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ABSTRACT: Well-characterized promoter collections for synthetic ~ Genome
biology applications are not always available in industrially relevant

hosts. We developed a broadly applicable method for promoter
identification in atypical microbial hosts that requires no a priori \
understanding of cis-regulatory element structure. This novel IS
approach combines bioinformatic filtering with rapid empirical 7
characterization to expand the promoter toolkit and uses machine
learning to improve the understanding of the relationship between L

DNA sequence and function. Here, we apply the method in entity 5%
Geobacillus thermoglucosidasius, a thermophilic organism with high Promoters Synthesise
potential as a synthetic biology chassis for industrial applications.

Bioinformatic screening of G. kaustophilus, G. stearothermophilus, G. thermodenitrificans, and G. thermoglucosidasius resulted in
the identification of 636 100 bp putative promoters, encompassing the genome-wide design space and lacking known
transcription factor binding sites. Eighty of these sequences were characterized in vivo, and activities covered a 2-log range of
predictable expression levels. Seven sequences were shown to function consistently regardless of the downstream coding
sequence. Partition modeling identified sequence positions upstream of the canonical —35 and —10 consensus motifs that were
predicted to strongly influence regulatory activity in Geobacillus, and artificial neural network and partial least squares regression
models were derived to assess if there were a simple, forward, quantitative method for in silico prediction of promoter function.
However, the models were insufficiently general to predict pre hoc promoter activity in vivo, most probably as a result of the
relatively small size of the training data set compared to the size of the modeled design space.
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he predictable control of genetic modules or engineered
metabolic pathways is a defining aspiration of synthetic
biology,' requiring thoroughly characterized, robust genetic
parts. Although synthetic biology parts and tools of increasing
sophistication are available,” > the majority have been
designed for use in a small number of model organisms® and
characterized only or mainly in these biological contexts.”
Model organisms such as Escherichia coli or Saccharomyces
cerevisiae are invaluable for laboratory-scale, proof-of-principle
investigations and are used in some industrial applications,®
but there is a real, practical need to expand the range of
microbial chassis available for industrial applications that
present more extreme environments for the biocatalyst.”'*~"?
Different control points affect the output of gene networks,
including levels of transcription, translation, protein half-life,
and enzyme kinetics.'* On a practical level, the use of
promoters with varied and predictable activation and output
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characteristics (“strengths”) are an essential feature of any
synthetic biology toolkit”'>'* and are particularly useful for
balancing differential expression levels in “hard-wired”, steady
state genetic modules.'® Promoter collections for synthetic
biology applications should therefore cover a broad range of
recombinant gene expression levels for nuanced tuning of
synthetic pathways'’ with individual promoters providing
homogeneous, consistent, and predictable outputs independ-
ently of the associated downstream coding sequence.'®
Conventionally, promoters in atypical chassis may be
isolated from upstream of genes or operons' that are
homologous to well-understood regions in model organisms
or identified using genomic or transcriptomic analyses of the
host” followed by in-depth characterization in a range of
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genetic and environmental contexts. Alternatively, synthetic
promoter libraries may be manufactured by mutagenesis of
wild-type promoter sequences, again followed by deep analysis
for novel activity,"™'**" though this approach tends to reduce,
rather than enhance, promoter strength.””'~>° Finally, recent
advances in DNA synthesis have facilitated systematic
approaches to promoter and regulatory sequence design by
enabling the production and high-throughput screening of
comprehensive sequence libraries.”””” Due to the scale of
DNA synthesis required, however, this approach remains
relatively expensive compared to mutagenesis and dependent
on ready access to appropriate DNA synthesis facilities.

In this investigation, we used a bioinformatic approach to
explore the promoter design space in Geobacillus thermogluco-
sidasius, a metabolically versatile,'"**7*° thermophilic mi-
crobe’’ with high potential as a synthetic biology chassis for
industrial applications.”** To date, engineering projects in
Geobacillus have relied on one of three endogenous promoter
sequences,'*>** the most widely used being the oxygen-
dependent IdhA promoter.”'"*"*>*° Mutagenesis-derived,
synthetic 8promoters have also been reported for the
genus,g’37’3 though their characterization is limited to single
genetic contexts.

Here, we selected 100 putative promoter sequences from the
Geobacillus core genome encompassing the genome-wide
design space and lacking known transcription factor binding
sites. The sequences were synthesized and cloned upstream of
two different reporter CDS, and their activities were assessed in
vivo. This process was relatively rapid and resulted in a
collection of seven characterized promoter sequences that
displayed a range of activities with low internal variance and
that functioned independently of the downstream reporter
sequence. Additionally, to better understand the relationship
between promoter sequence and activity, the data from the in
vivo characterization were used to train and validate a variety of
in silico models, including random forest partition, artificial
neural network (ANN) and partial least squares regression
(PLS).

The method presented here is broadly applicable to any
potential bacterial chassis and could be used to expand
synthetic biology tools for other biocatalysts and ultimately
enhance our fundamental knowledge of genetic regulation in
synthetic and natural systems.

B RESULTS AND DISCUSSION

Bioinformatic Identification of Putative Promoters
from the Core Genome of Four Geobacillus Species.
Different Geobacillus species have the potential to be used as
host organisms for industrial bioproduction.””** We therefore
aimed to identify promoters that could potentially be used
across the entire genus. To obtain a suite of promoters that
were representative of the Geobacillus genus, we sequenced and
assembled de novo the genomes of four Geobacillus species that
were available when the project started: G. kaustophilus
(DSM7263), G. stearothermophilus (DSM22), G. thermodeni-
trificans (K1041), and G. thermoglucosidasius (DSM2542). To
identify genes that were common to all four Geobacillus
species, single-copy coding sequences (CDS) were clustered
into homologous gene families using the GET HOMO-
LOGUES software package.”” To increase calculation robust-
ness, three separate clustering algorithms were used, and the
resulting gene families compared. Bidirectional best-hit
(BDBH), COG triangles (COG), and OrthoMCL (OMCL)
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algorithms returned 1924, 1914, and 1902 CDS clusters
respectively, with 1886 homologous clusters being identified
by all 3 algorithms (Figure 1A). The core genome of the
selected Geobacillus species therefore contained 1886 CDS; i.e.
a total of 7544 homologous core CDS.

a
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b Clade 2
Clade 21, { Clade 3
Clade 20, C lade 4
Clade 19, .Clade 5
_..Clade 6
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Figure 1. Bioinformatic identification of putative promoter sequences.
(A) Venn diagram showing the number of homologous gene families
identified in the genomes of the four selected Geobacillus species by
BDBH, COG, and OMCL clustering algorithms. (B) Phylogeny of
putative promoters, rooted at the midpoint. At least 2 putative
promoters were selected at random for in vivo characterization from
each of the clades containing >50 sequences (highlighted in yellow).

In prokaryotes, the majority of motifs that affect the
initiation of both transcription and translation occur in the
100 bp sequence window immediately upstream of the CDS
start codon.””*" One-hundred bp sequences from immediately
upstream of the start codon of the 7544 core CDS were
therefore identified as putative Geobacillus promoter sequen-
ces. BPROM software was subsequently used to classify the
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Figure 2. In vivo characterization of bioinformatically identified promoter sequences. Bioinformatically identified putative promoter sequences were
synthesized upstream of GFP and mOrange reporter sequences, and promoter activity in G. thermoglucosidasius was characterized after 24 h growth.
In all instances, the positive control, the G. thermodenitrificans IdhA promoter, is shown in dark gray, and the negative control, G. thermoglucosidasius
transformed with an empty pS797 vector, is shown in red. (A) Heat map of GFP and mOrange expression levels of the 80 characterized promoters.
Each column represents a disparate promoter. To account for differences in intensity between GFP and mOrange fluorescence signals, the mean
fluorescence output of each promoter::reporter fusion was normalized to the fluorescence output of the negative control at the relevant excitation
and emission wavelengths. Regulatory sequences were defined as active if reporter fluorescence was statistically significantly greater than the
negative control at the relevant wavelengths. Significance was determined by ordinary one-way ANOVA with Dunnett’s multiple comparisons test
and a significance level of 0.0S. (B) Expression levels of the promoters for which fluorescence activity was statistically significant. Bars represent the
mean of n = 3 independent starter cultures arising from independent transformation events, except in the case of the negative controls, where n =
14, and the positive controls, where n = 11. Error bars represent standard deviation. (C) GFP and mOrange expression levels are normalized to the
negative control. Points represent individual promoter sequences. Promoter groupings were determined by K-means clustering based on the
Euclidian distance of the points from the line of equivalence, y = x, which is represented by the dashed line. (D) Expression levels of the seven
promoters that functioned consistently regardless of CDS, as determined by flow cytometry. For each promoter::reporter fusion and the negative
control, 100 000 events from each of 3 independent starter cultures arising from independent transformation events were combined to form a single

“meta” population of 300 000 events. + = IdhA positive control; — = negative control.
100 bp sequences as putative promoters based on the presence expression in E. coli.'* Putative promoters were therefore also
and nucleotide composition of known conserved functional identified from the genomes of two bacteriophages, Thermus
motifs.* To isolate sequences that were likely orthogonal to phage Phi OH2 and Geobacillus phage GBSV1, which were
endogenous regulatory pathways, putative promoters were chosen due to their ready availability on the GenBank public
screened against BPROMs list of known transcription factor database. Intergenic regions of at least 100 bp were identified
binding sites (TFBS, Supporting Table 1), and sequences that in both genomes. From these intergenic regions, the 100 bp
contained any known TFBS were discarded. A phylogeny of sequences immediately upstream of the start codon of the
the 1489 putative, generic sequences that remained after adjacent CDS were extracted. The extracted sequences were
screening was constructed as a representation of the Geo- subsequently analyzed using BPROM software to identify
bacillus promoter design space (Figure 1B). Although putative promoters, and any sequences that contained known
BPROMs list of E. coli TFBS may not be exhaustively TFBS were discarded. Nine putative promoters were identified
representative of binding sites that are functional in Geo- from Thermus phage Phi OH2, and seven putative promoters
bacillus, the lack of extensive genus-specific TFBS character- were identified from Geobacillus phage GBSV1.
ization in these non-model organisms renders a genus-specific In Vivo Characterization of Putative Promoters. A
approach impractical. Given previously successful applications number of studies have considered the effect of genetic context
of BPROM for promoter identification,” the list of TFBS used on promoter function in model organisms such as E. coli and S.
was judged likely to provide an adequately generic reference cerevisiae.">*"*3 ™ However, the drive for composable,
for binding site recognition in Geobacillus. modular regulatory elements in nonmodel systems is hindered
Multiple studies have used promoters isolated from the by the fact that many studies still characterize the function of
genomes of bacteriophage for the control of heterologous promoter sequences in a single genetic context. Two previously
177 DOI: 10.1021/acssynbio.9b00061
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published Geobacillus synthetic promoter libraries, for example,
used only GFP to characterize promoter performance.”’
Putative promoters were therefore characterized upstream of
both Dasher GFP and mOrange fluorescent reporters.

A trade-off was required between the desire to empirically
explore large portions of the Geobacillus promoter design space
and the experimental feasibility of characterizing large numbers
of putative sequences in a host organism with low trans-
formation efficiencies. The promoter phylogeny (Figure 1B)
was therefore used to rationally select 100 putative promoters
from across the Geobacillus promoter design space for in vivo
characterization using both reporters.

A sequence alignment of the 100 selected putative
promoters revealed a heavily conserved purine-rich region
located at the 3’ terminus of the 100 bp sequence space
(Supporting Figure 1). Given the similarities in both location
and nucleotide composition of the motif to the canonical
Shine—Dalgrano sequence,® this region was identified as the
ribosome binding site (RBS). We therefore changed the
terminology, whereby “promoter” refers to the complete 100
bp sequence; RBS refers to the 15 bp of sequence at the 3’
terminus of the sequence space, and distal regulatory sequence
(DRS) refers to the sequence from —100 to —15 bp upstream
of the start codon.

To facilitate potential future applications of the promoter
sequences in which disparate DRS and RBS might be required,
the 100 selected putative promoters were split in silico into
DRS and RBS parts that were subsequently flanked with type
IIS restriction cloning affixes (Supporting Table 2). In vitro
cloning of the DRS and RBS parts resulted in the insertion of a
4 bp scar sequence at —19 to —16 bp upstream of the start
codon, increasing the length of the promoters to 104 bp. The
inclusion of the scar sequence was empirically shown to have
no statistically significant effect on promoter activity for 20 out
of a set of 24 characterized sequences with significant
alterations in regulatory activity hypothesized to be the result
of extreme alterations to mRNA secondary structure
(Supporting Information, Supporting Figure 2).

Of the 100 selected putative Geobacillus promoters, 5
promoter::GFP and 9 promoter::mOrange constructs could not
be successfully synthesized and 11 promoter::mOrange
constructs could not be transformed into G. thermoglucosida-
sius; 80 sequences were therefore characterized in vivo
upstream of both reporters (Figure 2A). The characterized
sequences covered a 148-fold range of activity when
characterized upstream of GFP and a 107-fold range of
activity when characterized upstream of mOrange. Forty-five of
the characterized promoters showed expression levels for both
reporter proteins that were not statistically significantly greater
than the negative control G. thermoglucosidasius transformed
with the empty pS797 vector. We therefore defined these 45
sequences as inactive. Nineteen out of the 100 screened
promoters showed statistically significant activity with both
reporters; 3 sequences were active with GFP only, and 13
sequences were active with mOrange only (Figure 2B). A
comparison of the codon usage of the 2 reporter proteins
showed them to be broadly comparable (Supporting Figure 3).
The discrepancies in gene expression between the two
reporters were therefore assumed to be a result of promoter
activity rather than differential codon utilization.

To identify the promoters that functioned predictably and
independently of the downstream CDS, K-means clustering
was used to group the characterized sequences into five
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clusters based on their Euclidean distance from the line of
equivalence between GFP and mOrange activity, y = x (Figure
2C). No correlation in in vivo activity between the two reporter
proteins was observed for the majority of the characterized
sequences; clusters 2 and 4 contained promoters that resulted
in stronger GFP expression than mOrange expression, whereas
clusters 3 and S resulted in stronger mOrange than GFP
expression. Clustering identified 13 promoters (cluster 1) with
activity that fell close to the line of equivalence, of which 7
displayed mean expression levels that were significantly greater
than the negative control. The characterized Geobacillus
promoter library therefore contained 7 functionally compos-
able, active sequences, covering activity levels that were
between 1.1 and 4.5 times greater than those of the G.
thermodenitrificans 1dhA positive control.

Such functional composability of cis-regulatory sequences is
crucial if information regarding promoter performance derived
from laboratory-scale characterization experiments is to be
applied to the systematic, scalable, bottom-up engineering of
increasingly complex synthetic biological systems.”'® The
development of species-specific insulator mechanisms that
reduce the context-specificity of re%ulatory parts through either
molecular transcript processing®”*® or by physically separating
genetic regulatory parts to disrupt context-specific mRNA
secondary structures'®*' is required if the majority of the
identified promoters are to be used modularly in alternative
contexts.

In addition to being functionally composable, promoter
sequences for synthetic biology applications should ideally
yield homogeneous, predictable expression of the protein of
interest at the single-cell level.”” Flow cytometry was therefore
used to analyze the intrapopulation variation in fluorescence
activity of the characterized promoter::reporter fusions in
transformed, clonal cultures. Compared to the positive control,
the G. thermodenitrificans IdhA promoter, 98% of the
characterized promoter::GFP fusions and 73% of the
promoter::mOrange fusions returned lower coefficients of
variance, indicating that the majority of the characterized
sequences offered more predictable regulation of protein
expression than the current benchmark Geobacillus promoter.
Furthermore, the seven promoters that functioned independ-
ently of coding sequence all returned lower coeflicients of
variation than the positive control IdhA promoter (Figure 2D).
Although subpopulations of cells expressing the reporters were
apparent for four of the characterized promoters, the
performance of these promoters was less variable and therefore
more predictable than that of the IdhA promoter, which has
been widely used in studies with potential industrial
applications.”" 31353

Analysis of the genes with which the 80 characterized
promoters were natively associated in their source genomes
showed that the majority of the sequences homogeneously
regulate basic cellular functions and were therefore likely to be
constitutive (Supporting Table 3). Cellular functions with
which the promoters were natively associated included
biosynthesis, cell membrane formation, catabolism, tran-
scription, and protein folding. However, 11 of the charac-
terized promoters were natively associated with proteins
relating to sporulation and may therefore result in altered
expression levels under sporulation conditions. The failure of
the bioinformatic screening to identify and exclude these
sequences highlights the limitations of applying bioinformatic
tools that were developed in E. coli in non-model organisms; as
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Figure 3. Heat map showing the number of data set partitions caused in 100 random forests by individual regulatory sequence nucleotide positions
when either GFP or mOrange fluorescence was used as the response variable. The gray region represents the ACCT cloning scar between the DRS
and RBS regions. As all of the characterized promoters were identical in these locations, these four positions were not included in the partition

modeling.

E. coli is non-sporulating, a list of E. coli TFBS will naturally not
contain sporulation-specific TFBS.

Sequence-Function Modeling. Mathematical models
with the pre hoc capability to determine promoter function
could potentially reduce the need for in vivo characterization of
large numbers of individual cis-regulatory elements. Once a
training set of sufficient robustness is established, regulatory
elements of the desired strength for a given application could
hypothetically be identified from the genome or designed de
novo, in a manner analogous to tools such as the RBS
calculator.® To better understand the basis of promoter
function in Geobacillus, and to assess if there was a simple,
forward method for in silico prediction of promoter function,
statistical learning approaches were used to derive models of
the design space.

We used a variety of techniques to mathematically describe
the relationship between DNA sequence and function of the
promoters characterized above. Partition modeling was used to
identify positions within the sequence space that were having
the greatest impact on promoter activity, and ANN and PLS
models were subsequently used to make quantitative
predictions of promoter activity.

Partition Modeling. Recursive partition modeling is a
powerful technique for determining the relationship between a
response variable and a set of independent variables without
the use of a mathematical model.*® Partition models were fit to
both the GFP and mOrange characterization data sets. The
number of times each promoter sequence position caused
partitions in the data set across 100 random forests was
quantified; the larger the number of partitions caused by a
sequence position, the more important that position was
predicted to be in determining promoter activity.

Sequence positions across the entirety of the sequence space
were predicted to strongly influence regulatory activity for both
reporters (Figure 3). In particular, sequence positions toward
the S’ terminus of the sequence space were predicted to be
important in determining promoter activity. This result
suggested that UP elements, sequence motifs that are further
upstream than the canonical RBS, —10 and —35 motifs that
boost transcription initiation through interactions with the C-
terminal domain of the RNA polymerase alpha subunit,”"** are
active in Geobacillus.

Artificial Neural Network and Partial Least Squares
Sequence-Function Modeling. Although the partition
models provided useful insights to the relationship between
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promoter nucleotide sequence and function, they did not
provide quantitative predictions of regulatory activity. We
therefore applied two quantitative modeling approaches, linear
PLS regression and nonlinear ANN.

To asses the predictive capability of PLS and ANNs when
applied to Geobacillus cis-regulatory sequences, models were
trained using data derived from the 95 characterized
promoter::GFP fusions (Supporting Figure 4). In all instances,
each of the 104 nucleotide positions within the promoter
sequence was modeled as an individual x variable, and GFP
fluorescence was used as the response variable, y.

ANNs have previously been shown to return insufficiently
accurate predictions when the response surface under
investigation is complex and the number of observations in
the training data set is small.>® Furthermore, although the PLS
algorithm was specifically designed to model data sets in which
the number of predictor variables is greater than the number of
observations in the training set,”* the extreme scale of the
promoter design space (there are 4'° possible 100 bp
nucleotide sequences) compared to the number of empirically
characterized promoters was thought likely to result in models
with limited predictive power. A reduction in the dimension-
ality of the modeled design space was therefore deemed
necessary.

Characterizing promoters of shorter length would have
immediately reduced the dimensionality of the modeled design
space. For example, 50 bp sequences would have been of
sufficient length to contain the canonical location of the RBS
—10 and —35 consensus motifs. However, the partition results
showed that sequence positions upstream of the —50 position
were likely to be important in determining regulatory activity
(Figure 3). Sequences of reduced length would therefore not
have contained vital upstream regulatory motifs and may
therefore have shown reduced activity as compared to the
longer sequences.

The results of the partition modeling were therefore used to
reduce the dimensionality of the modeled design space. PLS
and ANN sequence-function models were derived that
modeled GFP fluorescence as a function of varying number
of nucleotide positions. Sequence positions were selected in
descending order of the number of partitions caused in the 100
partition models (Figure 3). In all instances, model perform-
ance was quantified using an independent test set of 10
promoter sequences that were held back from model training
and validation.
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sets unless hidden by the points. The dashed lines represent the lines of equivalence, where empirically measured and predicted values are equal.

The optimum PLS model that was obtained inferred
promoter activity as a function of 20 nucleotide positions
(Supporting Figure S). The model returned an R* value of
0.6024 when applied to the training and validation data sets
and an R value of 0.8901 when applied to the test set (Figure
4). These results suggested that the obtained PLS model
provided a reasonable fit of the training data and had good
predictive power when applied to previously unseen data.

A Design of Experiments (DoE) approach was used to
optimize ANN architecture (Supporting Information). In total,
over 113 500 single-layer ANNs were fit, varying in terms of
the personality of the activation function used, the number of
nodes in the hidden layer, the cross validation methodology,
and the number of promoter sequence positions modeled.

The optimal ANN obtained was an ensemble model that
contained two constituent ANNs. Each of the constituent
models used sigmoidal activation functions with 5 nodes in the
hidden layer and modeled promoter activity as a function of 20
nucleotide sequence positions. The optimal model returned an
R? value of 0.9746 when applied to the training and validation
data sets and an R* value of 0.9691 when applied to the test set,
suggesting a good fit of the training data and strong predictive
power (Figure 4). For both ANN and PLS, models that
inferred promoter activity as a function of complete 100 bp
sequences showed lower predictive accuracy than models of
reduced numbers of sequence positions (Supporting Informa-
tion). This result validated the use of partition modeling to
reduce the size of the modeled design space.

Predicting the Function of Previously Uncharacter-
ized Promoters. To further test the predictive power of the
putatively high-performing PLS and ANN models, a secondary
test set of previously uncharacterized Geobacillus promoters
was selected. Ten putative regulatory sequences were selected
at random from across the promoter phylogeny (Figure 1A)
and characterized in G. thermoglucosidasius upstream of GFP.
However, despite the strong performance of the two models on
the primary test set, neither model returned accurate
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predictions of promoter activity for the selected sequences
(Figure 4); the PLS model returned an R? value of 0.3595, and
the ANN returned an R* value of 0.2283. Consequently, the
derived models were insufficiently general to permit accurate
predictions of endogenous promoter activity or facilitate
rational, forward promoter design.

Future Applications of Promoter Sequence-Function
Modeling. The lack of generality shown by the models
derived in this investigation was probably the result of the
limited number of characterized promoter sequences as
compared to the scale of the design space, resulting in training
set that does not adequately capture the complexity of the
response surface. Although PLS and ANN promoter sequence-
function models using comparatively small data sets have been
described, ™" the promoter libraries used in these studies
contained considerable sequence homology, thereby restricting
the complexity of the response surface under investigation. If
accurate predictive models of more complex promoter design
spaces are to be obtained, a training data set that contains
several orders of magnitude more promoter sequences than the
80 sequences used here is likely necessary.””>** However, the
scale of the required promoter libraries might be impractical in
non-model organisms.

Although high-throughput characterization of libraries
containing thousands of genetic parts using techniques such
as a combination of flow cytometry and multiplexed DNA or
RNA sequencing has been previously described,”””* these
approaches require the acquisition of large numbers of
transformants and approximately 50-fold library coverage is
necessary to achieve accurate characterization of individual
promoters.43 However, low transformation efficiencies in many
non-model organisms, including Geobacillus, preclude the
production of libraries of the required scale, potentially
limiting the usefulness of statistical sequence-function
modeling in these contexts.

In lieu of a massive increase in the number of characterized
sequences, the novel bioinformatic approach to promoter
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identification that was developed in this investigation, coupled
with partition modeling to identify those sequence positions
that are key for determining promoter activity, could be used
to provide an initial screen of the design space in organisms for
which understanding of cis-regulatory sequences is limited.
This information could subsequently be used for DoE inspired
promoter optimization in future studies by facilitating the
rational design of limited sequence libraries that vary only at
the identified key positions. In vivo characterization and in silico
modeling of the designed libraries could potentially yield
models of greater predictive power than those derived here
without the need for a large-scale increase in characterization
throughput.

The models that were derived in this study were based
purely on the statistical likelihood of a given nucleotide
occurring at a given position within the promoter sequence.
Measures of biophysical promoter properties such as mRNA
secondary structures, AT content, or the free energy barrier for
promoter—RNA polymerase binding were not included
because unsupervised ANN models could potentially learn
the effect of biophysical promoter properties without specific
terms being explicitly defined in the model. The inclusion of
biophysical terms in future modeling attempts may facilitate
the derivation of more accurate predictive models*>***® by
providing more information about promoter function than can
be gleaned from sequence data alone. Alternatively, the use of
distance metrics® as model terms to quantitatively define
differences in nucleotide sequence between promoters might
also allow for more accurate mapping of the promoter
sequence-function design space.60

Finally, although the quantitative sequence—function models
derived in this investigation were insufficiently general to
determine pre hoc in vivo promoter activity, the potential for
statistical modeling to enhance our fundamental knowledge of
genetic regulation in complex systems cannot be overlooked.
For example, partition modeling of the relationship between
nucleotide sequence and in vivo promoter function yielded
potentially useful insights into the structure of cis-regulatory
elements in Geobacillus with regions of sequence upstream of
the likely position of canonical promoter motifs predicted to be
important in determining promoter activity (Figure 3).

B CONCLUSION

We developed a generally applicable method for the
identification of constitutive promoters that combines
bioinformatic filtering, empirical characterization, and machine
learning to expand promoter toolkits in atypical host organisms
and increase the understanding of the relationship between
DNA sequence and function. The method was used to identify
80 promoters covering a 2-log range of predictable expression
levels in G. thermoglucosidasius, of which 7 were shown to
function consistently regardless of downstream coding
sequence. Although sufficiently general in silico models of
promoter activity could not be obtained using ANN or PLS,
partition modeling identified regions of sequence upstream of
the canonical prokaryotic promoter consensus regions that
strongly influenced regulatory activity in Geobacillus.

B MATERIALS AND METHODS

Bacterial Strains and Plasmids. Type strains of G.
kaustophilus (DSM7263), G. stearothermophilus (DSM22), and
G. thermoglucosidasius (DSM2542) were obtained from the
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DSMZ (Brunswick, Germany). Cultures were freeze-dried
ampules and rehydrated as required following the DSMZ
standard protocol. G. thermodenitrificans (K1041) was
obtained from ZuvaSyntha Ltd. (Hertfordshire, UK).

NEB S-alpha (New England Biolabs, Massachusetts, United
States) chemically competent Escherichia coli strain (genotype:
fhuA2 D(argF-lacZ)U169 phoA gin V44 f80D(lacZ)M1S
grA96 recAl relAl endAl thi-1 hsdR17) was used for
microbiological cloning, storage, and amplification of plasmid
vectors.

E. coli S17-1 (genotype: recA pro hsdRm RP4-Tc::Mu-
Km::Tn7) was used as the mobilization host for the conjugal
transformation of Geobacillus spp. Transfer genes from the RP4
plasmid are integrated into the genome of E. coli S17-1,
allowing for the conjugal transfer of plasmids containing the
requisite mobilization elements.”""

All putative promoter sequences were characterized in vivo
using the pS797 vector (Supporting Figure 6). To facilitate
conjugal transformation of Geobacillus spp., pS797 contained
an origin of transfer (ORI T) comprised of the Nic region and
traJ gene from the conjugal plasmid RP4. pS797 also contained
two origins of replication, ColE and BST1, to allow for
propagation in E. coli and Geobacillus spp., respectively. Two
antibiotic selection markers were also present, allowing for
selection by ampicillin in E. coli and by kanamycin in
Geobacillus.

Both E. coli S17-1 and pS797 were obtained from
ZuvaSyntha Ltd. (Hertfordshire, UK).

Growth Media. All complex growth media were purchased
from Becton Dickson UK (Berkshire, UK). E. coli cultures
were propagated in Lysogeny Broth (LB; 10 g I™! tryptone, 10
g 1! NaCl, 5 g I”! yeast extract). Lennox Lysogeny Broth
(LLB; 10 g1™" tryptone, S g17' NaCl, S g I yeast extract) was
used for coculture of E. coli and G. thermoglucosidasius during
conjugal transformation of G. thermoglucosidasius. All Geo-
bacillus species were propagated in modified LB (mLB). mLB
used a basal composition of LLB supplemented with 1.05 mM
C¢HoNOg, 0.91 mM CaCl,, 0.59 mM MgSO,, and 0.04 mM
FeSO,.”

For all media types, agar was supplemented as required to 15
g I”!. When required, E. coli growth media was supplemented
with 100 ug mL™" ampicillin. G. thermoglucosidasius growth
media was supplemented with 12.5 yg mL™" kanamycin.

Bioinformatic Identification of Putative Promoters
from the Core Genome of Four Geobacillus Species. The
genomes of four Geobacillus species, G. kaustophilus
(DSM7263), G. stearothermophilus (DSM22), G. thermodeni-
trificans (K1041), and G. thermoglucosidasius (DSM2542) were
sequenced and de novo assembled. Genomes were sequenced
using an Illumina MiSeq system using reads with 300 bp paired
end sequencing. The resulting raw sequencing reads were
trimmed based on quality score using the fastq-mcf tool”* and
assembled using SPAdes software (Version 3.5%). Following
assembly, the genome scaffolds were annotated using Prokka
software (Version 1.9).

The GET_HOMOLOGUES software package®” was used to
identify gene families with homologues in all four of the
Geobacillus species of interest. To increase calculation
robustness, three disparate algorithms were used to cluster
homologous gene families: BDBH, COG, and OMCL. In all
instances, the “-t” option was used to isolate only those clusters
that contained single-copy proteins. All other software
parameters were set as default. Only those clusters that were
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common to all three algorithms were selected for further
analysis.

Once identified, the core coding sequences were extracted
from the four genomes. Output files were parsed, reformatted
to GenBank file format and imported into the Artemis genome
browser.%® For each entry, the 100 bp immediately upstream of
the start codon was extracted. BPROM software®” was
subsequently used to screen the extracted 100 bp sequences
for the presence and nucleotide composition of functional
regulatory motifs. Additionally, putative promoters were
screened against BPROM’s list of known TFBS (Supporting
Table 2). Any putative promoters containing TFBS were
discarded.

The nucleotide sequences of the putative promoters were
aligned using MUSCLE software,’” and the resultant align-
ments were used to construct a phylogenetic tree using
FastTree software.”® Putative promoters were subsequently
manually clustered into 21 clades using FigTree software.’”
Putative regulatory sequences were selected at random for in
vivo characterization from these 21 clades. True randomness
was achieved by using a random number generator that
converted atmospheric noise into numerical values.”’ Initially,
those promoters that were selected for in vivo characterization
were manually checked using the Artemis genome browser to
ensure that they did not overlap with any adjacent coding
sequences. Later, to expedite this process, BEDTools
intersect’' was used to identify those putative promoters
which were nonoverlapping.

Putative promoters were aligned to transcripts of each of the
four Geobacillus species using Bowtie 2 software.”” Indexes of
the genome files were prepared using the “build” command.
Putative regulatory sequences were subsequently aligned to
each Geobacillus genome using Bowtie 2 with the resultant
alignments provided in.sam format. The alignment.sam files
were converted to.bam format, sorted and indexed using
SAMtools.”* The resultant alignments were compared against
the four selected Geobacillus genomes using BEDTools
intersect. The “-v” command was used to report only those
putative promoters that were nonoverlapping with any
annotated features in the genome transcripts. Output files
were provided in.bam format and were subsequently converted
to FASTA format using bam2fastx software.”*

Bioinformatic Identification of Putative Promoter
Sequences from Bacteriophage. The genomes of two
bacteriophages, Thermus phage Phi OH2 (NC_021784) and
Geobacillus phage GBSV1 (NC_008376""), were selected for
analysis based on their ready availability from the GenBank
database. The retrieved GenBank files were loaded into the
Artemis genome browser,”® and suitable intergenic regions of
at least 100 bp length were manually identified. The 100 bp
nucleotide sequences immediately upstream of the adjacent
CDS were extracted and analyzed using BPROM software*” to
identify putative promoters. Putative promoter sequences were
screened against BPROMs list of known TEFBS, and any
sequences that contained known TFBS were discarded.

Selection, Synthesis, and Cloning of Putative
Promoters for in Vivo Characterization. Following
bioinformatic filtering, putative promoters were synthesized
and independently cloned upstream of the coding sequences of
two reporter proteins, Dasher GFP and mOrange76 (Support-
ing Figure 6). The Geobacillus promoter phylogeny (Figure
1B) was used to rationally select putative regulatory sequences
for in vivo characterization in G. thermoglucosidasius. To
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maximize the portion of the design space that was empirically
explored, at least 2 putative promoters were selected at random
from each of the 13 clades of the phylogeny that contained
more than 50 sequences. Two putative promoters were also
selected from each of the analyzed phage genomes. Initial
characterization of the bacteriophage promoters showed that
only one out of the four selected sequences was active in G.
thermoglucosidasius (Supporting Figure 7). This 1 active
bacteriophage promoter was added to 99 putative promoters
from the Geobacillus phylogeny to create a set of 100 putative
regulatory sequences.

The 100 selected putative promoters were synthesized and
cloned into the pS797 vector (Supporting Figure 6). In all
instances, the reporter CDS (GFP or mOrange) was followed
by the S718 terminator from the G. thermodenitrificans NG80
2-oxoglutarate ferrodoxin oxioreductase subunit beta.”’
Putative regulatory sequences were either directly synthesized
upstream of the relevant reporter CDS in pS797 by ATUM
(Previously DNA 2.0, California, United States) or were
synthesized as double stranded fragments by IDT (Illinois,
United States) and cloned in vitro upstream of the relevant
reporter CDS.

A type IIS restriction cloning methodology’®”” was used to
join DNA parts. Parts were flanked with unique cloning affixes
(Supporting Table 3) containing Bsal restriction sites. Part-
specific postdigestion overhangs ensured that digested frag-
ments were only able to ligate in a defined manner. In
instances where putative promoters were synthesized by
ATUM, the scar sequences that would have resulted form in
vitro cloning of DRS and RBS were inserted into the sequence
in silico prior to synthesis.

For in vitro cloning, terminator and reporter sequences were
synthesized by ATUM in the pJ201 cloning vector. Cloning
reactions consisted of 20 fmol of each of the pS797 destination
vector and the relevant cloning vectors, with 10 U Bsal
restriction endonuclease and 1 U T4 DNA ligase in 2 uL
ligation buffer (10X Thermo Scientific FastDigest buffer
supplemented with 0.5 mM ATP). Final reactions were
made up to 20 pL with ddH,O. Reactions were incubated
for 50 cycles of 37 °C for 2 min then 20 °C for 5 min. This was
followed by final incubation steps of 50 °C for S min then 80
°C for 5 min. Ten uL of the incubated cloning reaction mix
was used to transform chemically competent NEB S-alpha E.
coli, following the protocol described below. Plasmid
construction was verified by diagnostic digest, gel electro-
phoresis, and Sanger sequencing.

Transformation of Chemically Competent E. coli. E.
coli S17-1 were made chemically competent using a modified
version of the protocol described by Hanahan.*” Five milliliter
overnight cultures of E. coli S17-1 were used to inoculate 40
mL LB at a 1:1000 dilution. Inoculated cultures were
incubated at 37 °C, with shaking at 220 rpm, until an ODy,
of 0.4—0.5 was reached. Cells were harvested by centrifugation
at 4500g for 8 min at 4 °C and resuspended in 8 mL
transformation buffer 1 (TF1:150 g 1" Glycerol; 30 mL ™' 1
M CH;CO,K pH 7.5; 0.1 M KCl; 0.01 M CaCl,.2H,0.
Adjusted to pH 6.4 with CH;COOH, autoclaved, then
supplemented with SO mL 17! filter sterilized 1 M
MnCl,.4H,0). Resuspended cells were subsequently incubated
on ice for 15 min, and harvested as above. The resulting cell
pellet was resuspended in 4 mL of transformation buffer 2
(TF2:150 g 1! Glycerol; 0.075 M CaCl,.2H,0; 0.01 M KCL.
Autoclaved, then supplemented with 20 mL 17" filter sterilized
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0.5 M MOPS-KOH pH 6.8). One-hundred microliter aliquots
of competent cells were flash frozen in liquid nitrogen and
stored at —80 °C until required.

For transformation, 100—200 ng of plasmid DNA was added
to chemically competent E. coli of the relevant strain. Samples
were incubated on ice for 40 min, then heat shocked at 42 °C
for 2 min and incubated on ice for a further 5 min. Seven-
hundred microliters of LB was added, and the resulting
samples were incubated at 37 °C with shaking at 220 rpm for
60 min. After incubation, samples were harvested by
centrifugation at 4300g for S min, and 500 uL of the
supernatant was removed. The cell pellet was resuspended in
the remaining supernatant, 200 yL of which was subsequently
plated out onto LB agar plates with antibiotic selection as
required. Plates were incubated at 37 °C for 16 h.

Conjugal Transformation of G. thermoglucosidasius.
Approximately S uL of transformed E. coli S17-1 was collected
from a confluent plate-culture using a microbiological loop,
suspended in 600 uL LLB, and centrifuged at 4300g for 5 min.
The supernatant was removed, and the resultant pellet
resuspended in a further 600 yL LLB. Approximately 10—15
uL wild-type G. thermoglucosidasius was collected from a
confluent plate-culture using a microbiological loop, added to
the E. coli suspension, and resuspended. The resulting bacterial
mix was dispensed onto LLB agar plates in drops of
approximately 10 uL.

LLB plates were incubated at 37 °C for 7 h, followed by
incubation at 60 °C for 1 h. The resulting biomass was
resuspended in 1 mL of LLB and used to create dilutions of
1:10 and 1:5 biomass to sterile LLB. Aliquots (200 L) of each
dilution were spread onto separate mLB agar plates containing
12.5 ug mL™! kanamycin. Plates were incubated at S5 °C for
approximately 65 h.

In Vivo Characterization of Promoter Activity. To
prepare starter cultures of G. thermoglucosidasius for promoter
characterization, transformants were picked and restreaked on
mLB agar plates, with antibiotic selection as required. Plates
were incubated at 55 °C for 16 h. The resulting biomass was
subsequently resuspended in 5 mL mLB. Bacterial suspensions
were then used to inoculate mLB to an ODgy, of 0.1, with
antibiotic selection as required.

Three 200 uL sample aliquots per transformant were loaded
onto 96-well plates using either a Corbett Robotics CAS-1200
(Qiagen, Netherlands) or a Gilson Pipetmax 268 (Gilson Inc.,
Wisconsin, USA). To minimize the effect of position
dependent bias, to which assays performed in a 96-well plate
format can be susceptible,®" sample aliquots were loaded in a
Latin rectangle design; no transformant was represented more
than once on any given row or column of the microplate
(Supporting Figure 8). Ninety-six-well plates with lid covers
have been shown to suffer from significant loss of culture in the
outermost wells through evaporation.*” To account for such
edge effects, wells at the plate periphery were filled with 200
uL aliquots of sterile growth media. Microplates were
incubated using PHMP Thermoshakers (Grant Instruments,
UK). Incubation was at 60 °C with shaking at 800 rpm.

Population-level measurements of culture absorbance and
fluorescence were taken using a Tecan Infinite 200 PRO
microplate reader (Tecan, Switzerland). For measurements of
GFP activity, fluorescence excitation and emission values were
477 and S1S nm, respectively. For measurements of mOrange
activity, excitation and emission values were 546 and 576 nm,
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respectively. In both cases, the gain of the instrument was set at
56. Absorbance of all cultures was measured at 600 nm.

Single-cell measurements of fluorescence activity were
obtained using a BD FACS Aria II Fluorescence Activated
Cell Sorter (FACS) equipped with a 100 ym nozzle. A sheath
fluid of phosphate buffered saline was used. Culture
fluorescence was excited at 488 nm and fluorescence intensity
was recorded using a 530/30 nm detector in the case of GFP
fluorescence and a 585/42 detector in the case of mOrange
fluorescence. One-hundred thousand events were recorded per
population.

Promoter Sequence-Function Modeling. All sequence-
function modeling was performed using JMP pro versions 12
and 13 (SAS Institute Inc., North Carolina, United States).

Partition Modeling. One-hundred random forest models
were generated for each of the GFP and mOrange character-
ization data sets. In all instances, 20% of the available promoter
sequences were randomly selected and withheld from model
training to serve as a validation set. Each random forest
contained a maximum of 100 decision trees, with early
stopping if the addition of further trees to the forest did not
improve the validation statistic. Each tree was trained on a data
set of 26 randomly selected promoter sequence positions,
drawn with replacement.

To generate partition trees, the selected sequences were
divided into groups that differed maximally in terms of the
response of interest. For example, the maximum difference in
expression activity between two groups of promoters might be
obtained by splitting the training data into a group of
sequences with guanine residues at the —15 position and
another group where adenine, cytosine, or thymine residues
are present at the —15 position (Supporting Figure 9). The
resulting subgroups were further divided, resulting in the
formation of a tree like structure. By repeating the process
multiple times on different, randomly selected portions of the
training data, a “forest”®® of decision trees was formed. Across
the entire forest, the more times a given factor caused a split in
the data set, the better that factor was predicted to be at
explaining variation in the response of interest.

Selection of an Independent Test Set for PLS and
ANN modeling. To provide an independent test set on which
to measure the predictive power of the derived models, 10
promoter sequences were selected and withheld from model
training and validation. So that the test set contained
promoters with a range of activity levels, the distribution of
GFP expression levels of the 95 characterized sequences was
analyzed. Two sequences were subsequently selected at
random from the first distribution quartile; five promoters
were selected from the interquartile range, and three sequences
were selected from the fourth quartile.

Partial Least squares Sequence-Function Modeling.
PLS models were trained that modeled GFP fluorescence as a
function of varying numbers of sequence positions. The
number of sequence positions modeled was systematically
increased from 10 to S0 in increments of 5. Models that fit
fluorescence as a function of the complete 104 bp promoters
were also generated. For each of the 10 potential groups of x
variables, multiple PLS models were fit using the noniterative
linear PLS (NIPALS) algorithm and using either KFold or
holdbackcross validation to optimize the number of latent
variables that were extracted from the original data with a
maximum of 10 latent variables permitted per model. Once
trained and validated, the models were used to make
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predictions of activity for the 10 promoters in the withheld test
set (Supporting Figure S). The optimum model was judged to
be the one that returned the highest R* and lowest root average
squared error (RASE) value when applied to the test set; i.e.,
the model that had the lowest prediction error.

Artificial Neural Network Sequence—Function Mod-
eling. ANNs were fit using the multilayer perceptron
algorithm of JMP software with sigmoidal activation functions.
Network architecture was optimized using a Design of
Experiments approach (Supporting Information).

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssyn-
bio.9b00061.

Supporting Text (including analysis of the effect of type
IIS restriction cloning scars on the activity of promoter
sequences and extended methods for ANN sequence—
function modeling), Supporting Figures (including
visualization of a sequence alignment, effect of cloning
scar sequences on promoter activity, comparison of
codon usage, activity levels of putative promoter
sequences, R* and RASE values, plasmid map of the
pS797 expression vector, initial characterization of
putative promoter sequences, schematic representations
of Latin rectangle 96-well plate layout and random forest
partition model, assessment of the contribution of ANN
model parameters, and model performance statistics),
and Supporting Tables (including list of TFBS, DNA
sequences, analysis of the native genes, and ANN
parameters) (PDF)

Accession Codes

The sequence data for the four Geobacillus spp. used in this
study have been submitted to the NCBI Sequence Read
Archive and are available under the accession number
PRJNAS21450.

B AUTHOR INFORMATION

Corresponding Author

*E-mail: J.Love@exeter.ac.uk.

ORCID

James Gilman: 0000-0001-7250-7909

Richard K. Tennant: 0000-0003-3033-1858

Thomas P. Howard: 0000-0002-5546-4043

John Love: 0000-0003-0340-7431

Author Contributions

J.G, T.P.H, D.AP, and J.L. designed the study. RK.T. and
T.L. assisted with bioinformatic analyses. J.G. and C.S.
performed the characterization experiments. J.G. and RK.T.
performed flow cytometry experiments. J.G. analyzed the data
and performed the sequence—function modeling. J.G. and J.L.
wrote the manuscript. All authors commented on and revised
the manuscript.

Notes

The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This work was supported by a grant from Shell International
Exploration and Production. The authors acknowledge the

1184

Exeter Sequencing Service for their assistance in sequencing
the Illumina libraries.

B ABBREVIATIONS

ANN, artificial neural network; BDBH, bidirectional best-hit;
bp, base pair; CDS, coding sequence; COG, COG triangles;
DoE, Design of Experiments; DRS, distal regulatory sequence;
OMCL, OrthoMCL; PLS, partial least squares; RBS, ribosome
binding site; TFBS, transcription factor binding site

B REFERENCES

(1) Canton, B, Labno, A, and Endy, D. (2008) Refinement and
standardization of synthetic biological parts and devices. Nat.
Biotechnol. 26, 787—793.

(2) Segall-Shapiro, T. H., Sontag, E. D., and Voigt, C. A. (2018)
Engineered promoters enable constant gene expression at any copy
number in bacteria. Nat. Biotechnol. 36, 352.

(3) Salis, H. M., Mirsky, E. A., and Voigt, C. A. (2009) Automated
design of synthetic ribosome binding sites to control protein
expression. Nat. Biotechnol. 27, 946—950.

(4) Nielsen, A. A. K, Der, B. S, Shin, J., Vaidyanathan, P., Paralanov,
V., Strychalski, E. A, Ross, D., Densmore, D., and Voigt, C. A. (2016)
Genetic circuit design automation. Science 352, aac7341.

(5) Boyle, P. M., and Silver, P. A. (2012) Parts plus pipes: Synthetic
biology approaches to metabolic engineering. Metab. Eng. 14, 223—
232.

(6) Adams, B. L. (2016) The Next Generation of Synthetic Biology
Chassis: Moving Synthetic Biology from the Laboratory to the Field.
ACS Synth. Biol. 5, 1328—1330.

(7) Johns, N. L, Gomes, A. L. C., Yim, S. S., Yang, A., Blazejewski, T.,
Smillie, C. S., Smith, M. B., Alm, E. J., Kosuri, S., and Wang, H. H.
(2018) Metagenomic mining of regulatory elements enables
programmable species-selective gene expression. Nat. Methods 1S,
323-329.

(8) Brown, S., Loh, J., Aves, S. J., and Howard, T. P. (2018) Alkane
Biosynthesis in Bacteria. In Biogenesis of Hydrocarbons (Stams, A. J.
M.,, and Sousa, D., Eds.), pp 1—20, Springer International Publishing,
Cham.

(9) Reeve, B., Martinez-Klimova, E., De Jonghe, J., Leak, D. J., and
Ellis, T. (2016) The Geobacillus Plasmid Set: A Modular Toolkit for
Thermophile Engineering. ACS Synth. Biol. S, 1342—1347.

(10) Yan, Q. and Fong, S. S. (2017) Challenges and Advances for
Genetic Engineering of Non-model Bacteria and Uses in Con-
solidated Bioprocessing. Front. Microbiol. 8, 2060.

(11) Cripps, R. E,, Eley, K, Leak, D. J., Rudd, B., Taylor, M., Todd,
M., Boakes, S., Martin, S., and Atkinson, T. (2009) Metabolic
engineering of Geobacillus thermoglucosidasius for high yield ethanol
production. Metab. Eng. 11, 398—408.

(12) Jiang, Y., Xin, F,, Ly, J,, Dong, W., Zhang, W., Zhang, M., Wu,
H., Ma, J,, and Jiang, M. (2017) State of the art review of biofuels
production from lignocellulose by thermophilic bacteria. Bioresour.
Technol. 245, 1498—1506.

(13) Olson, D. G., McBride, J. E., Shaw, A. J,, and Lynd, L. R. (2012)
Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol.
23, 396—40S.

(14) Gilman, J., and Love, J. (2016) Synthetic promoter design for
new microbial chassis. Biochem. Soc. Trans. 44, 731—737.

(15) Blazeck, J., and Alper, H. S. (2013) Promoter engineering:
Recent advances in controlling transcription at the most fundamental
level. Biotechnol. . 8, 46—58.

(16) Brockman, I. M., and Prather, K. L. J. (2015) Dynamic
metabolic engineering: New strategies for developing responsive cell
factories. Biotechnol. J. 10, 1360—1369.

(17) Goldbeck, C. P., Jensen, H. M., TerAvest, M. A,, Beedle, N.,
Appling, Y., Hepler, M., Cambray, G., Mutalik, V., Angenent, L. T.,
and Ajo-Franklin, C. M. (2013) Tuning Promoter Strengths for
Improved Synthesis and Function of Electron Conduits in Escherichia
coli. ACS Synth. Biol. 2, 150—159.

DOI: 10.1021/acssynbio.9b00061
ACS Synth. Biol. 2019, 8, 1175—-1186


http://pubs.acs.org/doi/suppl/10.1021/acssynbio.9b00061/suppl_file/sb9b00061_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.9b00061/suppl_file/sb9b00061_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acssynbio.9b00061
http://pubs.acs.org/doi/abs/10.1021/acssynbio.9b00061
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.9b00061/suppl_file/sb9b00061_si_001.pdf
mailto:J.Love@exeter.ac.uk
http://orcid.org/0000-0001-7250-7909
http://orcid.org/0000-0003-3033-1858
http://orcid.org/0000-0002-5546-4043
http://orcid.org/0000-0003-0340-7431
http://dx.doi.org/10.1021/acssynbio.9b00061

ACS Synthetic Biology

Research Article

(18) Mutalik, V. K, Guimaraes, J. C.,, Cambray, G., Lam, C,,
Christoffersen, M. J., Mai, Q. A,, Tran, A. B., Paull, M., Keasling, J. D.,
Arkin, A. P., and Endy, D. (2013) Precise and reliable gene expression
via standard transcription and translation initiation elements. Nat.
Methods 10, 354—360.

(19) Alper, H., Fischer, C., Nevoigt, E., and Stephanopoulos, G.
(2005) Tuning genetic control through promoter engineering. Proc.
Natl. Acad. Sci. U. S. A. 102, 12678—12683.

(20) Jensen, P. R, and Hammer, K. (1998) The Sequence of Spacers
between the Consensus Sequences Modulates the Strength of
Prokaryotic Promoters. Appl. Environ. Microb. 64, 82—87.

(21) Mordaka, P. M., and Heap, J. T. (2018) Stringency of Synthetic
Promoter Sequences in Clostridium Revealed and Circumvented by
Tuning Promoter Library Mutation Rates. ACS Synth. Biol. 7, 672—
681.

(22) Zhang, S., Liu, D., Mao, Z., Mao, Y., Ma, H., Chen, T., Zhao, X.,
and Wang, Z. (2018) Model-based reconstruction of synthetic
promoter library in Corynebacterium glutamicum. Biotechnol. Lett. 40,
819—-827.

(23) McWhinnie, R. L., and Nano, F. E. (2014) Synthetic Promoters
Functional in Francisella novicida and Escherichia coli. Appl. Environ.
Microbiol. 80, 226—234.

(24) DeLorenzo, D. M., Rottinghaus, A. G., Henson, W. R,, and
Moon, T. S. (2018) Molecular Toolkit for Gene Expression Control
and Genome Modification in Rhodococcus opacus PD630. ACS Synth.
Biol. 7, 727—738.

(25) Blazeck, J, Garg, R, Reed, B, and Alper, H. S. (2012)
Controlling Promoter Strength and Regulation in Saccharomyces
cerevisiage Using Synthetic Hybrid Promoters. Biotechnol. Bioeng. 109,
2884—2895.

(26) Cambray, G, Guimaraes, J. C, and Arkin, A. P. (2018)
Evaluation of 244,000 synthetic sequences reveals design principles to
optimize translation in Escherichia coli. Nat. Biotechnol. 36, 1005—
101S.

(27) Kosuri, S.,, and Church, G. M. (2014) Large-scale de novo
DNA synthesis: technologies and applications. Nat. Methods 11, 499—
507.

(28) Bartosiak-Jentys, J., Hussein, A. H., Lewis, C. J., and Leak, D. J.
(2013) Modular system for assessment of glycosyl hydrolase secretion
in Geobacillus thermoglucosidasius. Microbiology 159, 1267—1275.

(29) Bezuidt, O. K., Pierneef, R, Gomri, A. M, Adesioye, F.,
Makhalanyane, T. P., Kharroub, K, and Cowan, D. A. (2015)
Genomic analysis of six new Geobacillus strains reveals highly
conserved carbohydrate degradation architectures and strategies.
Front. Microbiol. 6, 430.

(30) Zhou, J., Wy, K,, and Rao, C. (2016) Evolutionary Engineering
of Geobacillus thermoglucosidasius for Improved Ethanol Production.
Biotechnol. Bioeng. 113, 2156—2167,

(31) Kananavic¢iaté, R., and Citavicius, D. (2015) Genetic
engineering of Geobacillus spp. J. Microbiol. Methods 111, 31—39.

(32) Studholme, D. J. (2015) Some (bacilli) like it hot: genomics of
Geobacillus species. Microb. Biotechnol. 8, 40—48.

(33) Blanchard, K., Robic, S., and Matsumura, I. (2014) Trans-
formable facultative thermophile Geobacillus stearothermophilus
NUB3621 as a host strain for metabolic engineering. Appl. Microbiol.
Biotechnol. 98, 6715—6723.

(34) Suzuki, H., Murakami, A. and Yoshida, K. I. (2012)
Counterselection System for Geobacillus kaustophilus HTA426
through Disruption of pyrF and pyrR. Appl. Environ. Microbiol. 78,
7376—7383.

(35) Bartosiak-Jentys, J., Eley, K., and Leak, D. J. (2012) Application
of pheB as a Reporter Gene for Geobacillus spp., Enabling Qualitative
Colony Screening and Quantitative Analysis of Promoter Strength.
Appl. Environ. Microbiol. 78, 5945—5947.

(36) Lin, P. P., Rabe, K. S., Takasumi, J. L., Kadisch, M., Arnold, F.
H, and Liao, J. C. (2014) Isobutanol production at elevated
temperatures in thermophilic Geobacillus thermoglucosidasius. Metab.
Eng. 24, 1-8.

1185

(37) Pogrebnyakov, I, Jendresen, C. B, and Nielsen, A. T. (2017)
Genetic toolbox for controlled expression of functional proteins in
Geobacillus spp. PLoS One 12, e0171313.

(38) Jensen, T. @., Pogrebnyakov, 1., Falkenberg, K. B, Red], S., and
Nielsen, A. T. (2017) Application of the thermostable f-galactosidase,
BgaB from Geobacillus stearothermophilus as a versatile reporter under
anaerobic and aerobic conditions. AMB Express 7, 169.

(39) Contreras-Moreira, B., and Vinuesa, P. (2013) GET_HOMO-
LOGUES, a Versatile Software Package for Scalable and Robust
Microbial Pangenome Analysis. Appl. Environ. Microbiol. 79, 7696—
7701.

(40) Mendoza-Vargas, A., Olvera, L., Olvera, M., Grande, R., Vega-
Alvarado, L., Taboada, B., Jimenez-Jacinto, V., Salgado, H., Juarez, K,
Contreras-Moreira, B., Huerta, A. M., Collado-Vides, J., and Morett,
E. (2009) Genome-Wide Identification of Transcription Start Sites,
Promoters and Transcription Factor Binding Sites in E. coli. PLoS
One 4, €7526.

(41) Davis, J. H,, Rubin, A. J,, and Sauer, R. T. (2011) Design,
construction and characterization of a set of insulated bacterial
promoters. Nucleic Acids Res. 39, 1131—1141.

(42) Solovyev, V., and Salamov, A. (2011) Automatic Annotation of
Microbial Genomes and Metagenomic Sequences. In Metagenomics
and its Applications in Agriculture, Biomedicine and Environmental
Studies (Li, R. W., Ed.), pp 61—78, Nova Science Publishers, New
York.

(43) Kosuri, S., Goodman, D., Cambray, G., Mutalik, V. K, Gao, Y.,
Arkin, A. P, Endy, D., and Church, G. M. (2013) Composability of
regulatory sequences controlling transcription and translation in
Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 110, 14024—14029.

(44) Mutalik, V. K, Guimaraes, J. C, Cambray, G, Mai, Q. A,
Christoffersen, M. J., Martin, L., Yu, A, Lam, C., Rodriguez, C,,
Bennett, G, Keasling, J. D.,, Endy, D., and Arkin, A. P. (2013)
Quantitative estimation of activity and quality for collections of
functional genetic elements. Nat. Methods 10, 347—353.

(45) Zong, Y., Zhang, H. M,, Lyu, C, Ji, X, Houy, J, Guo, X,
Ouyang, Q., and Lou, C. (2017) Insulated transcriptional elements
enable precise design of genetic circuits. Nat. Commun. 8, S2.

(46) Shine, J., and Dalgarno, L. (1974) The 3'-Terminal Sequence
of Escherichia coli 16S Ribosomal RNA: Complementarity to
Nonsense Triplets and Ribosome Binding Sites. Proc. Natl. Acad.
Sci. U. S. A. 71, 1342—1346.

(47) Lou, C., Stanton, B., Chen, Y. J., Munsky, B., and Voigt, C. A.
(2012) Ribozyme-based insulator parts buffer synthetic circuits from
genetic context. Nat. Biotechnol. 30, 1137—1142.

(48) Qi, L., Haurwitz, R. E., Shao, W., Doudna, J. A., and Arkin, A. P.
(2012) RNA processing enables predictable programming of gene
expression. Nat. Biotechnol. 30, 1002—1006.

(49) Gasser, B, Steiger, M. G., and Mattanovich, D. (2015)
Methanol regulated yeast promoters: production vehicles and toolbox
for synthetic biology. Microb. Cell Fact. 14, 196.

(50) Baltagi, Y., and Kussener, F. (2014) Advantages of Bootstrap
Forest for Yield Analysis, SAS Institute Inc., Cary.

(51) Ross, W.,, Gosink, K. K., Salomon, J., Igarashi, K., Zou, C,,
Ishihama, A., Severinov, K, and Gourse, R. L. (1993) A Third
Recognition Element in Bacterial Promoters: DNA Binding by the a
Subunit of RNA Polymerase. Science 262, 1407—1413.

(52) Estrem, S. T., Gaal, T., Ross, W., and Gourse, R. L. (1998)
Identification of an UP element consensus sequence for bacterial
promoters. Proc. Natl. Acad. Sci. U. S. A. 95, 9761-9766.

(53) Bataineh, M., and Marler, T. (2017) Neural network for
regression problems with reduced training sets. Neural Networks 9S,
1-9.

(54) Wold, S., Sjostrom, M., and Eriksson, L. (2001) PLS-
regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst.
S8, 109—130.

(55) De Mey, M., Maertens, J., Lequeux, G. J., Soetaert, W. K, and
Vandamme, E. J. (2007) Construction and model-based analysis of a
promoter library for E. coli: an indispensable tool for metabolic
engineering. BMC Biotechnol. 7, 34.

DOI: 10.1021/acssynbio.9b00061
ACS Synth. Biol. 2019, 8, 1175—-1186


http://dx.doi.org/10.1021/acssynbio.9b00061

ACS Synthetic Biology

Research Article

(56) Jonsson, J., Norberg, T., Carlsson, L., Gustafsson, C., and Wold,
S. (1993) Quantitative sequence-activity models (QSAM)-tools for
sequence design. Nucleic Acids Res. 21, 733—739.

(57) Meng, H., Wang, J., Xiong, Z., Xu, F.,, Zhao, G., and Wang, Y.
(2013) Quantitative Design of Regulatory Elements Based on High-
Precision Strength Prediction Using Artificial Neural Network. PLoS
One 8, €60288.

(58) Li, J., and Zhang, Y. (2014) Relationship between promoter
sequence and its strength in expression. Eur. Phys. J. E: Soft Matter
Biol. Phys. 37, 86.

(59) Chen, B., and Yin, H. (2018) Learning category distance metric
for data clustering. Neurocomputing 306, 160—170.

(60) Li, D., and Tian, Y. (2018) Survey and experimental study on
metric learning methods. Neural Networks 105, 447—462.

(61) Simon, R., Priefer, U.,, and Piihler, A. (1983) A broad host
range mobilization system for in vivo genetic engineering: transposon
mutagenesis in gram negative bacteria. Bio/Technology 1, 784—791.

(62) Zeigler, D. R. (2001) Media for growth of Geobacillus strains. In
The Genus Geobacillus - Introduction and Strain Catalog, 7th ed., pp 20,
Bacillus Genetic Stock Center.

(63) Aronesty, E. (2013) Comparison of Sequencing Utility
Programs. Open Bioinf. J. 7, 1-8.

(64) Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin,
M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I, Pham, S., Prjibelski,
A. D., Pyshkin, A. V,, Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev,
M. A, and Pevzner, P. A. (2012) SPAdes: A New Genome Assembly
Algorithm and Its Applications to Single-Cell Sequencing. J. Comput.
Biol. 19, 455—477.

(65) Seemann, T. (2014) Prokka: rapid prokaryotic genome
annotation. Bioinformatics 30, 2068—2069.

(66) Rutherford, K., Parkhill, J.,, Crook, J., Horsnell, T., Rice, P.,
Rajandream, M. A., and Barrell, B. (2000) Artemis: sequence
visualization and annotation. Bioinformatics 16, 944—94S.

(67) Edgar, R. C. (2004) MUSCLE: multiple sequence alignment
with high accuracy and high throughput. Nucleic Acids Res. 32, 1792—
1797.

(68) Price, M. N., Dehal, P. S., and Arkin, A. P. (2009) FastTree:
Computing Large Minimum Evolution Trees with Profiles instead of
a Distance Matrix. Mol. Biol. Evol. 26, 1641—1650.

(69) Rambaut, A. (Ed.). FigTree. Institute of Evolutionary Biology;
University of Edinburgh. Available online: http://tree.bio.ed.ac.uk/
software/figtree/ (accessed January 22, 2019).

(70) Haahr, M., and Haahr, S. (Eds.) (1998) RANDOM.ORG.
Available online: https://www.random.org/ (accessed January 22,
2019).

(71) Quinlan, A. R, and Hall, I. M. (2010) BEDTools: a flexible
suite of utilities for comparing genomic features. Bioinformatics 26,
841—842.

(72) Langmead, B, and Salzberg, S. L. (2012) Fast gapped-read
alignment with Bowtie 2. Nat. Methods 9, 357—359.

(73) Li, H, Handsaker, B, Wysoker, A., Fennell, T. Ruan, J.,
Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009) The
Sequence Alignment/Map format and SAMtools. Bioinformatics 25,
2078-2079.

(74) Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and
Salzberg, S. L. (2013) TopHat2: accurate alignment of transcriptomes
in the presence of insertions, deletions and gene fusions. Genome Biol.
14, R36.

(75) Liu, B, Zhou, F, Wu, S, Xu, Y., and Zhang, X. (2009)
Genomic and proteomic characterization of a thermophilic Geobacillus
bacteriophage GBSV1. Res. Microbiol. 160, 166—171.

(76) Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B.
N. G,, Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric
red, orange and yellow fluorescent proteins derived from Discosoma
sp. red fluorescent protein. Nat. Biotechnol. 22, 1567—1572.

(77) Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., Tang,
Y, Liu, X,, Han, W, Peng, X,, Liu, R., and Wang, L. (2007) Genome
and proteome of long-chain alkane degrading Geobacillus thermodeni-

1186

trificans NG80—2 isolated from a deep-subsurface oil reservoir. Proc.
Natl. Acad. Sci. U. S. A. 104, 5602—5607.

(78) Engler, C., Kandzia, R., and Marillonnet, S. (2008) A One Pot,
One Step, Precision Cloning Method with High Throughput
Capability. PLoS One 3, e3647.

(79) Kirchmaier, S., Lust, K, and Wittbrodt, J. (2013) Golden
GATEway Cloning - A Combinatorial Approach to Generate Fusion
and Recombination Constructs. PLoS One 8, €76117.

(80) Hanahan, D. (1985) DNA Cloning: A Practical Approach
(Glover, D. M., Ed.) IRL Press, Oxford.

(81) Liang, Y., Woodle, S. A, Shibeko, A. M., Lee, T. K., and
Ovanesov, M. V. (2013) Correction of microplate location effects
improves performance of the thrombin generation test. Thromb. J. 11,
12.

(82) Chavez, M., Ho, J., and Tan, C. (2017) Reproducibility of high-
throughput plate-reader experiments in synthetic biology. ACS Synth.
Biol. 6, 375—-380.

(83) Ho, T. K. (1995) Random Decision Forests. In Proceedings of
the Third International Conference on Document Analysis and
Recognition, pp 278—282, Montreal.

DOI: 10.1021/acssynbio.9b00061
ACS Synth. Biol. 2019, 8, 1175—-1186


http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://www.random.org/
http://dx.doi.org/10.1021/acssynbio.9b00061

