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Abstract  

Mutations in either the mitochondrial or nuclear genomes are associated with a 

diverse group of human disorders characterized by impaired mitochondrial 

respiration. Within this group, an increasing number of mutations have been identified 

in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The 

ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic 

cleavage of the 3’ ends of mitochondrial pre-tRNAs. Here, we report the 

identification of sixteen novel ELAC2 variants in individuals presenting with 

mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy and lactic 

acidosis. We provide evidence for the pathogenicity of the novel missense variants by 

studying the RNase Z activity in an in vitro system. We also modelled the residues 

affected by missense mutation in solved RNase Z structures, providing insight into 

enzyme structure and function. Finally, we show that primary fibroblasts from the 

affected individuals have elevated levels of unprocessed mitochondrial RNA 
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precursors. Our study thus broadly confirms the correlation of ELAC2 variants with 

severe infantile-onset forms of hypertrophic cardiomyopathy and mitochondrial 

respiratory chain dysfunction. One rare missense variant associated with the 

occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z 

activity of ELAC2, suggesting a functional link between tumorigenesis and 

mitochondrial RNA metabolism 

Key Words: Mitochondria, RNA, RNase Z, mitochondrial disease, cardiomyopathy 

1 | INTRODUCTION  

Mitochondria are essential for cell function through their involvement in ATP 

synthesis by oxidative phosphorylation (OXPHOS), and host a number of other 

biosynthetic pathways. Whereas the majority of the mitochondrial proteome is 

encoded in the cell nucleus and imported into the mitochondria following synthesis on 

cytosolic ribosomes, 13 essential subunits of the OXPHOS system are synthesised 

within the organelle. For this reason, mitochondria maintain and express 

mitochondrial DNA (mtDNA) that encodes the aforementioned polypeptides, together 

with the mitochondrial (mt-) tRNAs and rRNAs. All remaining protein components of 

the mitochondrial gene maintenance and expression machinery such as proteins 

responsible for mtDNA transcription, precursor RNA processing enzymes, the 

mitoribosomal proteins, mitochondrial aminoacyl tRNA synthetases and others are 

encoded by the nuclear genes (Hallberg & Larsson, 2014; Rorbach & Minczuk, 

2012). More than 50 nuclear-encoded mitochondrial proteins involved in 

mitochondrial gene expression are linked to heritable disorders (Frazier, Thorburn, & 

Compton, 2017; Powell, Nicholls, & Minczuk, 2015; Rahman & Rahman, 2018; 

Stenton & Prokisch, 2018; Van Haute et al., 2015). 

Human mt-mRNAs, mt-tRNAs, and mt-rRNAs are transcribed as part of large 

polycistronic precursor transcripts encoded by the 16.6 kb mtDNA. The 

mitochondrial gene sequences for mt-rRNA and, in the majority of cases, mt-mRNA 

are separated by mt-tRNA sequences, leading to the proposed ‘tRNA punctuation’ 

model of RNA processing (Anderson et al., 1981; Ojala, Montoya, & Attardi, 1981). 

Processing of the intervening mt-tRNAs generates individual mt-mRNAs and mt-

rRNAs. In human mitochondria, endonucleolytic cleavage at the 5′ and 3′ termini of 
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mt-tRNAs is performed by the RNase P complex (Holzmann et al., 2008) and the 

RNase Z activity of ELAC2, respectively (Brzezniak, Bijata, Szczesny, & Stepien, 

2011; Rossmanith, 2011). Two human nuclear genes encode orthologues of the 

bacterial RNase Z (elaC): ELAC1 (MIM# 608079, RefSeq: NM_0018696.2, 

NP_061166.1) and ELAC2 (MIM# 605367, RefSeq: NM_018127.6, NP_060597.4). 

The ELAC1 gene encodes a short form of RNase Z (also referred to as RNase ZS) that 

is located in the cytosol, but its function in humans is unknown (Rossmanith, 2011). 

ELAC2 codes for a long form of RNase Z (also referred to as RNase ZL). Alternative 

translation initiation of ELAC2 mRNA has been proposed to produce two ELAC2 

protein isoforms; one targeted to the mitochondria, the other to the nucleus. 

Translation of the longer isoform initiates at the methionine codon 1 (M1) and the 

first 31 amino acids of this isoform are predicted to contain a mitochondrial targeting 

sequence (MTS) (Rossmanith, 2011). This longer isoform of ELAC2 has a well-

characterized role in mitochondrial pre-tRNA processing (Brzezniak et al., 2011; 

Dubrovsky, Dubrovskaya, Levinger, Schiffer, & Marchfelder, 2004; Lopez Sanchez 

et al., 2011; Rossmanith, 2011). If translation is initiated at the methionine codon 16 

(M16) (relative to the longer mitochondrially-targeted form) ELAC2 is targeted to the 

nucleus. Recent data on the activity of ELAC2 in vivo, generated using a knockout 

mouse model, revealed that it has a non-redundant role in the processing of mtDNA-

encoded tRNAs and that it contributes to the processing of nuclear-encoded tRNA, 

miRNA and C/D box snoRNAs (Siira et al., 2018).  

Thus far, seven different pathogenic mutations have been reported in ELAC2-

associated mitochondrial dysfunction. In our previous work, we investigated the 

functional consequences of ELAC2 variants in patients presenting with a recessively 

inherited form of hypertrophic cardiomyopathy (HCM), hypotonia, lactic acidosis, 

and failure to thrive (Haack et al., 2013). This previous work identified a total of four 

disease alleles (coding for p.Phe154Leu, p.Arg211*, p.Leu423Phe and p.Thr520Ile) 

in three families. One of these, the variant coding for p.Phe154Leu, was also recently 

reported as prevalent in consanguineous Arabian families affected by infantile 

cardiomyopathy (Shinwari et al., 2017). In contrast, a homozygous splice site 

mutation (c.1423+2T>A) in ELAC2 has been associated with developmental delay 

and minimal cardiac involvement in a consanguineous Pakistani family (Akawi et al., 

2016). A single heterozygous ELAC2 variant coding for p.Pro32Arg was recently 
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reported in an infant presenting with encephalopathy, epilepsy, and growth and 

developmental retardation (Kim, Kim, Lee, & Cheon, 2017). The patient also 

developed Tetralogy of Fallot, however, without evidence of cardiomyopathy. Since 

the transmission pattern of ELAC2-related disease in the families reported previously 

(Akawi et al., 2016; Haack et al., 2013; Shinwari et al., 2017) was consistent with 

recessive inheritance, the relevance of this variant remains unclear. Finally, an 

Assyrian patient presenting with chorea, psychosis, acanthocytosis, and displaying a 

prolonged survival has been identified to carry compound heterozygous ELAC2 

variants coding for p.Gly132Arg and p.Ser347Phe. The patient had a mild cardiac 

hypertrophy without evidence of pump failure. Muscle biopsy did not indicate any 

evidence of respiratory chain defect, despite of the presence of cytochrome oxidase 

(COX)–negative and ragged-red fibers (Paucar et al., 2018).  

In the present work, we report the identification of sixteen additional ELAC2 variants 

(ten missense, two frameshift and four splice mutations) in individuals who present 

with mitochondrial respiratory chain deficiency, HCM and lactic acidosis. We 

provide further evidence for the pathogenicity of the two previously reported and new 

evidence for eight newly identified missense variants by studying the RNase Z 

activity in an in vitro system. Fibroblasts from the individuals with novel ELAC2 

variants showed elevated levels of unprocessed mt-tRNA precursors. The 

combination of in vitro ELAC2 activity and mtRNA processing analysis provided the 

pathogenicity evidence for all patients harboring the previously unreported ELAC2 

variants. Moreover, modelling of the missense substitutions provided additional 

insight into the effects of substitutions on enzyme structure. 

2 | MATERIALS AND METHODS  

2.1 | Ethics statement 

Informed consent for diagnostic and research-based studies was obtained for all 

subjects in accordance with the Declaration of Helsinki protocols and approved by 

local institutional review boards. 
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2.2 | Exome Sequencing, variant prioritization, reevaluation and verification  

For reevaluation of the ELAC2 variants in P1 (previously reported as patient 27 in 

(Taylor et al., 2014)) and also for the analysis of the ELAC2 splice variants in P6 and 

P8, RNA purification from fibroblasts and cDNA retrotranscription was used to verify 

the identified variants, we used RNeasy mini kit (QIAGEN) and GoTaq 2-Step 

RTqPCR System (Promega), respectively, according to the manufacturers’ protocols. 

Primers used for cDNA amplification are available upon request. 

For P2 and P10-P13 exome sequencing and variant prioritisation was performed by 

commercial laboratories: P2 - Fulgent Diagnostics, P10 and P12 - Baylor College of 

Medicine, Human Genome Sequencing Center, P11- Centogene, as described in 

previously (Trujillano et al., 2017) and P13 – UCL. 

For P3, targeted NGS sequencing using a custom Ampliseq panel targeting 55 

mitochondrial translation genes (IAD62266) and subsequent Ion Torrent PGM 

sequencing was performed essentially as described previously (Alston et al., 2016). 

Candidate gene sequencing was performed for all coding exons of the ELAC2 gene 

(including intron-exon boundaries) using M13-tagged amplicons and BigDye v3.1 

sequencing kit (Life Technologies). Capillary electrophoresis was performed using an 

ABI3130xl (Life Technologies). NGS variant confirmation was performed by Sanger 

sequencing using oligonucleotides targeting the exons of interest.  

For P4 and P8, genomic DNA from the individuals and their parents was isolated 

from whole blood using the chemagic DNA Blood Kit special 

(PerkinElmer,Waltham, USA), according to the manufacturer’s protocol. Exome 

sequencing was performed as previously described (Kremer et al., 2017). Exonic 

regions were enriched using the SureSelect Human All Exon kit (50Mb_v5) from 

Agilent followed by sequencing as 100 bp paired-end runs on an Illumina HiSeq. 

2500. Reads were aligned to the human reference genome (UCSC Genome Browser 

build hg19) using Burrows-Wheeler Aligner (v.0.7.5a). Identification of single-

nucleotide variants and small insertions and deletions (indels) was performed with 

SAMtools (version 0.1.19). For analysis of rare bi-allelic variants, only variants with 

a minor allele frequency (MAF) of less than 1% in our internal Munich database of 

14,000 exomes were considered. 
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For P5, WES was undertaken using previously described methodologies and 

bioinformatics variant filtering pipelines (Bonnen et al., 2013) 

For P6 and P9 a targeted custom panel (Nextera rapid capture, Illumina) containing 

genes responsible for mitochondrial disorders was used (Ardissone et al., 2018). 

Variant filtering was performed as described in Legati et al. (Legati et al., 2016).  

For P7, exome capture and massively parallel sequencing were outsourced (BGI, 

Shenzhen, China) using Sure Select Human All Exon V.4 Agilent and deep Illumina 

HiSeq technology (median reads depth = 50×). High quality variants were filtered 

against public (dbSNP146 and EXAC V.0.3) and in-house database, to retain private, 

rare (MAF less than 1%) and clinically pathogenic nucleotide changes. Variants 

prioritisation in the context of their functional impact was performed using in silico 

programs for missense mutations (Sift and Poliphen2) and also taking into account 

changes potentially affecting splice sites. All variants identified by NGS were 

validated by Sanger Sequencing as well the segregation in the family.  

2.3 | RNA isolation and RNA northern blotting 

RNA extraction and northern blotting were performed essentially as described 

previously (Pearce, Rorbach, et al., 2017). Briefly, RNA was extracted from cells at 

60 - 80 % confluency using TRIzol reagent (Ambion), following the manufacturer's 

instructions. Gels run on the Bio-Rad Mini-Sub Cell GT were used for the separation 

of RNA samples (5 μg per sample) for northern blotting. A half volume of Gel 

Loading Buffer II (Ambion) was added to samples before heating at 55 °C for 10 

minutes, chilled on ice for 2 minutes, and then loaded onto a 1.2 % Agarose gel (1 x 

MOPS, 0.7 M formaldehyde). Electrophoresis was carried out at 4 °C in 1 x MOPS, 

0.3 M formaldehyde and 10 μg/mL ethidium bromide. Gels were semi-dry blotted 

onto a positively charged nylon membrane (Hybond-N+, GE Healthcare) for >12 

hours, after which the membrane was cross-linked and hybridized with [32P] labelled 

antisense RNA probes as described previously (Rorbach et al., 2014). 

2.4 | Recombinant protein purification and mutagenesis  

Wild type and mutant ELAC2 proteins (GenBank Accession number: NM_018127.6) were expressed 

from Gly50 to Gln826 using the baculovirus system and insect SF9 cells, and affinity purified as 
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previously described (Yan, Zareen, & Levinger, 2006). Missense mutants were constructed by overlap 

extension PCR. Subcloning sites used for substitutions in the amino domain and linker were introduced 

from the BamHI site at the amino end to the internal natural EcoRI site (nt 1450 in NM_018127) and in 

the carboxy domain from the EcoRI site to the introduced XhoI site following the termination codon. 

Sequences of the mutant constructs were confirmed by Sanger sequencing (Macrogen). 

2.5 | RNase Z processing experiments 

The mitochondrial pre-tRNA substrates for RNase Z reactions were prepared by runoff T7 

transcription using cis-acting hammerheads to cleave at +1. The mt-tRNALeu(UUR) substrate has a 29 nt 

3’-end trailer with natural sequence ending with a SmaI runoff (-CCC) and mt-tRNAIle has a 19 nt 3’-

trailer, also ending with a SmaI runoff. Substrate 5’ ends were radiolabelled using [γ-32P]-ATP and 

polynucleotide kinase. For processing experiments, the concentration of unlabelled substrate was 

varied, over the range from 4 – 100 nM, at a constant much lower concentration of labelled substrate 

used as a tracer. The enzyme was used at the lowest concentration that produces a quantifiable product 

band at the highest concentration of unlabelled substrate used in the experiment. Kinetic experiments 

were performed with wild type enzyme at 10 pM using mt-tRNALeu(UUR) substrate, and at 50 pM using 

mt-tRNAIle, as in previous experiments (Levinger & Serjanov, 2012). Mutant enzymes were used at a 

higher concentration than wild type depending on the impairment factor (Supp. Figure S1). Variant 

processing experiments were performed in parallel with wild-type on the same day. Reactions were 

performed using Processing Buffer (PB) consisting of 25 mM Tris-Cl pH 7.2, 1.5 mM CaCl2, 1 mM 

freshly prepared dithiothreitol and 0.1 mg/ml BSA. The reason for the use of CaCl2, as opposed to e.g. 

MgCl2, is related to the mitochondrial concentration of Ca2+, which is higher than that of Mg2+ (Thiers 

& Vallee, 1957), with our previous studies indicating higher ELAC2 processing activity on mt-tRNA 

precursors on the presence of Ca2+ (Yan et al., 2006). Reactions were sampled after 5, 10 and 15 min 

incubation at 37 oC, electrophoresed on denaturing 6% polyacrylamide gels and images were obtained 

from dried gels using a storage phosphor screen and Typhoon scanner and analysed with ImageQuant 

TL (GE Life Sciences). In this design with constant trace labelled substrate and varying concentration 

of unlabelled substrate the measurement of proportion of product per minute of reaction is equivalent 

to V/[S]. V is obtained by multiplying by [unlabelled S] for each reaction, as illustrated in the 

processing data figures. 

2.6 | In silico modelling  

The recently published structure of Saccharomyces cerevisiae RNase Z (PDB 5MTZ (Ma et al., 2017)) 

was used to model the position and function of residues at which substitutions were observed in this 

study. Molecular structures were displayed using PyMOL. The overall structure is shown using cartoon 

and individual residues with sticks, polar contacts with dashed lines and hydrophobic residues with 

dots. The active site and regions proximal to it, which directly contact the substrate, are found in the 

carboxy domain of ELAC2 (a long form RNase Z, RNase ZL), and were superimposed onto the 
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corresponding regions in the only available co-crystal structure of RNase Z with pre-tRNA substrate, 

from Bacillus subtilis (PDB 4GCW) (Pellegrini, Li de la Sierra-Gallay, Piton, Gilet, & Condon, 2012).  

3 | RESULTS  

3.1 | Summary of clinical features of the investigated patient cohort. 

We investigated 13 families with a cohort of 13 infants, most presenting with early-

onset, syndromic cardiomyopathy, with hypertrophic cardiomyopathy (HCM) being 

present in 10 subjects, dilated cardiomyopathy (DCM) in 2 subjects and one subject 

being reported without any cardiac problems. All subjects with the exception of P10 

also presented with lactic acidosis. These clinical features raised suspicion of 

mitochondrial disease. Indeed, a biochemical defect of the mitochondrial respiratory 

chain (MRC) complexes was detected in all investigated subjects (n=10), with 

isolated Complex I deficiency prevailing in most of the patients (7/10) and the 

remaining subjects presenting with combined MRC deficiencies. The onset of 

symptoms was either from birth (P1, P2 and P11), neonatal (P5), infantile (P4, P6-

P10, P12 and P13) or early childhood (P3). Most of the patients also displayed 

developmental delay. Evidence of brain involvement was found in P2 and P9. P7 and 

P10 were successfully treated by heart transplantation at age 3.8 years and 10 months, 

respectively (Parikh et al., 2016; Santorelli et al., 2002), whereas P12 underwent two 

failed cardiac transplants. The summary of genetic, biochemical, and clinical findings 

of all individuals is provided in Table 1. Pedigrees of investigated families and 

detailed case reports are provided in the Supp. Material. 

3.2 | Identification of ELAC2 variants 

Using whole exome sequencing (WES) or targeted, panel-based next-generation 

sequencing, we screened a group of patients presenting with MRC deficiencies and 

cardiomyopathy (Table 1). Three of the analyzed patients (P5, P11 and P13) harbored 

the previously described homozygous c.460T>C (p.Phe154Leu) ELAC2 variant 

(Haack et al., 2013; Shinwari et al., 2017). All remaining patients of the analyzed 

cohort harbored novel missense (n=10), frameshift (n=2) or splice site (n=4) 

mutations (Figure 1 and Table 1). P2 harbored a novel consensus splice variant 

(c.1423+1G>A) in the same splice site as previously reported patients of Pakistani 

origin (c.1423+2T>A) (Akawi et al., 2016). All these variants were extremely rare or 
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not reported in public databases and predicted damaging using Polyphen-2 (Adzhubei 

et al., 2010).  

Of note, P1 was previously included in WES analysis based on multiple MRC 

complex deficiency together with a cohort of 53 patients (patient 27) (Taylor et al., 

2014). This previous study identified heterozygous c.1478C>T (p.Pro493Leu) and 

c.1621G>A (p.Ala541Thr) ELAC2 variants and predicted them to be pathogenic. Re-

evaluation of the c.1621G>A (p.Ala541Thr) variant revealed a minor allele frequency 

of 3.4% in the gnomAD database, with 218 homozygote individuals, which precludes 

pathogenicity and prompted analysis of cDNA obtained from P1 fibroblasts; this 

revealed that the c.1478C>T (p.Pro493Leu) and c.1621G>A (p.Ala541Thr) variants 

are situated in cis. Further, analysis of the cDNA sequence revealed a heterozygous 

change c.202C>T (p.Arg68Trp), which was absent in the gnomAD database and 

affects a moderately conserved amino acid. The c.202C>T substitution, located in a 

region which was not covered by the previous WES, was confirmed also in genomic 

DNA of P1.  

ELAC2 transcript analysis performed in the other two patients with splice site variants 

confirmed their deleterious effects. In P6 (compound heterozygous c.1690C>A; 

c.798-1G>T), we found mono-allelic expression of c.1690A, and no aberrant species, 

indicating that the splice variant causes mRNA decay. In P8 (compound heterozygous 

c.245+2T>A; c.1264C>G) we amplified two species of ELAC2 transcripts: the full-

length and one missing exon 1. 

3.3 | In vitro RNase Z activity of mutant ELAC2 enzymes 

Despite the increased utility of genetic testing, providing proof of pathogenicity of 

novel variants remains challenging and follow up functional studies in vitro should 

therefore be included as an integral part of the evaluation. In order to provide 

evidence for the pathogenicity of identified ELAC2 variants, we set out to study the 

RNase Z activity of the enzyme in the presence of the missense substitutions or the 

truncating variants resulting from frameshift mutations. Substitutions were introduced 

into the human ELAC2 cDNA (Genbank Acc# NM_018127.6) and the mutant 

proteins were expressed in baculovirus using insect SF9 cells (Saoura, Pinnock, 
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Pujantell-Graell, & Levinger, 2017). Affinity-purified recombinant mutant proteins 

were tested using precursor mt-tRNALeuUUR or mt-tRNAIle as substrates.  

In order to assess the utility of the in vitro system to evaluate the pathogenicity of the 

novel ELAC2 variants, we first tested the three previously reported missense 

mutations (p.Phe154Leu, p.Leu423Phe, p.Thr520Ile), that have been extensively 

characterized in terms of pathogenicity in our previous paper (Haack et al., 2013). 

Recombinant mutant proteins expressed well (Supp. Figure S1a), suggesting that the 

substitutions do not severely alter stability of ELAC2. Next, we obtained Michaelis-

Menten plots and kinetic parameters in comparative kinetic experiments testing 

endonucleolytic cleavage of mitochondrial pre-tRNA using wild-type and mutant 

ELAC2 preparations (Table 2, Figure 2a and Supp. Figure S1b-c). Two of three 

mutants tested showed significant impairment of the RNAse Z activity, exhibiting 

reduced kcat/KM values as compared to the wild-type enzyme (Figure 2a). The 

impairment observed for the mutant proteins was largely due to reduced kcat. In these 

two instances the impairment is moderate, with kcat/KM being in the range of 20–80% 

of the WT enzyme, consistent with the essential role of ELAC2 in mt-tRNA 

processing. This result further confirms the pathogenicity of the p.Phe154Leu and 

p.Thr520Ile variants. The lack of statistically significant impairment of pre-tRNA 

processing by p.Leu423Phe is inconsistent with the previously reported defect of 

mtRNA processing in primary fibroblasts derived from the patient with the 

p.Leu423Phe coding variants (Haack et al., 2013). Of note, the effects of 

p.Leu423Phe in fibroblasts were less pronounced as compared to those observed for 

the patient cells carrying the homozygous p.Phe154Leu mutation or for cells 

harboring a missense mutation p.Thr520Ile (compound heterozygous with a stop 

mutation p.Arg211∗). The latter may suggest a relatively mild impairment of the 

ELAC2 activity by p.Leu423Phe.  

Next, we expressed and tested 10 novel missense variants detected in our patients 

using pre-mt-tRNALeu(UUR) as a substrate (Table 3, Figure 2b). A severe reduction of 

kcat/KM values (below 20% of the wild type, WT, enzyme) was observed for 

p.Pro493Leu, p.Tyr729Cys, p.His749Tyr and p.Arg781His. Moderate impairment of 

the kcat/KM values (20-80% of the WT enzyme) was observed for p.Arg68Trp, 

p.Gln388Arg, p.Leu422Val and p.Lys660Ile. The kcat/KM values for p.Arg564Ser and 
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p.Ala680Val were not significantly affected for the pre-mt-tRNALeu(UUR) substrate. 

Reduced kcat is principally responsible for impairment of mutant enzymes, however, a 

substantial increase in KM relative to WT was observed for p.Arg781His; additionally 

the p.Pro493Leu and p.Tyr729Cys mutants exhibited lesser increases in KM (Table 3). 

Previous data from RNASeq and northern blots indicated junction-dependent 

impairment of endonucleolytic cleavage of pre-tRNA by mutant ELAC2 enzymes 

(Haack et al., 2013). With this in mind, we tested the p.Arg564Ser mutant (which did 

not show detectable impairment with the pre-mt-tRNALeu(UUR)) using a different 

substrate, pre-mt-tRNAIle. Moderate, however not statistically significant, impairment 

of the kcat/KM values ratios (in the range of 20-80% of the WT enzyme) was observed 

for p.Arg564Ser with the pre-mt-tRNAIle substrate (Figure 2c, Table 4).  

Two novel frameshift variants were detected in our patient cohort: p.Ile153Tyrfs*6 

and p.Cys670Serfs*14, both resulting in premature stop codons (Table 1). The 

p.Ile153Tyrfs*6 mutation results in early truncation of the ELAC2 protein, 

eliminating all functional motifs, and was therefore considered a priori as loss of 

function; expression and assay of this mutant was not attempted. On the other hand, 

p.Cys670Serfs*14 occurs closer to the carboxy terminus. We therefore tested 

p.Cys670Ser*14 for enzymatic activity. This mutant expressed poorly, however, and 

displayed no detectable enzyme activity, confirming the functional importance of 

domains beyond the truncation, including motif V and other functional elements 

(Supp. Figure S3). Taken together, the analysis of recombinant mutant proteins 

indicates that, in most cases, the detected ELAC2 variants impair the RNase Z 

activity, consistent with pathogenicity. However, due to certain limitations of the in 

vitro assay used, for example precursor substrate specificity, the use of substrates 

without post-transcriptional nucleotide modifications, or not taking into account a 

potential effect of a particular variant on protein stability in living cells, orthogonal 

functional studies are necessary to support the pathogenic nature of the detected 

variants. 

3.4 | Analysis of mtRNA processing in primary fibroblasts from affected individuals 

In the polycistronic transcripts produced through transcription of mtDNA, the two mt-

rRNAs and most mt-mRNAs are punctuated by one or more mt-tRNAs. As shown 

previously, impairment in the ELAC2 endonucleolytic activity results in the presence 
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of 3’ unprocessed mt-tRNAs, containing mt-rRNA or mt-mRNA extensions (Haack et 

al., 2013; R. Kopajtich, Mayr, & Prokisch, 2017). To analyze the levels of 

unprocessed mt-tRNAs resulting from impaired RNase Z activity of ELAC2, we used 

northern blotting with RNA samples isolated from fibroblasts of all patients that 

harbored novel ELAC2 mutations. P5, P11 and P13 were excluded from this analysis 

as these three individuals harbored the previously characterized c.460T>C 

(p.Phe154Leu) variant in homozygosity (Haack et al., 2013). In RNA samples from 

P1-P4, P6-P10 and P12, we found substantially increased amounts of 3′ end 

unprocessed mt-tRNA precursors at the cleavage sites of mt-tRNAVal-16S rRNA, mt-

tRNAMet-ND2 (Figure 3) and mt-tRNALeu(UUR)-ND1 (Supp. Figure S2) as compared 

to the control cell lines. This analysis further showed that RNA samples from the 

patients that were compound heterozygous for c.1690C>A (p.Arg564Ser) or 

c.2039C>T (p.Ala680Val) (P6 or P7, respectively) – the two mutations that exhibited 

little impairment with the pre-mt-tRNALeu(UUR) substrate in the in vitro experiments 

(Figure 2b) - accumulated unprocessed mt-tRNALeu(UUR)-ND1 junctions. This latter 

result confirms the causal role of the p.Arg564Ser and p.Ala680Val substitutions.  

Assessing the clinical significance of sequence variants that may alter splicing, 

especially in the context of tissue-specific disease manifestation, can be challenging 

(Spurdle et al., 2008). In four patients from our cohort, P2, P3, P6 and P8, compound 

heterozygous splice-site mutations were present. The analysis of the processing of 

mtRNA of these four patients revealed accumulation of unprocessed mitochondrial 

tRNA-rRNA or tRNA-mRNA junctions, providing evidence for the disruptive nature 

of the detected splice variants. Taken together, the observed defect in the processing 

of mt-tRNA junctions in the patient-derived cell lines provides additional evidence for 

the pathogenicity of all detected, novel missense, frameshift and splice site ELAC2 

variants.  

3.5| In silico characterization of mutations in ELAC2 

Having established the damaging nature of the detected ELAC2 missense mutations 

both in vitro and in living cells, we set out to develop a rationale for the observed 

biochemical impairment, as summarized in Table S1. To this end, we modelled all 13 

substitutions (3 published previously and 10 novel) into the structure of S. cerevisiae 

RNase Z (Trz1) (PDB 5MTZ (Ma et al., 2017)). Analysis of the ELAC2 structure 
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indicates that the amino and carboxy domains arose from a duplication, with the 

active site being retained in the carboxy domain and the flexible arm being preserved 

in the amino domain (Schilling et al., 2005). The amino and carboxy domains are 

tethered by a flexible linker (Supp. Figure S3). Substitutions at Arg68, Phe154, 

Gln388 are found in the amino domain, Leu422 and Leu423 are in the linker domain 

(flexible tether), whereas Pro493, Thr520, Arg564, Lys660, Arg680, Tyr729, His749, 

Arg781 are located in the carboxy domain of ELAC2 (Figure 4 and Supp. Figure 

S3).  

Using the Trz1 structure, we have modelled the residues Arg68, Phe154 and Gln388 

in the amino domain in which substitutions were found associated with HCM. 

Modelling using the Trz1 structure is less obviously effective in cases where the 

residues in the S. cerevisiae Trz1 sequence are not conserved (Supp. Figure S3); in 

these cases, however, the overall sequence similarity in the region suggests structural 

relationships of inferred secondary structure elements. All three residues are located 

close to the domain interface. The modelling of Arg68 and Gln388 suggests the 

substitutions at these sites could disrupt the structure and folding of ELAC2 through 

their indirect effects on a number of polar contacts across the amino- and carboxy 

domain interface (Supp. Figure S4). Phe154 is conserved and aligns with Trz1 

Phe103 (Supp. Figure S3). Across the N- and C-domain interface Phe154 closely 

approaches the motif II region, suggesting that reducing the size of the hydrophobic 

side chain in the case of p.Phe154Leu could affect packing of a region which is 

critical for metal ion binding and catalysis (Supp. Figure S5). 

Contiguous residues Leu422 and Leu423 are located in the linker domain of the 

human ELAC2 at the apex of the loop between two twisted beta sheets in the amino 

domain. Substitutions at these positions may affect the structure due to subtle changes 

in regional hydrophobicity (Supp. Figure S6).  

We next set out to model residues in the carboxy domain (Pro493, Thr520, Arg564, 

Lys660, Ala680, Tyr729, His749 and Arg781). All of these but two could be 

effectively modelled using Trz1. However, it was advantageous to model Pro493 and 

Tyr729 using the Bacillus subtilis (Bsu) enzyme-substrate complex structure (PDB 

4GCW, (Pellegrini et al., 2012)). The conserved residue Pro493 is close to Lys495 

and similarly, Tyr729 is next to Arg728; equivalent residues in B. subtilis RNase Z 
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Lys15 and Arg273, respectively, make polar contacts with the substrate on both sides 

of the acceptor stem (Figure 5). The interpretation of the model suggests that 

Pro493Leu impairs RNase Z activity by changing the fold of the PxKxRN loop, 

interfering with the polar contact between Lys495 and the backbone of substrate 

nucleotides +1 and +2 on the 5’ side of the tRNA acceptor stem. Correspondingly, 

substitution of Tyr729 with Cys could alter the fold of the motif V loop, interfering 

with contacts between the positively charged side chain of Arg728 and the substrate 

in the backbone of nucleotides 71, 72 and 73 on the 3’ side of the tRNA acceptor stem 

of the pre-tRNA substrate. In the wild type enzyme, the two basic residues, Lys495 

and Arg728, clamp the substrate close to the scissile bond from both sides (Figure 5). 

This interpretation of in silico modelling is partially consistent with the kinetic 

experiments, in which the p.Pro493Leu and p.Tyr729Cys mutants display the greatest 

impairment factors of any patient-related substitutions analysed so far.  

Thr520 (Thr513 in the Trz1 structure) is a highly conserved motif I residue. A charge 

relay system links the motif I aspartate (Asp515) with the first histidine of motif II 

(His546). The model implies that subtle regional changes impair catalysis, transmitted 

to motif I (Supp. Figure S7).  

Arg564 is not conserved, and is located in the long, overall poorly conserved region 

between motifs II and III, with no significant polar or hydrophobic contacts in this 

region of the Trz1 structure (Supp. Figure S3). The mutated residue is reasonably 

close to motif II, implying that subtle regional changes may impair catalysis when 

transmitted to this motif. 

The side chain of conserved Lys660 (Lys693 in the Trz1 structure) found in 𝛃𝛃24 is 

predicted to make polar contacts with the backbone of the preceding residues within 

12 residues of the motif IV aspartate (Supp. Figure S4 and S8). Loss of these side 

chain-specific polar contacts with the p.Lys660Ala substitution could therefore affect 

the position of Asp666, the motif IV aspartate, which is critical for metal ion binding 

and catalysis (Supp. Figure S8B). Similarly, Ala680 (Ser715 in the Trz1 structure) 

located below the base of 𝛃𝛃25 could, when replaced by the bulkier valine in the case 

of the Ala680Val mutation, indirectly affects the location of the Motif IV aspartate 

(Supp. Figure S8B). Finally, His749 (Ser787 in the Trz1 structure), is predicted to be 

contiguous with the aspartate in the AxD loop and substitution at this position could 
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perturb that residue. The AxD loop is conserved and the aspartate in this loop makes 

polar contacts with the backbone of a conserved leucine at the start and a conserved 

asparagine at the end of the PxKxRN loop (Supp. Figure S8B; cf (Wang et al., 

2012)).  

The Arg781 residue is present on a long C-terminal α-helix. Although this residue is 

not conserved, the region where it is found is generally highly polar. In metazoan 

ELAC2 enzymes this region consists of frequently interspersed acidic and basic 

residues while in Saccharomyces cerevisiae it is principally acidic (Supp. Figure S3). 

In S. cerevisiae RNase Z, the long α-helix is curved and approaches the predicted 

location where the substrate acceptor stem is clamped by polar contacts between 

Lys495 of the PxKxRN loop and nt +1-2 of the pre-tRNA substrate and between 

Arg728 of the motif V loop and nt 71-72-73 of the substrate (Figure 5 and Supp. 

Figure S9). The region where Arg781 is found could thus modulate both substrate 

binding and catalysis, consistent with impairment of the p.Arg781His mutant which 

arises from the combination of a reduction in kcat and increased KM, (Table 3 and 

Table 4). 

4 | DISCUSSION  

The mitochondrial genome encodes key subunits of the OXPHOS system and RNA 

components needed for mitochondrial translation, with nuclear genes encoding the 

proteins responsible for mtDNA transcription, post-transcriptional RNA processing 

and translation. Recent years have seen a rapid development in our understanding of 

these machineries both in human health and in disease state (Pearce, Rebelo-Guiomar, 

et al., 2017; Rebelo-Guiomar, Powell, Van Haute, & Minczuk, 2019). Dysfunction of 

mitochondrial gene expression, caused by mutations in either the mitochondrial or 

nuclear genomes, is associated with a diverse group of human disorders characterized 

by impaired mitochondrial respiration. Within this group, an increasing number of 

mutations have been identified in nuclear genes involved in endonucleolytic 

processing of precursor mtRNA (Deutschmann et al., 2014; Haack et al., 2013; 

Metodiev et al., 2016) and in mtRNA epitranscriptome shaping (Bykhovskaya, Casas, 

Mengesha, Inbal, & Fischel-Ghodsian, 2004; Chakraborty et al., 2014; Garone et al., 

2017; Ghezzi et al., 2012; Robert Kopajtich et al., 2014; Nicholls, Rorbach, & 
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Minczuk, 2013; Powell, Kopajtich, et al., 2015; Van Haute et al., 2016; Wedatilake et 

al., 2016; Yarham et al., 2014; Zeharia et al., 2009).  

4.1 | Genotype-phenotype correlation  

Clinical syndromes associated with defects in mtRNA metabolism are characterized 

by the variable combination of encephalopathy, myopathy, sideroblastic anemia, 

cardiomyopathy, hearing loss, optic atrophy, and renal or liver dysfunction 

(Boczonadi, Ricci, & Horvath, 2018; D'Souza & Minczuk, 2018). Hypertrophic 

cardiomyopathy and lactic acidosis are frequent presentations in some mitochondrial 

diseases related to dysfunctional mt-tRNA maturation, such as those caused by 

biallelic variants in MTO1 (MIM# 614667), GTPBP3 (MIM# 608536), AARS2 

(MIM# 612035) and RARS2 (MIM# 611524.)(Ghezzi et al., 2012; Gotz et al., 2011; 

Robert Kopajtich et al., 2014; Lax et al., 2015). With multiple novel variants in 

ELAC2, our study further underscores HCM as a manifestation of dysfunctional 

mitochondrial gene expression. Moreover, it indicates a strong relationship between a 

confirmed molecular diagnosis of ELAC2-related mitochondrial disease and the key 

clinical phenotypes (hypertrophic cardiomyopathy, multiple respiratory chain defects 

and lactic acidosis) for the majority of variants detected. However, one case (P2), who 

harbors a c.1423+1G>A ELAC2 variant affecting a consensus splice site (in 

compound heterozygosity with a truncating c.2009del; p.Cys670Serfs*14 variant), 

was the only patient in our cohort who did not present with cardiomyopathy. 

Interestingly, five patients from a consanguineous Arabic family harboring another 

homozygous ELAC2 mutation involving the same consensus splice site (homozygous 

c.1423+2T>A) predominantly presented with intellectual disability without prominent 

cardiac involvement (Akawi et al., 2016). Both of these variants affect the same 

consensus donor sequence (exon 15), and it would be interesting to further explore the 

features of pre-mRNA splice site selection of this particular donor site in cardiac 

tissue. Interestingly, mtDNA depletion was detected in the hypertrophic heart and not 

the skeletal muscle of P7 (Santorelli et al., 2002). To the best of our knowledge, 

quantitative abnormalities of the mtDNA has so far never been associated with 

defects in mtRNA processing, and additional observations are necessary to confirm 

this association. 
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4.2 |Enzymatic mechanism of ELAC2 

The results of our in vitro analysis of the ELAC2 mutants could be used to design 

further experiments aimed at better understanding the enzymology of this 

mitochondrial RNase Z. In particular, the p.Pro493Leu and p.Tyr729Cys substitutions 

most severely impaired enzyme function, resulting in ~1% of WT enzyme activity. 

No mutations were found which interfere directly with metal ion binding or catalysis, 

although numerous such substitutions, constructed by site directed mutagenesis, 

greatly impair catalysis, between 500 – 10,000-fold relative to WT (Karkashon, 

Hopkinson, & Levinger, 2007; Zareen, Yan, Hopkinson, & Levinger, 2005). 

Relatively severe impairment by substitutions of the Pro493 and Tyr729 residues 

probably arises from their proximity in loops to the charged residues that clamp the 

substrate acceptor stem close to the scissile bond. Replacement of proline with 

leucine, although similar in hydrophobicity, could alter the path of the PxKxRN loop, 

affecting the position and orientation of Lys495. With substitution of Tyr729 for Cys 

in the motif V loop, the reduced side chain size could affect the path of the loop, 

including the position and orientation of neighboring Arg728, the arginine residue 

which makes critical polar contacts with the acceptor stem of the substrate. In this 

way the most severe impairment arises from proximity to conserved residues with 

established functions. In this context, our study of naturally occurring pathogenic 

mutations provides further insights and indicates paths for further investigations into 

the enzymatic mechanism of ELAC2. 

4.3 | Missense variant associated with prostate cancer impairs ELAC2 enzymatic 

activity on mitochondrial substrates  

The p.Ala541Thr and p.Arg781His ELAC2 substitutions were first characterized as 

variants in a pedigree in Utah displaying early-onset prostate and other cancers 

(Tavtigian et al., 2001). The appearance of the frequent ELAC2 polymorphism 

p.Ala541Thr in P1 of this study appears to be coincidental and without biological 

significance, as p.Pro493Leu and p.Arg68Trp have been documented here as 

responsible for pathogenicity. The independent reappearance of the missense 

substitution p.Arg781His in P3, P4 and P10, which is exceedingly rare in the general 

population (MAF= 0.0005165 in gnomAD), is here shown to be significant in the 

context of mitochondrial tRNA metabolism. In previously published data, no 
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differences in catalysis were observed between wild type and prostate cancer-

associated mutants of ELAC2 (the missense substitution and two much more frequent 

polymorphisms) using nuclear-encoded pre-tRNA substrates (Minagawa, Takaku, 

Takagi, & Nashimoto, 2005; Takaku, Minagawa, Takagi, & Nashimoto, 2003) (Yan 

and Levinger, unpublished observations). The p.Arg781His substitution, which here 

re-emerged in three described cases of HCM (Patients 3, 4 and 10), clearly impairs 

processing of mitochondrial pre-tRNA substrates both in vitro and in living cells, 

suggesting that the associated phenotypes (possibly including prostate cancer 

susceptibility) are mitochondrially-based.  

Catalytic efficiencies with WT enzyme are generally lower using mitochondrial 

substrates than with nuclear-encoded substrates and the lower catalytic efficiency is 

more pronounced with mt-tRNAIle than with mt-tRNALeu(UUR). Two levels of catalytic 

activity were thus observed, between nuclear vs. mitochondrial and further among 

different mitochondrial tRNAs (Levinger & Serjanov, 2012; Yan et al., 2006). To 

explain the first level distinction, mitochondrial tRNAs generally have a weaker and 

non-canonical secondary and tertiary structure (reviewed in (Florentz, Sohm, Tryoen-

Toth, Putz, & Sissler, 2003)). For example, mt-tRNALeu(UUR) displays a heterogeneous 

secondary structure and among mitochondrial tRNAs, it is closer to canonical than 

mt-tRNAIle, which displays AU rich stems including an A/C mismatch in the T-stem 

(Levinger, Morl, & Florentz, 2004). Wild type substrate structures that reduce wild 

type ELAC2 catalytic efficiencies may thus lead to more pronounced impairment with 

missense substitutions which otherwise were not observed with more canonical 

nuclear encoded substrates. 

4.4 | Conclusions 

Pathogenic variants in ELAC2 impair the RNase Z activity of this critical 

mitochondrial enzyme. Decreased ELAC2 activity leads to a disturbance of proper 

mitochondrial gene expression by increasing the amounts of incorrectly processed 

mtRNA. The consequence of perturbed ELAC2 function is manifested by multiple 

mitochondrial respiratory chain deficiencies, hypertrophic cardiomyopathy and lactic 

acidosis. Therefore, the ELAC2 gene should be included in gene panels to screen 

infantile-onset cases of hypertrophic cardiomyopathy patients. The association 

between the c.2342G>A (p.Arg781His) ELAC2 variant and prostate cancer as a 
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consequence of impaired mitochondrial RNase Z activity could indicate a functional 

link between tumorigenesis and mitochondrial RNA metabolism. 
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Figures 

Figure 1 | ELAC2 mutations and gene/protein structure  

(A) Gene structure of ELAC2 with known protein domains (as defined in (Saoura et 
al., 2017)) of the gene product and localization of amino acid residues and splice sites 
(variants indicated in blue) affected by mutations. Intronic regions are not drawn to 
scale. (B) Conservation of human ELAC2 amino acid residues affected by mutations 
across Pongo tapanuliensis (Pt), Bos Taurus (Bt), Gallus gallus (Gg) and Danio rerio 
(Dr). For complete sequence alignment including Saccharomyces cerevisiae Trz1 used 
for structure modelling, see Figure S3. 
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Figure 2 | Kinetic parameters of the pathogenic ELAC2 variants 

(A) Kinetic parameters of the previously reported ELAC2 variants (Haack et al., 
2013) with mt-tRNALeu(UUR) substrate. The graph shows kcat/KM value relative to WT 
(e.g. the quotient [kcat mutant]/[kcat WT]). The bars indicate standard error. *, ** above 
the bars indicate p-values with a significance of 0.05 and 0.01, respectively, calculated 
using unpaired t-test. (B) Kinetic parameters of the novel ELAC2 variants with mt-
tRNALeu(UUR) substrate analysed as per (A). (C) Kinetic parameters of selected novel 
ELAC2 variants with mt-tRNAIle substrate analysed as per (A).  

 

Figure 3 | Analysis of unprocessed mitochondrial tRNA-mRNA intermediates 

(A) Linear genetic map of mtDNA (numbering according to RefSeq accession 
number J01415) indicating mt-rRNA (green), mt-mRNA (olive) and mt-tRNA (black). 
Non-coding sequences in white. The mt-tRNAVal-16S rRNA and mt-tRNAMet-ND2 
mRNA junctions are indicated by red brackets. LSP – Light strand promoter. HSP – 
Heavy strand promoter. (B) Northern blot processing analysis of the mt-tRNAVal-16S 
rRNA junction in total RNA samples of control fibroblasts (C1-C3), fibroblasts from 
the previously published cases (57415, 61982, 65937)(Haack et al., 2013) and 
fibroblasts from the patients harboring novel ELAC2 mutations (P1-4, P6-9 and P12). 
(C) Northern blot analysis of the processing of the mt-tRNAMet-ND2 mRNA junction. 
Samples as per (B). Asterisks indicate partially degraded RNA samples that were 
reanalysed in a different blot and presented in the same panel.  
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Figure 4 | ELAC2 substitutions mapped on the structure of Saccharomyces 
cerevisiae RNase Z  

The structure of S. cerevisiae RNase Z (Trz1, PDB#5MTZ) (Ma et al., 2017) is shown 
in cartoon using PyMol. The amino domain, inter-domain linker and carboxy domain 
are colored green, blue and pale green, respectively. Three views are shown to 
effectively visualize all the substitutions. All 13 ELAC2 substitutions (3 published 
previously (Haack et al., 2013), and 10 novel) are shown in all three views. Residues 
are labelled with S. cerevisiae RNase Z numbers and the numbers in brackets are for 
the H. sapiens ELAC2 residues. Some residues are not conserved between S. 
cerevisiae and H. sapiens RNase Z. Residues Arg68, Phe154, Gln388 localised in the 
amino domain are marked in red; Leu422 and Leu423 are in linker (also marked in 
red); Pro493, Thr520, Arg564, Lys660, Arg680, Tyr729, His749, Arg781 are in the 
carboxy domain and indicated in purple. (A) View with amino domain up, carboxy 
domain down and linker behind with the H. sapiens residues Phe154, Leu422, 
Leu423, Lys660, Ala680, Tyr729 and Arg781 labelled. (B) The ELAC2 model is 
rotated with linker on left with the residues Arg68, Gln388 and Arg564 labelled; (C) 
ELAC2 rotated with linker on right and the residues Pro493, Thr520 and His749 
labelled. Note: the residues at Arg68, Phe154 and Gln388 in H. sapiens ELAC2 map 
to the domain interface. 
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Figure 5 | In silico analysis of disease-related ELAC2 substitutions p.Pro493Leu 
and p.Tyr729Cys 

(A) Structure overview of S. cerevisiae Trz1. Amino and carboxy domains and linker 
are colored as in previous figures. Curved arrow indicates the presumed substrate 
trough. Metal ions which mark the active site are shown as blue spheres. PxKxRN and 
Motif V loops are shown in magenta and orange, respectively. (B) Detailed view of 
PxKxRN loop (magenta) and Motif V loop (orange) in S. cerevisiae Trz1. The 
conserved basic residues Lys in the PxKxRN loop and Arg in the Motif V loop are 
shown as sticks, with H. sapiens equivalent residues given in brackets. Red arc 
illustrates path of substrate acceptor stem and 3’ trailer through the presumed substrate 
trough. (C) Detailed view of PxKxRN loop (magenta) and Motif V loop (orange) in B. 
subtillis with pre-tRNA substrate (Note: The B. subtillis structure displays similar 
folds and relative orientations, validating its use for modelling ELAC2 (RNase ZL) 
structure including the carboxy domain and the active site. The B. subtilis RNase Z 
structure 4GCW (Pellegrini et al., 2012) is the only available structure of an enzyme – 
pre-tRNA substrate complex). The pre-tRNA substrate acceptor stem is clamped by 
polar contacts with K in the PxKxRN loop (Lys495 in H. sapiens, Lys480 in S. 
cerevisiae, Lys15 in B. subtilis) and Arg in the Motif V loop (Arg728 in H. sapiens, 
Arg763 in S. cerevisiae, Arg273 in B. subtilis), illustrated with bold dashed lines. A 
polar substrate acceptor stem clamp consists of Lys15 contacts with 2’ and 3’ O’s of 
ribose +1 and Arg273 contacts with two backbone phosphate O’s on nt 72 and one on 
nt 73. Counterintuitively, the basic R-groups that form the substrate clamp do not 
point toward each other; both are oriented toward the right, but two polar contacts 
extend to the right from Lys15 while three polar contacts by Arg273 extend to the left 
toward substrate. 
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Table 1 | Patient summary 

Case 
No 

cDNA 
(NM_018127.

6) 

Protein 
(NP_060597) 

Identifica
tion Sex Age-at-

onset 

Co
urs
e 

Cardio
myop
athy 

MR
C 

defi
cen
cy 

Additi
onal 

clinical 
featur

es 

Pre
viou
sly 
rep
orte

d 

 
#57415 

c.631C>T; 
c.1559C>T 

p.Arg211∗; 
p.Thr520Ile WES male 3 

months  

Un
kno
wn 

HCM CI 

Psych
omoto
r 
retard
ation, 
mild 
hypoto
nia, 
lactic 
acidos
is, 
sensor
ineural 
hearin
g 
impair
ment, 
hyperi
ntensit
ies in 
basal 
gangli
a at 
age 3 
m  

Haa
ck 
et 
al., 
201
3 

 
#61982 

c.460T>C; 
c.460T>C 

p.Phe154Leu
; 
p.Phe154Leu 

WES femal
e 

2 
months  

dea
th 
at 
11 
mo
nth
s 

HCM CI 

Intraut
erine 
growth 
retard
ation, 
lactic 
acidos
is, 
cardia
c 
failure; 
norma
l 
muscl
e 
biopsy 
finding
s 

Haa
ck 
et 
al., 
201
3 

 
#65937 

c.1267C>T; 
c.1267C>T 

p.Leu423Phe
; 
p.Leu423Phe 

CGS femal
e 

5 
months 

dea
th 
at 4 
yea
rs 
and 
9 
mo
nth
s 

HCM CI 

Psych
omoto
r 
retard
ation, 
muscu
lar 
hypoto
nia, 
cardia
c 
failure 

Haa
ck 
et 
al., 
201
3 
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 P1 c.1478C>T; 
c.202C>T 

p.Pro493Leu; 
p.Arg68Trp WES femal

e Birth 

dea
th 
at 3 
we
eks 

HCM CI+
CIV 

Lactic 
acidos
is, 
muscl
e 
weakn
ess, 
ragge
d-red 
fibres 
and 
COX-
deficie
nt/SD
H- 
hyper-
reactiv
e 
fibres 

Tayl
or 
et 
al., 
201
4 

P2 c.2009del; 
c.1423+1G>A 

p.Cys670Serf
s*14; CSM GP male Birth 

aliv
e at 
8 
yea
rs 

No ND 

Lactic 
acidos
is, 
develo
pment
al 
delay, 
ataxia, 
microc
ephaly
, 
consti
pation, 
cereb
ellar 
vermis 
hypopl
asia 
and 
promi
nent 
posteri
or 
fossa 
on 
brain 
MRI 

this 
rep
ort 

P3 

c.297-
2_297delinsT
G; 
c.2342G>A 

CSM; 
p.Arg781His GP femal

e 
18 
months 

aliv
e at 
5 
yea
rs 

HCM CI 

Elevat
ed 
blood 
lactate 
level 
(norm
al 
serum 
levels)
, 
develo
pment
al 
delay, 
IUGR 

this 
rep
ort 

P4 c.2186A>G; 
c.2342G>A 

p.Tyr729Cys; 
p.Arg781His WES femal

e 
2 
months 

dea
th 
at 
12 
we

HCM CI 
Lactic 
acidos
is, 
cardio
vascul

this 
rep
ort 
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P5 c.460T>C; 
c.460T>C 

p.Phe154Leu
; 
p.Phe154Leu 

WES male neonatal 

dea
th 
at 4 
mo
nth
s 

HCM ND 

Lactic 
acidos
is, 
fatal 
infantil
e 
cardio
myopa
thy 

this 
rep
ort 

P6 c.798-1G>T; 
c.1690C>A  

CSM; 
p.Arg564Ser GP femal

e 
4 
months 

dea
th 
at 5 
mo
nth
s 

DCM CI 

Lactic 
acidos
is, 
develo
pment
al 
delay, 
fatal 
infantil
e 
cardio
myopa
thy, 
EF 
30% 

this 
rep
ort 

P7 c.1979A>T; 
c.2039C>T 

p.Lys660Ile; 
p.Ala680Val WES femal

e 
12 
months 

aliv
e at 
24 
yea
rs 

HCM CI+
CIV 

Elevat
ed 
blood 
lactate 
level, 
Patien
t 
transpl
anted 
at age 
of 3.8 
years 

Pari
kh 
et 
al., 
201
6 

P8 c.245+2T>A; 
c.1264C>G 

CSM; 
p.Leu422Val WES femal

e 
2 
months 

dea
th 
at 3 
mo
nth
s 

DCM CI 

Lactic 
acidos
is, 
fatal 
infantil
e 
cardio
myopa
thy, 
EF 20-
30% 

this 
rep
ort 

P9 c.1163A>G; 
c.1163A>G 

p.Gln388Arg; 
p.Gln388Arg GP male 6 

months 

aliv
e at 
19 
yea
rs 

HCM CI 

Lactic 
acidos
is, 
psych
omoto
r 
retard
ation, 
fatigab
ility, 
periph
eral 

this 
rep
ort 
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pathy 

P10 c.457delA; 
c.2342G>A 

p.Ile153Tyrfs
*6; 
p.Arg781His 

WES male 8 
months 

aliv
e at 
6 
yea
rs 

HCM CI 

Devel
opme
ntal 
delay, 
hypoto
nia, GI 
dysmo
tility, 
s/p 
cardia
c 
transpl
ant at 
age of 
10 
month
s 

San
tore
lli et 
al., 
200
2 

P11 c.460T>C; 
c.460T>C 

p.Phe154Leu
; 
p.Phe154Leu 

WES femal
e Birth 

dea
th 
at 
2.5 
mo
nth
s 

HCM CI 

Lactic 
acidos
is, 
later 
mild 
muscu
lar 
hypoto
nia, 
lipid 
storag
e 
myopa
thy on 
skelet
al 
muscl
e 
biopsy 

this 
rep
ort 

P12 
c.297-2_297-
1delinsT; c. 
2245C>T  

CSM; 
p.His749Tyr WES femal

e 
4 
months 

dea
th 
at 
13 
mo
nth
s 

HCM CI+
CIV 

Lactic 
acidos
is, 
global 
develo
pment
al 
delay, 
hypoto
nia, 
s/p 
cardia
c 
transpl
ant at 
the 
age of 
10 
month
s 

this 
rep
ort 

P13 c.460T>C; 
c.460T>C 

p.Phe154Leu
; 
p.Phe154Leu 

WES femal
e 

5 
months 

dea
th 
at 5 
mo
nth

HCM ND 
Lactic 
acidos
is, 
failure 
to 

this 
rep
ort 
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Cases reported by Haack et 
al., 2013 are indicated in 
light grey.  

         MRC - Mitochondrial respiratory chain, WES - whole 
exome sequencing, GP -gene panel, CGS - candidate gene 
sequencing 

       CSM - consensus splice mutation; HCM - hypertrophic cardiomyopathy, DCM - 
dilated cardiomyopathy, CI - Complex I, CIV -Complex IV, ND - not determined 

      

Table 2 | Kinetic Parameters of three previously reported pathogenic missense 
mutations in the ELAC2 endonuclease with the pre-mt-tRNALeu(UUR) substrate 

Mutant # 
Trials Mut. 

/ 

WT 

kcat 

(min-1) 

KM 

(nM) 

kcat/KM 

(x 108 M-

1min-1) 

Relative  

kcat * 

Relative 
KM * 

Relative 
kcat/KM * 

WT 11  23.7±2.8 78±8.0 3.2±0.36    

Phe154Leu 4 1 12±2.80 140±36 0.84±0.12 0.51±0.06 1.9±0.53 0.32±0.06 

Leu423Phe 3 2 28±12 79±24 3.3±0.45 0.94±0.11 1.2±0.19 0.79±0.06 

Thr520Ile 4 2 7.8±0.51 8.1±0.19 0.97±0.04 0.39±0.06 1.1±0.16 0.39±0.05 

Column designation, from left: (column 1) Variant: wild-type (WT) or mutant ELAC2. (column 2) 
number of times variant processing experiments were performed. (column 3) The ratio of mutant to WT 
concentration depending on the impairment factor. (columns 4-6) kcat, KM, kcat/KM: values reported are 
means of replicate experiments. Values following ± are standard errors. (columns 7-9) kcat, KM and 
kcat/KM relative to WT (e.g. the quotient [kcat mutant]/[kcat WT]).*Reported variant relative to WT values 
are the means and standard errors for specific experiments performed on the same day, rather than the 
compiled values at the top of the table, therefore differ from results that would be obtained by 
comparing values in columns to the left with aggregate means for WT (first row). Regular font – no 
impairment of enzymatic activity (> 0.8 of WT) or not statistically significant. Italic – mild impairment 
of enzymatic activity (0.8 - 0.2 of WT). 
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Table 3 | Kinetic Parameters of the novel missense mutations in the ELAC2 
endonuclease with the pre-mt-tRNALeu(UUR) substrate 

Mutant # 
Trial

s 

Mut
. / 

WT 

kcat 

(min-1) 

KM 

(nM) 

kcat/KM 

(x 108 M-1min-

1) 

Relative  

kcat 

Relative 
KM 

Relative  

kcat/KM * 

WT 34  20.2±2.1 43±7.
7 6.2±0.56    

Arg68Trp 4 4.7 1.9±0.36 37±16 0.81±0.22 0.13±0.03
2 

0.79±0.2
5 0.20±0.038 

Gln388Ar
g 4 1.9 1.2±0.46 14±7.

8 1.5±0.66 0.075±0.0
23 

0.43±0.1
8 0.38±0.17 

Leu422Va
l 3 0.94 9.1 ±3.5 30±15 4.0±1.5 0.59±0.08

1 1.6±0.39 0.39±0.060 

Pro493Le
u 4 55 0.09±0.0

2 99±51 0.014±0.00
35 

0.006±0.0
02 2.0±0.8 0.005±0.002 

Arg564Se
r 4 1.1 44.1±19.

3 40±27 11±2.8 2.2±0.68 2.5±1.3 1.1±0.16 

Lys660Ile 5 1.8 3.2±1.4 25±10 1.5±0.23 0.23±0.12 1.2±0.54 0.32±0.10 

Ala680Va
l 4 2.2 4.8±1.6 14±4.

8 4.0±1.2 0.23±0.05 0.59±0.2
2 0.62±0.24 

Tyr729C
ys 3 82 0.1±0.01 23±8.

2 
0.056±0.02

2 
0.006±0.0

01 
0.77±0.2

6 
0.0075±0.00

15 

His749Ty
r 6 5.5 1.1±0.12 23±8.

2 1.1±0.23 0.06±0.01 0.45±0.1
5 0.18±0.044 

Arg781H
is 3 6.9 7.6±0.70 131±2

4 0.63±0.14 0.37±0.17 2.9±1.1 0.12±0.013 

Column designation, from left: (column 1) Variant: wild-type (WT) or mutant ELAC2. (column 2) 
Number of times variant processing experiments were performed. (column 3) The ratio of mutant to 
WT concentration depending on the impairment factor. (columns 4-6) kcat, KM, kcat/KM: values reported 
are means of replicate experiments. Values following ± are standard errors. (columns 7-9) kcat, KM and 
kcat/KM relative to WT (e.g. the quotient [kcat mutant]/[kcat WT]). *Reported variant relative to WT values 
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are the means and standard errors for specific experiments performed on the same day, rather than the 
compiled values at the top of the table, therefore differ from results that would be obtained by 
comparing values in columns to the left with aggregate means for WT (first row). Regular font – no 
impairment of enzymatic activity (> 0.8 of WT) or not statistically significant. Italic – mild impairment 
of enzymatic activity (0.8 - 0.2 of WT). Bold – severe impairment of enzymatic activity (< 0.2 of WT). 

 

Table 4 | Kinetic Parameters of the selected novel missense mutations in the 
ELAC2 endonuclease with the pre-mt-tRNAIle substrate 

Mutant 
# 

Trial
s 

Mut
. 

/WT 
kcat 

(min-1) 

KM 

(nM) 

kcat/KM 

(x 108 M-

1min-1) 

Relative  

kcat 

Relativ
e  

KM 

Relative  

kcat/KM * 

WT 3  0.17±0.05 3.4±1.
3 0.57±0.17    

Arg564Ser 3 1.1 0.38±0.12 6.5±2.
6 0.65±0.10 1.8±0.56 2.8±1.1 0.71±0.11 

Arg781Hi
s 3 6.7 0.016±0.00

3 
7.1±2.

0 
0.027±0.0

1 
0.20±0.0

4 3.8±1.3 0.062±0.0
1 

Column designation, from left: (column 1) Variant: wild-type (WT) or mutant ELAC2. (column 2) 
number of times variant processing experiments were performed. (column 3) The ratio of mutant to WT 
concentration depending on the impairment factor. (columns 4-6) kcat, KM, kcat/KM: values reported are 
means of replicate experiments. Values following ± are standard errors. (columns 7-9) kcat, KM and 
kcat/KM relative to WT (e.g. the quotient [kcat mutant]/[kcat WT]). *Reported variant relative to WT values 
are the means and standard errors for specific experiments performed on the same day, rather than the 
compiled values at the top of the table, therefore differ from results that would be obtained by 
comparing values in columns to the left with aggregate means for WT (first row). Regular font – no 
impairment of enzymatic activity (> 0.8 of WT) or not statistically significant. Bold – severe 
impairment of enzymatic activity (< 0.2 of WT). 
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