBPs in all three species.

Additionally, we have shown that RBP predictions made
by training a classifier in one species and predicting in an-
other can be very accurate when performed between re-
lated species, while cross-species prediction is more diffi-
cult between human and bacteria. This can be explained by
the different rules learned by classifiers trained on differ-
ent species, with Salmonella and E. coli sharing many more
common sequence k-mers in their RNA-binding proteome
than human and Salmonella or human and E. coli.

The fact that TriPepSVM does not classify all human
proteins with a Pfam-domain (see Figure 3) as RBP also
demonstrates that tripeptides from RNA-binding domains
alone are not sufficient to explain the performance of
TriPepSVM. Intriguingly, tripeptides which we predict to
contribute to RNA-interaction more prominently have a

tendency to be enriched in structurally disordered regions
in human but not in E. coli and Salmonella (see Figure 4D–
F). Together with our earlier comparison of tripeptide mo-
tifs in eukaryotic RBPs in which unicellular yeast harbors
few tripeptide repetitions that expand during evolution, it
is tempting to speculate that RNA-binding via unstructured
regions is of higher physiological relevance in more complex
organisms than in unicellular species. Consistent with this
hypothesis is the observation that sequence-independent
RNA-binding in unstructured regions of RBPs is impor-
tant for P-bodies or RNA granules by liquid-liquid phase
transitions (60). Formation of these higher-order RNA-
protein complexes, however, has not been described for bac-
teria so far. Our results show that if present in prokaryotes,
regulation of RNA-granule-like complexes is very unlikely
through unstructured regions of RBPs.

CONCLUSION

All in all, we show that the propensity of a protein to bind
RNA is mostly encoded in its primary sequence and can be
confidently predicted based solely on combinations of short
amino acid triplets. TriPepSVM outperforms previous ap-
proaches which make use of more complex protein features
in discriminating RBPs from non-RBPs. It can in princi-
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ple be applied to any species, from eukaryotes to bacteria
where limited experimental data are available. Besides be-
ing a valuable RBP prediction method from sequence alone,
our approach can pinpoint the important sequence patterns
which distinguish RBPs from non-RBPs and points to dis-
ordered regions as main determinants of RBP-RNA inter-
actions, in line with the latest studies.
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9. Matia-González,A.M., Laing,E.E. and Gerber,A.P. (2015)
Conserved mRNA-binding proteomes in eukaryotic organisms. Nat.
Struct. Mol. Biol., 22, 1027–1033.

10. Hentze,M.W. and Preiss,T. (2010) The REM phase of gene
regulation. Trends Biochem. Sci., 35, 423–426.

11. Castello,A., Fischer,B., Frese,C.K., Horos,R., Alleaume,A.-M.,
Foehr,S., Curk,T., Krijgsveld,J. and Hentze,M.W. (2016)
Comprehensive identification of RNA-Binding domains in human
cells. Mol. Cell, 63, 696–710.

12. Holmqvist,E. and Vogel,J. (2018) RNA-binding proteins in bacteria.
Nat. Rev. Microbiol., 16, 601–615.

13. Vogel,J. and Luisi,B.F. (2011) Hfq and its constellation of RNA. Nat.
Rev. Microbiol., 9, 578–589.

14. Holmqvist,E., Wright,P.R., Li,L., Bischler,T., Barquist,L.,
Reinhardt,R., Backofen,R. and Vogel,J. (2016) Global RNA
recognition patterns of post-transcriptional regulators Hfq and CsrA
revealed by UV crosslinking in vivo. EMBO J., 35, 991–1011.

15. Bao,X., Guo,X., Yin,M., Tariq,M., Lai,Y., Kanwal,S., Zhou,J., Li,N.,
Lv,Y., Pulido-Quetglas,C. et al. (2018) Capturing the interactome of
newly transcribed RNA. Nat. Methods, 15, 213–220.

16. Huang,R., Han,M., Meng,L. and Chen,X. (2018)
Transcriptome-wide discovery of coding and noncoding
RNA-binding proteins. Proc. Natl. Acad. Sci. U.S.A., 115,
E3879–E3887.

17. Yang,Y., Zhao,H., Wang,J. and Zhou,Y. (2014) SPOT-Seq-RNA:
predicting protein–RNA complex structure and RNA-binding
function by fold recognition and binding affinity prediction. In:
Protein Structure Prediction. Springer, 119–130.

18. Livi,C.M., Klus,P., Ponti,R.D. and Tartaglia,G.G. (2015) catRAPID
signature: identification of ribonucleoproteins and RNA-binding
regions. Bioinformatics, btv629.

19. Zhang,X. and Liu,S. (2017) RBPPred: predicting RNA-binding
proteins from sequence using SVM. Bioinformatics, 33, 854–862.

20. Sharan,M., Förstner,K.U., Eulalio,A. and Vogel,J. (2017) APRICOT:
an integrated computational pipeline for the sequence-based
identification and characterization of RNA-binding proteins. Nucleic
Acids Res., 45, e96.

21. Miao,Z. and Westhof,E. (2016) BscoreNBench: a high-level web
server for nucleic acid binding residues prediction with a large-scale
benchmarking database. Nucleic Acids Res, 44, W562–W5627.

22. Kumar,M., Gromiha,M.M. and Raghava,G.P. (2011) SVM based
prediction of RNA-binding proteins using binding residues and
evolutionary information. J. Mol. Recogn., 24, 303–313.

23. Brannan,K.W., Jin,W., Huelga,S.C., Banks,C. A.S., Gilmore,J.M.,
Florens,L., Washburn,M.P., Van Nostrand,E.L., Pratt,G.A. et al.
(2016) SONAR Discovers RNA-Binding Proteins from Analysis of
Large-Scale Protein-Protein Interactomes. Mol. Cell, 64, 282–293.

24. Leslie,C., Eskin,E. and Noble,W.S. (2002) The spectrum kernel: a
string kernel for SVM protein classification. Pacific Symposium on
Biocomputing. Pacific Symposium on Biocomputing, pp. 564–575.

25. Huska,M. and Vingron,M. (2016) Improved prediction of
non-methylated islands in vertebrates highlights different
characteristic sequence patterns. PLoS Comput. Biol., 12, e1005249.

26. Consortium,U. et al. (2008) The universal protein resource (UniProt).
Nucleic Acids Res., 36, D190–D195.

27. Binns,D., Dimmer,E., Huntley,R., Barrell,D., O’Donovan,C. and
Apweiler,R. (2009) QuickGO: a web-based tool for Gene Ontology
searching. Bioinformatics, 25, 3045–3046.

28. Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences.
Bioinformatics, 22, 1658–1659.

29. Yu,X., Cao,J., Cai,Y., Shi,T. and Li,Y. (2006) Predicting rRNA-,
RNA-, and DNA-binding proteins from primary structure with
support vector machines. J. Theor. Biol., 240, 175–184.

30. Bateman,A., Coin,L., Durbin,R., Finn,R.D., Hollich,V.,
Griffiths-Jones,S., Khanna,A., Marshall,M., Moxon,S.,
Sonnhammer,E.L. et al. (2004) The Pfam protein families database.
Nucleic acids research, 32, D138–D141.

31. Vapnik,V.N. and Vapnik,V. (1998) Statistical Learning Theory. Wiley,
NY, Vol. 1.

32. Du,S.-X. and Chen,S.-T. (2005) Weighted support vector machine for
classification. In: 2005 IEEE International Conference on Systems,
Man and Cybernetics. Vol. 4, pp. 3866–3871.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/9/4406/5421814 by G

SF Forschungszentrum
 user on 13 M

ay 2019

https://github.com/marsicoLab/TriPepSVM
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz203#supplementary-data


Nucleic Acids Research, 2019, Vol. 47, No. 9 4417

33. Palme,J., Hochreiter,S. and Bodenhofer,U. (2015) KeBABS: an R
package for kernel-based analysis of biological sequences.
Bioinformatics, btv176.

34. Bank,P.D. (1971) Protein Data Bank. Nat. New Biol., 233, 223.
35. Finn,R.D., Clements,J. and Eddy,S.R. (2011) HMMER web server:

interactive sequence similarity searching. Nucleic Acids Res., gkr367.
36. Saito,T. and Rehmsmeier,M. (2015) The precision-recall plot is more

informative than the ROC plot when evaluating binary classifiers on
imbalanced datasets. PLoS One, 10, e0118432.

37. Matthews,B.W. (1975) Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta
(BBA)-Protein Struct., 405, 442–451.
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