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Laser capture microdissection of human
pancreatic islets reveals novel eQTLs associated
with type 2 diabetes
Amna Khamis 1,2,11, Mickaël Canouil 2,11, Afshan Siddiq 1, Hutokshi Crouch 1, Mario Falchi 1,
Manon von Bulow 3, Florian Ehehalt 4,5,6, Lorella Marselli 7, Marius Distler 4,5,6, Daniela Richter 5,6,
Jürgen Weitz 4,5,6, Krister Bokvist 8, Ioannis Xenarios 9, Bernard Thorens 10, Anke M. Schulte 3,
Mark Ibberson 9, Amelie Bonnefond 2, Piero Marchetti 7, Michele Solimena 5,6, Philippe Froguel 1,2,*
ABSTRACT

Objective: Genome wide association studies (GWAS) for type 2 diabetes (T2D) have identified genetic loci that often localise in non-coding
regions of the genome, suggesting gene regulation effects. We combined genetic and transcriptomic analysis from human islets obtained from
brain-dead organ donors or surgical patients to detect expression quantitative trait loci (eQTLs) and shed light into the regulatory mechanisms of
these genes.
Methods: Pancreatic islets were isolated either by laser capture microdissection (LCM) from surgical specimens of 103 metabolically phe-
notyped pancreatectomized patients (PPP) or by collagenase digestion of pancreas from 100 brain-dead organ donors (OD). Genotyping (> 8.7
million single nucleotide polymorphisms) and expression (> 47,000 transcripts and splice variants) analyses were combined to generate cis-
eQTLs.
Results: After applying genome-wide false discovery rate significance thresholds, we identified 1,173 and 1,021 eQTLs in samples of OD and PPP,
respectively. Among the strongest eQTLs shared between OD and PPP were CHURC1 (OD p-value¼1.71� 10-24; PPP p-value¼ 3.64� 10e24) and
PSPH (OD p-value ¼ 3.92 � 10�26; PPP p-value ¼ 3.64 � 10�24). We identified eQTLs in linkage-disequilibrium with GWAS loci T2D and
associated traits, including TTLL6, MLX and KIF9 loci, which do not implicate the nearest gene. We found in the PPP datasets 11 eQTL genes, which
were differentially expressed in T2D and two genes (CYP4V2 and TSEN2) associated with HbA1c but none in the OD samples.
Conclusions: eQTL analysis of LCM islets from PPP led us to identify novel genes which had not been previously linked to islet biology and T2D.
The understanding gained from eQTL approaches, especially using surgical samples of living patients, provides a more accurate 3-dimensional
representation than those from genetic studies alone.
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1. INTRODUCTION

Genome-wide association studies (GWAS) meta-analyses have
revealed >200 loci associated with type 2 diabetes (T2D) and asso-
ciated traits, such as fasting glucose [1e5]. Recently, new statistical
methods such as fine-mapping have identified further 40 loci [6].
However, deciphering the causal variants and making inferences from
GWAS to physiology is still a challenge. Firstly, few GWAS single
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nucleotide polymorphisms (SNPs) are near insightful biological
candidate genes. More importantly, most SNPs fall within the non-
coding, regulatory regions of the genome [7], often far from coding
regions or in regions where more than one gene lies. To overcome
these complexities, combining GWAS with expression data to produce
expression quantitative trait loci (eQTLs) has become a powerful tool to
shed light into the causative mechanisms of these genetic associations
[6,8e10]. However, one limitation is that whilst there is a considerable
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overlap across human tissue transcriptomes, many eQTLs are cell type
specific. Therefore, it is crucial to analyse eQTLs from appropriate
tissues, e.g. those functionally involved in the pathology. With regard to
diabetes, only a few studies have investigated eQTLs in pancreatic islet
samples [11,12]. However, an insufficient supply of human islets, and
technical issues related to the origin of the samples (i.e. from brain-
dead organ donors rather than from surgical living patients), have
restricted the performance of such studies. Here, we tested a total of
203 islet samples from European subjects with the aim to identify islet
cis-eQTLs related to T2D.

2. MATERIALS AND METHODS

2.1. Cohort
Blood and pancreatic tissue samples were collected from a total of 203
patients from two independent cohorts. The first cohort comprised of
100 islet samples isolated by limited proteolytic digestion of pancreas
from brain-dead organ donors (OD), which included 19 subjects with
T2D [13]. The second cohort consisted of 103 islet samples isolated by
laser capture microdissection (LCM) from the healthy margins of
surgical fragments of metabolically phenotyped pancreatectomized
patients (PPP), who underwent surgery for different pancreatic dis-
eases [13]. In the PPP cohort, 32 were normoglycaemic (fasting gly-
caemia <7.0 mmol/l; HbA1C � 6.5%, glycaemia at 2 h after
presurgical oral glucose tolerance test [OGTT] <7.8 mmol/l), 15 had
impaired glucose tolerance (IGT, fasting glycaemia <7.0 mmol/l;
HbA1C � 6.5%, OGTT at 2 h of �7.8 to <11.1 mmol/l), 36 had T2D
(fasting glycaemia�7.0 mmol/l; HbA1C>6.5%, history of diabetes for
>1 year) and 20 had type 3 diabetes (T3D), based on clinical history
and pre-surgical laboratory tests according to the American Diabetes
Association (ADA) guidelines. T3D was defined as a secondary form of
diabetes with an onset not longer than 1 year prior to the appearance
of the symptoms related to the primary pancreatic disease. Samples
were collected as part of the IMIDIA consortium, and more information
on the donors in these cohorts has been recently reported [13].

2.2. Islet collection and RNA extraction
Specific details about the methodologies for islet retrieval and RNA
extraction have been previously described [13]. Briefly, RNA was
extracted from OD islet samples with the PicoPure RNA Isolation Kit,
following the manufacturer’s protocol. Islets were extracted using
collagenase extraction methods [14]. Islets of PPP were retrieved from
cryopreserved surgical samples by LCM with a Zeiss Palm MicroBeam
system. RNA was extracted using the Arcturus PicoPure Isolation kit.

2.3. Expression microarray
RNA was analysed for gene expression profiling using the Affymetrix
Human Genome U133 Plus 2.0 Array (deposited under the accession
number GSE76896), according to the manufacturer’s protocol. Data
from Gene Expression Omnibus (GEO) and annotation data have been
imported using R package affy. The array data include 54,210 probe
sets covering over 47,000 transcripts and splice variants. Expression
data was normalised using the Robust Multichip Analysis (RMA)
method as implemented in R package affy [15]. Possible batch effect
was corrected for using the “ComBat” approach implement in R
package sva [16], using only the batch information. Differential
expression analysis to compare non-diabetic versus T2D samples was
performed using Limma (Bioconductor R package) with age and
gender as covariates. Multiple testing was accounted for using
Benjamini-Hochberg method to correct p-values. PPP and OD samples
clustered separately (Supplementary Fig. 4a), but there was no
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difference in clustering in other factors, such as gender
(Supplementary Fig. 4b). For PPP, as the HbA1C levels were similar
between ND controls and IGT, both samples were categorised as
controls and compared to T3D and T2D samples.

2.4. DNA extraction and genotyping
A total of 203 DNA samples were extracted from either blood or
pancreatic tissue and isolated using the DNeasy Blood & Tissue kit
(Qiagen, Germany). All samples were genotyped using the Illumina
Omni2.5M array and run on the Illumina iScan platform at the Imperial
College London Centre (Hammersmith Campus, Imperial College Lon-
don, UK). Genotypes were called using the Genome-studio software.
Quality-control was performed and SNPs were kept for further analysis
according to the following thresholds: 1/maf>0.05, 2/Hardy-Weinberg
equilibrium >0.001 and 3/call rate >0.95. Prephasing was performed
with ShapeIt (v2.r790) and imputation with Impute2 (v2.3.2) using
1,000 genomes panel (phase 3). This lead to a dataset of 1,233,520
SNPs and imputation lead to a further 7,574,416 SNPs, for a total of
>8.7 million SNPs analysed. Principal component analysis (PCA) for
ethnicity using genomics data from 1,000 genomes confirmed the vast
majority of samples were of European descent (Figure 1A).

2.5. eQTL analysis
eQTL analysis was carried out on all 203 samples. The eQTL analysis
was performed using FastQTL software [17], with gender and age as
covariates. P-values were computed using an adaptive permutation
pass approach with a permutation number set from 1,000 to 10,000.
We performed a genome-wide genotyping and expression analysis in
OD and PPP samples to identify eQTLs (Figure 1B). At first, a cis-
window was defined as 1 Mb between SNPs and expression probes
and then reduced to 500 Kb based on the observed p-values distri-
bution (Supplementary Fig. 2). All eQTLs with a FDR<5% were
considered to be significant. The eQTL regions were annotated to
published binding sites of human islet transcription factors [18], which
were subdivided into five classes: C1 (promoters), C2 (inactive en-
hancers), C3 (active enhancers), C4 (CTCF-bound sites) and C5
(others), which was not CTCF-bound and was not bound to a known
histone modification.

2.6. Bioinformatics
The Database for Annotation, Visualisation and Integrated Discovery
(DAVID) is a software tool that clusters proteins into functional anno-
tations to facilitate understanding of complex datasets [19] (https://
david.ncifcrf.gov/). The DAVID tool was used to cluster genes to
identify enriched gene ontological functions. P-values were calculated
using Fisher’s exact test to score the enriched gene ontology terms. In
addition, the OD and PPP eQTL datasets were exported to Ingenuity
Pathways Analysis (IPA) Software (Ingenuity Systems, Incorporated,
California, USA; www.ingenuity.com). A core analysis was performed
to identify pathways. The pathways were organised according to
significance using a Fisher’s exact test, with a cut-off of a elog (p-
value) < 1.3. A z-score was used to predict downstream regulator
activity (activation or inhibition) patterns. For the upstream analysis, a
p-value < 0.01 was used for relationships between regulators.

3. RESULTS

3.1. Identification of cis-eQTLs in human islet samples from two
distinct cohorts
Our analysis resulted in the identification of a total of 1,173 and 1,021
significant eQTLs in the samples of OD and PPP, respectively
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 99
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Figure 1: Ancestry clustering and eQTL methodology. A. Genotype clustering of samples from PPP and OD samples confirmed European descent of subjects, compared to the
1,000 genomes. B. An overview of the methodology utilized to obtain eQTLs from islets of OD and PPP subjects were isolated by limited digestion from OD material and by LCM
from PPP material. Acis-window of 500 kb was used with adjustment on gender and age and a false discovery rate (FDR) of <5% was used as a cut-off.

Original Article
(Supplementary Table 1). We found that only 60% of eQTL genes were
shared between the two cohorts and were consistent in the direction of
the effect. These differences could conceivably be attributed to differ-
ences in the method for islet isolation between the two cohorts. Among
the strongest eQTLs shared between OD and PPP were CHURC1 (OD p-
value¼ 1.71� 10�24; PPP p-value¼ 3.64� 10�24) and PSPH (OD p-
value ¼ 3.92 � 10�26; PPP p-value ¼ 3.64 � 10�24) (Figure 2A).
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Churchill domain containing 1 (CHURC1) eQTLs have recently been re-
ported to be associated with T2D and obesity in both adipose and muscle
tissues [20,21], suggesting a pleiotropic effect of this gene in T2D
pathophysiology. Phosphoserine phosphatase (PSPH) catalyses the last
step of serine biosynthesis from carbohydrates [22]. Other strong eQTLs
unique in either dataset were ACO1 in PPP (p¼ 1.47� 10�25) and ELP5
(p-value ¼ 5.71 � 10�24) in OD samples. Aconitase 1 (ACO1) is an
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 2: Overview of eQTL significant loci. A. Manhattan plot of the significant cis-eQTLs (�500 kb), showing the top 10 significant eQTLs (FDR<5%), from 103 PPP and 100
OD subjects. B. Venn diagram summarising number of genes shared between PPP, OD, GWAS and previously identified eQTL genes in islets (Fadista et al., 2014; van de Bunt
et al., 2015). C. An overview of the number of eQTL locations within putative regulatory regions within the genome that correspond with eQTL regions in OD and PPP datasets.
essential enzyme involved in the TCA cycle and cellular iron homeostasis
[23]. ELP5 is a member of the RNA polymerase II elongator complex,
which plays a role in chromatin remodelling and histone acetylation [24].
Of the identified eQTLs in OD and PPP, 42 were transcription factors.
This was determined using the TFcheckpoint, a resource for tran-
scription factors that provides a comprehensive list of transcription
factor annotations with evidence from the literature [25]. In addition, a
total of 46 in OD and 46 in PPP non-coding RNAs, including long non-
coding and non-protein coding RNAs, were found to be significantly
affected by nearby SNPs. Of these, 26 were shared between the OD
and PPP datasets.
We compared our analysis to published eQTLs in islets from OD: one
study in 89 OD identified 616 eQTLs [11]; another study in 118 OD found
2,341 eQTLs [12]. While the reproducibility rate between the two studies
was 43% [12], we found a 28% (OD) and 29% (PPP) shared genes with
van de Bunt et al. [12] and 23% (OD) and 18% (PPP) with Fadista et al.
[11]. Of these, 24 genes were shared between our OD and PPP samples
and those in these previous datasets, consistent in direction of effect
(Table 1; Figure 2B). This low number is likely due to substantial dif-
ferences in RNA extraction and transcriptomic methods among these
MOLECULAR METABOLISM 24 (2019) 98e107 � 2019 The Authors. Published by Elsevier GmbH. This is
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studies. For instance, we used microarrays for transcriptomic analysis,
whereas the other studies relied on RNA sequencing. Nevertheless, 42%
of the shared genes were among the top 100 identified eQTLs in our
study, including CHURC1, ERAP2, and LDHC.

3.2. Regulatory and biological interpretations of eQTL genes
Consistent with these regions being regulatory, we annotated the eQTL
datasets with active open chromatin maps in islets (promoters, active
enhancers and CTCF regions) [15] and found 102 and 93 sites over-
lapping with open chromatin regions in OD and PPP, respectively
(Figure 2C, Supplementary Tables 2e3). Of these, 15 were shared
between the two datasets, with the majority being in active enhancer
sites and clusters. One shared gene relevant for beta-cell biology was
RPH3AL/NOC2, which has been shown to be crucial for exocytosis of
insulin in pancreatic beta cells [26].
The gene ontology (GO) tool was used to make inferences on the
biological function of the eQTL genes. GO identified ontologies that
relate to beta cell function included cell junction, positive regulation of
GTPase activity and glutathione metabolism (Supplementary Fig. 3). In
addition, to make inferences about the identified eQTL genes, we
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 101
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Table 1 e A list of 24 genes shared among OD, PPP Fadista et al., 2014
and Van de Bunt et al., 2015.

Gene Gene Name OD p-value PPP p value

CHURC1 Churchill Domain Containing 1 1.7E-24 3.6E-24
ERAP2 Endoplasmic Reticulum

Aminopeptidase 2
5.8E-23 5.6E-12

FAM118A Family With Sequence Similarity
118 Member A

3.9E-22 1.9E-23

POMZP3 POM121 And ZP3 Fusion 4.7E-21 6.4E-13
LDHC Lactate Dehydrogenase C 8.6E-18 1.7E-10
C17orf97 Chromosome 17 Open Reading

Frame 97
9.8E-17 4.0E-14

UBE2U Ubiquitin Conjugating Enzyme
E2 U (Putative)

8.5E-16 9.9E-10

ITGB3BP Integrin Subunit Beta 3 Binding
Protein

1.2E-13 5.2E-18

ZFP57 ZFP57 Zinc Finger Protein 7.6E-11 6.6E-17
DDX11 DEAD/H-Box Helicase 11 2.1E-10 4.5E-14
THNSL2 Threonine Synthase Like 2 1.5E-08 6.5E-11
TDRD5 Tudor Domain Containing 5 3.3E-08 6.0E-06

Original Article
utilised tools in the Ingenuity Pathway Analysis (IPA) software. None of
the top pathways was shared between OD and PPP samples, pointing
to differences in the donors and the procedure for islet isolation
(Supplementary Fig. 4). Interestingly, the transcriptional regulator of
pancreatic beta-cell function and maturity-onset diabetes of the young
(MODY4) gene HNF4A was found to the most significant upstream
regulator in the IPA analysis for both PPP (p-value ¼ 0.003; z-
score ¼ 0.45) and OD (p-value ¼ 0.0001; z-score ¼ 0.98) (Figure 3).
HNF4A modulates regulatory elements in the promoters and enhancers
of genes involved in glucose, fatty acid and cholesterol metabolism. It
regulates gene expression in pancreatic beta cells to achieve glucose
homeostasis and activates insulin genes both directly and indirectly.
Our data show that many genes have a relevance for carbohydrate and
lipid metabolism in addition to their association with T2D.

3.3. eQTL genes associated with T2D and associated traits
We then focused our analysis on GWAS loci and genes for T2D and
associated traits. First, we found an enrichment for GWAS loci in
Figure 3: Biological interpretations of eQTL genes. Genes in our dataset that have been
B. PPP. Genes highlighted in purple have a relevant function in carbohydrate metabolism
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eQTLs in MAGIC fasting glucose (OD p ¼ 4.8 � 10�4; PPP
p ¼ 4.1 � 10�4), fasting insulin (OD p ¼ 0.013; PPP p ¼ 0.059),
HOMA-IR (OD p ¼ 0.019; PPP p ¼ 0.018) and HOMA-B (OD
p ¼ 0.001; PPP p ¼ 0.0025) and DIAGRAM (OD p ¼ 0.0039; PPP
p ¼ 3.7 � 10�4) using a Fisher’s exact test (Supplementary
Table 4). We then investigated whether T2D genes were also
identified in our eQTL study and found a total of eleven genes
(Table 2). Seven of these overlapped GWAS genes associated with
T2D alone (AP3S2, GPSM1, MAEA, TLE4, TMEM163, SSR1, and
UBE2Z), three with T2D associated traits alone (IGF1R for fasting
plasma glucose, ABO for disposition index and UHRF1BP1 for fasting
plasma insulin), and one for both T2D and fasting glucose levels
(ADCY5). Of these genes, AP3S2 and IGF1R were represented in both
our OD and PPP datasets. AP3S2, encoding for an adaptor protein,
was the only gene replicated in both our datasets in addition to
reported eQTLs in islets [11,12]. ADCY5 is a member of the ade-
nylate cyclase family, which has previously been shown in a
knockout study to be involved in glucose stimulation and insulin
secretion [27]. Interestingly, we have previously demonstrated that
SSR1 expression is enriched in human islets and isolated beta cells
[28]. In addition, for both OD and PPP datasets, we found strong
associations with UBE2Z, a ubiquitin-conjugating enzyme. Although
this gene has not been previously been studied for its role in beta
cells, UBE2Z was also reported to be associated with coronary artery
disease in different populations [29e31]. UHRF1BP1 was the only
gene that was annotated to an active enhancer in pancreatic islets.
We and others from the GIANT, MAGIC and ExomeBP consortia,
recently identified 40 additional loci associated with T2D [6] and
found that TPCN2, a gene encoding for a transmembrane ion
channel with an effect on insulin action, also has an eQTL in both
PPP and OD. TPCN2�/� mice display improved insulin sensitivity,
which is in agreement with our findings that an increased expression
of TPCN2 associated with the rs72928978 reported SNP [6].
We then assessed whether our eQTL SNPs were in linkage disequi-
librium with GWAS reported SNPs for T2D and associated traits using
the GWAS catalogue ((https://www.ebi.ac.uk/gwas/) and a recently
published GWAS [6]. The most significant loci in the PPP and OD
shown with IPA to have the MODY gene HNF4A as the upstream regulator for A. OD and
, lipid metabolism or diabetes.
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Table 2 e GWAS T2D and glycaemic genes identified in eQTL study.

Gene Gene Name Disease/Trait PPP OD Fadista et al., 2014 Van de Bunt et al., 2015

ABO ABO, Alpha 1-3-N-Acetylgalactosaminyltransferase
And Alpha 1-3-Galactosyltransferase

Disposition index and soluble
E-selectin levels

Y Y Y

ADCY5 Adenylate Cyclase 5 Type 2 diabetes; fasting
glucose-related traits

Y Y

AP3S2 Adaptor Related Protein
Complex 3 Sigma 2 Subunit

Type 2 diabetes Y Y Y Y

GPSM1 G Protein Signaling
Modulator 1

Type 2 diabetes Y

IGF1R Insulin Like Growth Factor 1 Receptor Fasting plasma glucose Y Y
MAEA Macrophage Erythroblast Attacher Type 2 diabetes Y
SSR1 Signal Sequence Receptor Subunit 1 Type 2 diabetes Y
TLE4 Transducin Like Enhancer

Of Split 4
Type 2 diabetes Y

TPCN2 Two Pore Segment Channel
2

Type 2 diabetes Y Y Y

TMEM163 Transmembrane Protein 163 Type 2 diabetes Y Y
UBE2Z Ubiquitin Conjugating Enzyme

E2 Z
Type 2 diabetes Y Y

UHRF1BP1 UHRF1 Binding Protein 1 Fasting insulin-related traits Y

Y¼Yes
datasets are shown in Table 3. Notably, approximately 60% did not
implicate the nearest gene. This includes the CENTD2 (ARAP1) locus,
which a recent study confirmed to be associated with T2D risk through
the reduced expression of the nearby STARD10 gene [32]. In addition,
one of the most significant eQTLs we found was the rs34569841 SNP,
which is associated with decreased expression of the long non-coding
RNA LOC101927636. This SNP is in strong linkage disequilibrium with
the previously reported rs13134327 SNP (R2 ¼ 1), which is associated
with HbA1C and was mapped to the FREM3 gene [33].

3.4. eQTL genes differentially expressed with T2D and HbA1C
levels
Our eQTL analysis further identified in the PPP dataset only 21 genes
(Table 4), which were also differentially expressed, 11 of which also
Table 3 e Top GWAS T2D and associated traits loci co-localising with eQTLs.

GWAS Catalog

GWAS gene SNPS eQTL SNP eQTL dis

PPP

FREM3 rs13134327 rs5015757 �17418
UBE2Z rs12453394 rs318092 1381
HLA-DQA1 rs9271774 rs9271770 48612

OD

SSR1 rs9505118 rs3087986 1363
UBE2Z rs12453394 rs3744608 3813
BRAF rs9648716 rs28529157 81058

Mahajan et al., 2018

GWAS gene rs ID eQTL SNP eQTL dis

PPP

TTLL6 rs2032844 rs11657371 �14554
MACF1 rs2296172 rs61779279 287263
MLX rs665268 rs646123 �11400

OD

KIF9 rs2276853 rs2276854 �47481
CENTD2 rs56200889 rs12575364 �56695
TTLL6 rs2032844 rs11657371 �14554
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consistently in their directionality. Among them was SCTR, which
encodes for the secretin receptor and is the most potent regulator for
bicarbonate in the pancreas. Although early studies showed that SCTR
is linked to insulin release in humans (Lerner and Porte 1970), this
association has not since been re-investigated. eQTLs in the mito-
chondrial Acid Phosphatase 6 Lysophosphatidic ACP6 have been
associated with T2D and BMI [34]. Three loci, namely KLHDC10,
VAMP1, and CFLAR lie within active islet enhancer regions. Among
them, however, only KLHDC10, which is involved in the activation of
oxidative stress [35], was consistent in its directional effect between
eQTL and differential expression. In addition, of the differentially
expressed loci, only two were transcription factors (ZNF117 and
ONECUT2). Lastly, to identify genes whose expression was altered by
glycaemia, we correlated gene expression to HbA1C levels, which is a
tance eQTL FDR eQTL beta Probe ID

7 9.2E-15 �0.96 LOC101927636
1.2E-14 �0.93 UBE2Z
6.7E-11 1.2 LOC100996809

2.6E-12 0.35 SSR1
4.1E-12 �0.77 UBE2Z
2E-08 �0.45 BRAF

tance eQTL FDR eQTL beta Probe ID

7 1.8E-05 �0.64 UBE2Z
0.0010 �0.2 MACF1

0 0.0014 0.24 CNTNAP1

0.0009 �0.32 KLHL18
0.0009 0.29 STARD10

7 0.0014 �0.41 UBE2Z
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Figure 4: Summary of eQTL genes with relevance to T2D. A schematic of a represen
localization using gene ontology. These genes include overlapping GWAS genes (black),
differentially expressed in T2D (red) or associated with HbA1c (pink), consistent in directi

Table 4 e Significant eQTL genes also differentially expressed in T2D
compared to controls in PPP dataset.

PPP

Gene SNP ID distance eQTL FDR logFC FDR Direction
of eQTL effect

SCTR rs4344946 �15760 0.023 �0.78 0.03 e

CYP2U1 rs141713207 �22383 0.002 �0.55 0.01 þ
CYP4V2 rs10866290 757 6.38E-11 �0.5 0.05 e

CASR rs3749203 489 0.001 �0.45 0.04 þ
ACP6 rs28700004 5788 7.94E-08 �0.41 0.01 e

LOC79160 rs3761133 653 0.015 �0.39 0.03 þ
IGF1R rs12591122 305650 3.08E-05 �0.34 0.04 þ
LINC00667 rs34361006 49303 0.032 �0.31 0.02 e

ACVR1B rs2854464 43389 0.008 �0.28 0.02 þ
KLHDC10 rs4443587 68107 1.58E-10 �0.25 0.01 e

VAMP1 rs11613996 22444 0.016 �0.25 0.02 þ
ELP5 rs222843 �9867 1.40E-15 �0.25 0.03 þ
RASA3 rs9525230 80306 4.37E-07 �0.22 0.04 þ
H2AFV rs13245012 �669 0.002 �0.22 0.04 e

METTL15 rs4614434 �52250 0.027 �0.15 0.05 e

RNF213 rs35627722 15051 0.01 0.44 0.01 e

CAST kgp11684924 12272 4.62E-07 0.46 0.02 þ
ERAP1 kgp3909205 15984 3.09E-12 0.49 0.03 þ
ZNF117 rs10262238 121749 0.015 0.5 0.02 þ
CFLAR rs10184098 9878 0.001 0.63 0.03 e

ONECUT2 rs514250 32118 0.008 0.71 0.04 þ
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measure of long-term glycaemia in the PPP dataset. This revealed 170
differentially expressed genes (Supplementary Table 5), of which only
four had an eQTL: CYP4V2 (cytochrome P450 4V2), TSEN2 (tRNA-
splicing endonuclease subunit 2), ZNF556 (zinc finger protein 556) and
ACVR1B (activin A receptor type 1B), of which CYP4V2 and TSEN2 were
consistent in directional effect.

4. DISCUSSION

Here we show the most comprehensive cis-eQTL analysis in relevant
islet samples in two distinct cohorts, including samples from 100 OD
and for the first time 103 PPP (e.g. from living surgical patients). To our
knowledge, this is also the largest eQTL study using islet samples to
date. Our thorough cohorts allowed us to identify eQTLs with a rele-
vance to T2D and HbA1C levels. These genes have diverse roles within
the cell and further studies need to be performed to understand their
roles within the pancreatic beta cell (Figure 4). One main finding was
the difference in results observed between our two cohorts. We found
that the PPP and OD samples cluster separately, suggesting that the
differences in transcriptomic signatures between the two cohorts is
primarily due in part to the islet isolation methods. Indeed, we recently
compared the transcriptomes of PPP and OD islets and found that
those of islets extracted from the same ODs using either LCM or
enzymatic digestion clustered separately, with LCM islet tran-
scriptomes clustering with the transcriptomes of LCM islets from PPP
[13]. These differences were also highlighted in our pathway analysis
tative pancreatic beta cell, with identified genes annotated to their known sub-cellular
eQTLs in LD with GWAS loci (asterisks), eQTL genes from the PPP dataset that were
onal effect with eQTLs. (Figure was illustrated using app.biorender.io).
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using IPA. In addition, these differences may be attributed to stressful
conditions while OD patients were in intensive-care prior to brain-
death, which may increase inflammatory markers. In contrast, for
LCM samples, the surgical specimen are subject to immediate cry-
ofixation, thereby limiting transcriptomic changes. As all previous eQTL
and transcriptomic investigations have been performed using islets
isolated by enzymatic digestion from OD [11,12,36], our study
including LCM islets from PPP is unique. In addition to isolation
methods, methodological differences in RNA expression analyses likely
contribute to the low number of shared genes between our study and
previous eQTL analyses in islets [11,12]. The reason for the use of
microarrays in our study is that at the time these studies were
conceived and undertaken, RNA-seq procedures (based on next-
generation sequencing) were still very expensive and not yet fully
consolidated. However, one robust gene that survived these technical
and methodological differences and which was replicated amongst all
studies is ZFP57. Loss-of-function mutations in the ZFP57 transcrip-
tion factor is associated with an imprinting disorder, which includes
transient neonatal diabetes [37,38]. ZFP57 is expressed in undiffer-
entiated cells and downregulated during cell differentiation [39] and is
a crucial regulator involved in DNA methylation during development
[40]. It would be interesting to further investigate whether DNA
methylation changes within this gene has a role in the cell biology of
adult beta cells.
In our comparison of GWAS loci and eQTLs, we were able to provide an
up-to-date analysis of approximately 300 identified genes linked to
T2D and associated traits. An intriguing finding was that long non-
coding RNAs were found to be the most significantly associated with
GWAS SNPs, which includes the long non-coding RNA LOC101927636
locus, which in GWAS studies was previously assigned to FREM3 [33].
This is in addition to approximately 66 non-coding RNAs identified
between the OD and PPP datasets. Accumulating literature has shown
that SNPs in long non-coding RNAs are associated with human dis-
eases, including T2D, hence highlighting their role as master regula-
tors [41,42].
It is important to note that islets include a number of cell-types and
although we have considered normalising to housekeeping genes
identified from single-cell transcriptomic analysis in islets [43,44],
these genes were highly variable among our samples. While it is
important to bear in mind that some of the eQTLs identified are not
beta-cell specific, there is substantial data to gain from studying the
islet as an intact microorgan.
In conclusion, we provide a catalogue of cis-eQTLs from the largest to-
date sample size from two separate cohorts of non-diabetic and T2D
subjects and which includes the first in-depth combined genetic and
expression analysis of human islets isolated by LCM. Ultimately, the
knowledge gained from eQTL approaches provides a preferable and
more accurate 3-dimensional representation than those from DNA
variants alone. In vitro and functional analyses are required to defini-
tively prove the role of newly identified genes in relation to islet cell
biology and T2D disease.
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