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Abstract: 

 

Given the rapidly decreasing cost and increasing speed and accessibility of massively parallel 

technologies, the integration of comprehensive genomic, transcriptomic, and proteomic data into a 

“multi-omics” diagnostic pipeline is within reach. Even though genomic analysis has the capability to 

reveal all possible perturbations in our genetic code, analysis typically reaches a diagnosis in just 35% 

of cases, with a diagnostic gap arising due to limitations in prioritization and interpretation of 

detected variants. Here we review the utility of complementing genetic data with transcriptomic data 

and give a perspective for the introduction of proteomics into the diagnostic pipeline. Together these 

methodologies enable comprehensive capture of the functional consequence of variants, 

unobtainable by the analysis of each methodology in isolation. This facilitates functional annotation 

and reprioritization of candidate genes and variants - a promising approach to shed light on the 

underlying molecular cause of a patient’s disease, increasing diagnostic rate, and allowing 

actionability in clinical practice. 

 

1 sentence take-home message: 

 

The parallel analysis of “multi-omics” methodologies increases the capability to decipher the 

molecular genetic cause of a patient’s disease. 
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Introduction: 

 

Diagnostics in Mendelian disease has been transformed by genomic sequencing. While in the past it 

has been a long, frustrating and often losing battle to elucidate the genetic cause of a patient’s 

disease, genomic sequencing has made this - at least conceptually - possible for every patient. Despite 

the revolutionary impact of coding-sequence interrogation by whole-exome sequencing (WES) just 

35% (24-68%) of patients receive a genetic diagnosis (Clark MM et al 2018). Diagnostic yield can 

increase to over 65% in carefully selected cohorts where novel genetic diagnoses are sought after 

(Tarailo-Graovac M et al 2016). The diagnostic shortfall indicates detection evasion of causative 
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variants or detection of variants of uncertain significance (VUS) due to still existing gaps in knowledge. 

An overview of next generation sequencing (NGS) can be seen in Figure 1. 

 

Inborn errors of metabolism (IEM) are a heterogeneous group of more than 1000 diseases (Ferreira 

CR et al 2019). Though individually rare, they have a significant cumulatively burden, with a global 

birth prevalence of 50 per 100,000 (Waters D et al 2018). IEM manifest with phenotypes ranging from 

non-specific delay in attaining developmental milestones, to acute decompensation with severe 

metabolic acidosis and sudden premature death. The result of such heterogeneity is difficultly in 

diagnosis. Metabolic biomarkers aid diagnosis and the introduction of comprehensive metabolomic 

approaches has further streamlined diagnostic workup, placating the need for multiple targeted 

biochemical assays guided by clinical phenotype (Coene KL et al 2018). However, metabolic 

biomarkers often lack specificity and so, as IEMs are linked to an underlying genetic defect, they are 

most effectively characterized by identification of the causative gene and its downstream products. 

 

Extensive phenotypic overlap exists across the many distinct genetic etiologies of IEM (Lake NJ et al 

2016) and conversely, the phenomenon of pleiotropy is commonplace. Typically, IEM are seen to be 

inherited in a “one-gene one-disease” manner. However, in about 5% of sequenced cases, multiple 

independent genetic diagnoses are made within one individual, leading to superimposed traits, 

blending of phenotypes, and reduced phenotypic similarity between cases (Posey JE et al 2017, 

Tarailo-Graovac M et al 2016, Yang Y et al 2014, Yang Y et al 2013). Moreover, in rare cases, 

synergistic heterogeneity, where disease results from multiple partial defects within one or more 

metabolic pathways (Vockley J et al 2000), and genetic modifiers (Wiesinger C et al 2015, Yildiz Y et al 

2013) can play a role.  

 

Given that only 35% of Mendelian diseases are solved by WES, the majority of undiagnosed cases are 

likely subject to limitations in variant-calling and prioritization, and the inability to detect intronic and 

regulatory pathogenic variants. Whole genome sequencing (WGS) enables complete coverage of the 

genome and has higher sensitivity than WES for certain coding variants, indels, chromosomal 

rearrangements and copy number variants (Ouwehand WH et al 2019). WGS may also detect short 

tandem repeat (STR) expansions in IEM, such as the recently described expansion of a GCA-repeat in 
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GLS, resulting in glutaminase deficiency (van Kuilenburg et al 2019). However, interpretation is often 

hindered by difficulty in prioritization of the vast numbers of variants detected and our incomplete 

understanding of the non-coding sequence, and so the diagnostic yield is only modestly increased to 

just over 40% by WGS (Clark MM et al 2018). Furthermore, a number of indels, somatic mutations, 

structural variants such as balanced translocations and inversions, and repeat expansions, may elude 

detection by current sequencing technologies and algorithms (Dolzhenko et al 2017). It is unclear to 

what extent these variants contribute to the diagnostic gap. Uncovering the true disease-causing 

variant(s) by WGS is therefore rendered no less difficult, with the primary challenge shifting from the 

capacity to detect variants, to the ability to distinguish true pathogenicity from the plethora of benign 

variants present between individuals, and to distinguish clinically relevant impact (MacArthur D et al 

2014, Goldstein DB et al 2013). 

 

This challenge can be addressed with a complementary approach for the parallel detection and 

functional annotation of variants utilizing genetic and advanced “multi-omics” methods (Wanders RJ 

et al 2018, Stenton and Prokisch 2018), such as transcriptomics, proteomics, metabolomics, 

glycomics, and lipidomics. Thereby promoting improved diagnostic yield in IEM and characterization 

of disease pathophysiology, such as in deciphering the role of the TIMMDC1 protein as a 

mitochondrial complex I assembly factor, by detection of reduced levels of complex I subunits on 

proteomics (Kremer LS et al 2017). 

 

Here we summarize the current state of integrating transcriptomics and the novelty of integrating 

proteomics into the diagnostic pipeline - providing a perspective for the future. The role of 

metabolomics, which is already well established in the clinic, glycomics, and lipidomics in IEM 

diagnosis are reviewed comprehensively elsewhere (Graham E et al 2018, Bakar NA et al 2018, Lydic 

TA et al 2018). Though this review will focus mostly on studies of mitochondrial and neuromuscular 

disease (NMD) cohorts, the utility of a “multi-omics” diagnostic pipeline is not limited to one disease 

subset. Indeed, in the Kremer et al 2017 study, analysis was performed genome-wide, showing the  

far-reaching impact this approach can achieve in the diagnosis of the rare disease community for 

diseases of hitherto unclear etiology. 
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Genomics: 

 

WES interrogates the exonic coding regions, constituting 2% of the human genome, and is a cost-

effective comprehensive strategy to identify coding variation. An inescapable shortfall of WES is the 

inability to capture variants in the non-coding regions of the genome. This can be overcome by WGS, 

which allows detection of non-exonic variants in addition to structural variants (Ouwehand WH et al 

2019, Taliun et al 2019, Lionel AC et al 2018, Merker JD et al 2018). 

 

The development of WES and WGS is reflected by a synergistic improvement of bioinformatic 

pipelines for sequence alignment and variant calling (Supernat A et al 2018, Sandmann S et al 2017). 

WES yields on average 20,000 coding variants per individual (Van Hout CV et al 2019, Dewey FE et al 

2016). Focusing on predicted amino acid-altering variants, around 9,000 variants remain. This 

challenge escalates considerably when interpreting WGS, which yields over 3 million variants per 

individual, 30,000 of which are rare (Ouwehand WH et al 2019, Taliun et al 2019). Moreover, despite 

the vast numbers of variants identified, numerous elude calling algorithms. Value is therefore found 

in analyzing genomic data with multiple bioinformatic pipelines (Sandmann S et al 2017).  

 

The short variants called, SNVs (single nucleotide variants) and indels, are comprised mostly of 

common polymorphisms. A stringent filter of 0.1-1.0% MAF (minor allele frequency) to detect rare 

variants is therefore applied, yielding on average 100-400 variants per sample. This is inclusive of 20 

rare loss-of-function variants (Van Hout CV et al 2019, Dewey FE et al 2016). To reveal the causative 

variant(s), population data (ExAC and gnomAD) (Lek M et al 2016), computational and predictive data 

(CADD, VEP, PolyPhen-2, SIFT, PON-P2, and MutationTaster2, among others) (Rentzsch P et al 2018, 

McLaren W et al 2016, Adzhubei et al 2013, Vaser R et al 2016, Niroula A et al 2015, Schwarz JM et al 

2014), functional data, segregation data including the use of trio sequencing, and allelic data must be 

considered in aggregate (Figure 2). The American College of Medical Genetics (ACMG) proposes 

variant curation guidelines for the classification of variants using evidence derived from these factors 

(Richards S et al 2015). 
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Diseases from the IEM group most often show an autosomal recessive inheritance pattern. Discovery 

of known pathogenic variant(s) listed in disease-variant databases (Clinvar and HGMD (Human Gene 

Mutation Database)) (Landrum MJ et al 2017, Stenson PD et al 2017) or protein truncating loss-of-

function variant(s) allows for a definitive diagnosis. However, in many cases, this rigorous step-wise 

approach to pathogenic variant discovery is inconclusive or results in a variant that is more difficult to 

interpret, such as rare missense, intronic, and synonymous variants. Strategies complementary to 

WES and WGS therefore need to be explored. Transcriptomics and quantitative proteomics have 

started to be used for the automated, high-throughput, and cost-effective functional validation of 

variants, replacing quantitative RT-PCR and cDNA sequencing, and western blot analysis to investigate 

the impact of a VUS on transcript and protein stability, respectively. Here we summarize their 

promising and emerging role in elucidating the missing heritability of Mendelian disease by providing 

invaluable data to localize causative variants when analyzed in parallel with genomic sequencing. 

 

Transcriptomics: 

 

The diagnostic power of combining DNA with RNA sequencing to tackle inconclusive WES cases is 

evident, achieving an additional gain in diagnostic yield of 10 to 35% in mitochondrial disease and 

NMD cohorts, respectively (Kremer LS et al 2017, Cummings BB et al 2017). RNA sequencing (RNA-

seq) is a methodology for sequencing the entire transcriptome. It enables direct probing and 

quantification of the impact of coding as well as non-coding variants on RNA abundance and 

sequence. Furthermore, evidence is accumulating that pathogenic variants frequently occur deep 

within intronic regions, over 100 base pairs away from exon-intron junctions (Vaz-Drago R et al 2017), 

highlighting the important of direct interrogation of RNA-seq data as a complementary tool to identify 

variants eluding WES. 

 

Three situations arise that can be interpreted to prioritize candidate disease-causing genes for a rare 

disease: aberrant expression, aberrant splicing and mono-allelic expression (MAE) (Figure 3). Aberrant 

expression, resulting in expression outliers, implies impaired gene expression and can result from 

both coding variants and non-coding variants in regulatory regions such as promoters, enhancers, and 

suppressors, in addition to RNA degradation through nonsense-mediated decay (NMD). Statistical 
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testing is performed to compute these expression outliers as statistically significant deviations from 

normal physiological range, considering the population distribution (Kremer LS et al 2017). 

 

Aberrant splicing is caused by variation affecting splice sites or splice motifs in coding and noncoding 

regions. These variants result in aberrant splice isoforms, which can be quantified, and regularly cause 

the generation of a premature stop codon, provoking degradation of the RNA by NMD. Deleterious 

variants can lead to a plethora of splicing abnormalities ranging from exon creation, skipping, 

extension and truncation to intron inclusion, due to activation of non-canonical splice sites or changes 

in splicing regulatory elements. Aberrant splicing is not a rare phenomenon amongst pathogenic 

variants, with 10-30% of pathogenic variants and VUS predicted to alter the native splice pattern (Lee 

M et al 2017, Soemedi R et al 2017), and accounting for 9% of variants reported in HGMD (HGMD 

database accessed on April 2019). Aberrant splicing is therefore well established as a significant cause 

of Mendelian disease. 

 

MAE, or “allelic expression imbalance”, whereby one allele is silenced leaving only the other allele 

expressed, plays an important role in reprioritizing heterozygous rare SNVs called by WES and WGS 

(Gonorazky HD et al 2019, Kremer LS et al 2017, Cummings BB et al 2017, Falkenberg KD et al 2017). 

In the genomic analysis pipeline, these variants are filtered out due to the lack of a partner variant in 

biallelic autosomal recessive inheritance (Eilbeck K et al 2017). MAE promotes overrepresentation of 

such heterozygous variants, mimicking homozygosity, and fits the recessive mode of inheritance 

assumption. 

 

When applying stringent filtering for rare events with strong effect size, appropriate for analysis in the 

rare and recessive disease setting, a systematic genome-wide analysis reveals a median of one 

aberrant expression, six MAE, and five aberrant splicing events per sample (Kremer LS et al 2017). The 

manageable number of detected events readily enables manual inspection of the data to identify the 

responsible pathogenic coding and non-coding variants, which were not originally detected or 

prioritized in the WES and WGS analysis pipeline. 
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There is growing interest in the bioinformatic field to further optimize the RNA-seq analysis pipeline 

for disentangling noise inherent to the sample from disease-relevant variation and in the 

development of appropriate statistical models for outlier detection. Challenges arise in the 

assessment of statistical significance, choice of arbitrary cut-offs, and the reliance on manual 

correction for confounders. For the detection of aberrant gene expression, the statistical model 

OUTRIDER has recently been developed to overcome these challenges (Brechtmann F et al 2018), 

including the adequate correction of hidden batch effect without compromise to the relevant sample 

information. Further method development is nevertheless required to handle aberrant splicing 

events. With ever increasing resolution and cohort sizes in the “omics” approaches, computational 

power may also become a limitation. 

 

RNA-seq is not without limitation. The integrity of RNA molecules extracted from a tissue is of 

paramount importance for subsequent analysis. The RNA integrity number (RIN) is a reliable measure 

of RNA quality. Samples with a RIN>7 are well suited to transcriptomics. Furthermore, since RNA is 

highly sensitive to pre-analytical artefact, it provides a quality measure for the tissue itself, and quality 

control for further “omics” studies. Though any single tissue can be used for genomic sequencing, 

tissue selection requires careful consideration as the genes involved in a specific disease are not 

ubiquitously expressed across all tissues (Li X et al 2017). However, if a given gene is expressed, there 

is high correlation of gene regulation between different tissues (Qi T et al 2018). The 10,000 

transcribed protein-coding genes reliably detected across tissue types typically represent around 65% 

of all genes and cover 65-78% of disease genes recognized by OMIM (Amberger JS et al 2014) (Figure 

4). In IEM and in mitochondrial disease, a major subset of IEM, 68-85% and 75-88% of known disease 

genes (Ferreira CR et al 2019, Stenton and Prokisch 2018) are reliably detected, respectively. The 

usage of up-to-date annotations such as GTEx (Genotype-Tissue Expression Consortium 2015) or 

GENCODE (Harrow J 2012), strand-specific sequencing, and the inclusion of non-coding transcripts, is 

further increasing the number of genes which can be analyzed. Tissue selection and tissue-specific 

gene expression however remain caveats in RNA-seq as obtaining a complete analysis of the 

transcriptome by interrogating one tissue is not biologically feasible. Furthermore, the top candidate 

tissue for testing - the primary affected tissue - is frequently inaccessible for sampling, necessitating 

choice of a surrogate tissue. Selection of the optimal tissue for study can be guided by gene 
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expression databases, such as GTEx comprising approximately 11,500 RNA-seq samples across more 

than 50 tissue sites (https://gtexportal.org/home/) and the recently developed web-based tool PAGE 

(Panel Analysis of Gene Expression) (Gonorazky HD et al 2019).  

 

RNA-seq is fruitless if the underlying causative variant does not influence RNA abundance and 

sequence, as is frequently the case for missense mutations, accounting for a large proportion of the 

variant burden in Mendelian disease. To discover the impact of such variants, in addition to providing 

independent validation of RNA-seq findings, proteomics comes into play. 

 

Proteomics: 

 

Proteomics gives insight into the composition, structure and function of the proteome (Aebersold R 

and Mann M 2016) and to protein activity, interaction, and localization. Moreover, interrogation of 

proteomic data is a powerful approach to reveal impaired protein synthesis, folding, stability, and 

degradation, due to the detection of reduced or diminished protein level and in the detection of 

specific proteomic signatures (Kremer LS et al 2017). 

 

Proteomics has been introduced for functional validation of variants in multiple studies, reliably 

detecting 4,500-5,500 proteins (Kremer LS et al 2017). Given advances in technology since, both the 

number of proteins detected and the sample throughput have seen substantial improvement. Over 

8,000 proteins, out of 10,000 proteins expressed in a given cell type (Frejno M et al 2017, Lapek Jr JD 

et al 2017, Roumeliotis TI et al 2017, Lawrence RT et al 2015), have been shown to be reliably 

quantified with around 6,000 proteins found in common across batches (McAlister GC et al 2014). 

High-throughput is enabled by multiplexed quantification using isobaric chemical tags, for example 

Tandem Mass Tags (TMT), to analyze up to 10 samples in parallel (Thompson A et al 2003) (Figure 5). 

TMT-labeling in combination with extensive fractionation and state-of-the-art mass spectrometry 

(MS3-level quantification) has proven to significantly improve quantitative precision and accuracy, to 

increase the dynamic quantification range, and to provide a highly robust and reproducible detection 

method for the vast majority of the expressed proteome in a given cellular system (McAlister GC et al 

2014). 
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Alike to RNA-seq, outliers can be detected in the proteomic data. Strongly reduced protein level in 

one sample compared to other samples or to controls, provides robust evidence for pathogenicity of 

underlying variants in autosomal recessive traits. Therefore, a proteome-wide screen for expression 

outliers provides valuable information - by inferring the protein encoding gene(s) in which pathogenic 

variants may harbor - and paves the way for proteomics, above and beyond functional validation, as a 

routine test in the diagnostic pipeline (Kremer LS et al 2017). Our own preliminary data of ~100 

proteomes indicate a median of less than five protein expression outliers out of 7,500 quantified 

proteins per sample, a feasible number for further exploration (Prokisch H 2018). 

 

Proteins frequently function in large, dynamic and labile multiprotein complexes, the function and 

stability of which depends on the availability of all constituents. One can therefore look not only for 

aberrant expression of an isolated protein, but for multiple constituents of a protein complex adding 

evidence for the pathological characterization of underlying VUS (Lake NJ et al 2017, Kremer LS et al 

2017, Stroud DA et al 2016). This is exemplified by a powerful study coupling gene-editing technology 

with quantitative proteomics in dissecting the essentiality of the 45 subunits of mitochondrial 

respiratory chain complex I for its full assembly and function (Stroud DA et al 2016). Furthermore, 

complexome analysis, specifically developed to yield insight into the size, composition, and stability of 

protein complexes, is a powerful method to study the impact of VUS on protein complex assembly. 

Complexome analysis separates native intact proteins and protein complexes, indicating the 

composition of functional complexes by the identification of co-migrating proteins (Heide H and 

Wittig I 2013). In our hands, over 4,500 proteins are detected in total, around 50% of which appear 

within protein complexes (Prokisch H 2018). Complexome analysis has proven fruitful in novel disease 

gene validation (Heide H et al 2012). 

 

The main limitations of proteomics are tissue selection, as with RNA-seq, in addition to measurement 

sensitivity which is limited due to the large dynamic range of protein concentrations across sample 

tissues. 

 

Integration of transcriptomics and proteomics for functional annotation: 
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No single methodology can capture the complexity of the all molecular events resulting in a genetic 

disease (Karczewski KJ and Snyder MP 2018). Therefore, for the discovery of novel disease-genes and 

pathogenic variants, analysis of inconclusive WES samples in parallel with transcriptomics and 

proteomics in a “multi-omics pipeline” is advocated. All three “omics” methodologies are analyzed on 

the gene-level. This allows them to be used in a truly complementary fashion - tracking the impact of 

a variant along the pathway of RNA abundance and form, to protein level, and vice versa, tracing 

aberrant expression and splicing pattern back to the responsible protein-encoding or regulatory 

variants - with integration of results to localise causative variants on the gene-level. Both the 

transcriptome and proteome pipelines result in less than 20 outliers per sample. In a diagnostic 

setting, this allows manual inspection and validation of significant observations using additional 

visualization tools, such as IGV (Integrative Genome Viewer), Sashimi, and volcano plots (Figure 6). 

Counting of normal and aberrant splice isoforms, expressed alleles, and protein levels provides a 

quantitative measure of the functional consequence of the genetic variation, alike to an enzyme 

activity measurement. All require reference ranges and interpretation. In some cases it may prove 

difficult to pinpoint the causative variant, necessitating further follow-up studies to reach a firm 

diagnosis. The integration of additional “omics” is more challenging as they cannot easily be mapped 

on the gene-level. 

 

Examples of the value of multi-omics analysis are: a case of TIMMDC1 defect due to an aberrant 

splicing event, further supported by aberrantly low RNA and protein expression in addition to 

instability of other complex I subunits (Figure 6) and, a case of ALDH18A1 defect due to MAE of a 

variant affecting translation or protein stability, resulting in aberrantly low protein expression, and 

further validated by integration of the metabolic profile in accordance with a defect in proline 

metabolism (Kremer LS et al 2017). 

 

For the establishment of a definitive diagnosis, transcriptomics and proteomics act as independent 

validation for one another. When the variants under interrogation harbor within a known disease 

gene and in a patient with a clinical phenotype in-keeping with the known genotype-phenotype 

association, a diagnosis is directly facilitated by these holistic methodologies - negating the need for 
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further sophisticated, time-consuming and individually tailored functional validation experiments of 

frequently found VUS. Conversely, when the variants harbors within a candidate gene, or when the 

clinical phenotype is incongruent with the known genotype-phenotype association, further validation 

such as complementation (Figure 7) and supplementation in patient derived cell-lines or replication of 

the variant(s) or other variants in the gene of question in multiple cases with similar phenotypes, is 

required to establish solved status. Collaboration via platforms such as GeneMatcher (Bruel AL et al 

2018), Matchmaker Exchange (Sobreira NL et al 2017), and GENOMIT (GENOMIT.eu), among others, 

supports the collection of cases. 

 

Moreover, as the results of RNA-seq and proteomics are quantitative, the level of residual mRNA or 

protein of the affected protein and potential modifying factors can be explored in the context of 

providing an explanation for the phenotypic spectrum observed in IEM (Wiesinger C et al 2015, Yildiz 

Y et al 2013).  

 

Essential to the interpretation of these large “omics” data sets and to the increase in diagnostic yield, 

is the inclusion of phenotype data (Deelen P et al 2018). HPO “Human Phenotype Ontology” terms 

describe 13,000 clinical abnormalities with 156,000 annotations to hereditary diseases - mapped into 

an ontological, multi-tiered structure (Köhler S et al 2016). HPO terms enable standardization of data 

and promote the inclusion of clinical information into computational method development, such in 

Exomiser and PhenIX - phenotype-driven approaches to exome analysis (Pengelly RJ et al 2017) - 

among others, thereby maximizing interpretive capacity. When a genotype-phenotype correlation is 

well established, deep phenotyping allows prioritization of VUS in a strong candidate gene, which may 

routinely be overlooked, and so initiates targeted or “omics” functional follow-up studies (Lord J et al 

2019). 

 

Future directions 

 

Moving forward, long read RNA-seq can be employed to capture complex isoforms by sequencing the 

full-length cDNA copies of RNA molecules, not possible with short-read technologies due to the 

fragmentation of transcripts for sequencing. These techniques can also be applied at the single-cell 
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level, to remove transcriptome diversity across bulk heterogeneous cell populations, and to illuminate 

the transcriptional profile and aberrant transcriptional events in a single-cell type (Byrne A et al 2017). 

 

Through the identification and validation of novel variants, “omics” technologies allow the discovery 

of novel points of therapeutic intervention, such as in novel splice variants amenable to treatment 

with antisense oligonucleotides (AONs). AONs are short synthetic DNA or RNA molecules that bind to 

complementary RNA sequence to modulate pre-mRNA splicing outcome (Anna A et al 2018), and are 

now approved in spinal muscular atrophy (SMA) and Duchenne’s muscular dystrophy (DMD) 

(Bergsma AJ et al 2018). Here, RNA-seq may also play a future role in monitoring treatment effect by 

the quantification of generation of the properly spliced transcripts. 

 

Conclusion 

 

The innovative “multi-omics” approach, uniting genomics, transcriptomics and proteomics, is 

invaluable in order to pinpoint the molecular cause of Mendelian disease. It is a rapidly expanding 

field facilitated by systematic DNA, RNA, and protein profiling, and the continual refinement of 

methodology, statistical modelling, and bioinformatic analyses, combined with expert curation. 

 

Figure legends: 

 

(Figure 1) Next generation sequencing (NGS) overview. The NGS library is prepared by fragmenting 

genomic DNA (in WES and WGS) or cDNA (in RNA-seq). To produce cDNA for RNA-seq, mRNA is 

selected from total RNA by poly-A selection, followed by synthesis of the first and second strand of 

cDNA. Once the DNA or cDNA is fragmented, adapters and barcodes are ligated to allow multiplexing 

of samples. The prepared library is amplified and sequenced prior to reference genome alignment. 

Once reads are aligned to the genome, data analysis such as calling identified differences between 

the reference and the sequenced reads as variants can commence. 

 

(Figure 2) The conventional genomic approach to the diagnosis of Mendelian disease. Variants called 

from whole exome sequencing (WES) and whole genome sequencing (WGS) are filtered and 
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prioritized based on clinical and genetic data. This includes utilization of variant and genotype-

phenotype association databases such as ClinVar (Landrum MJ et al 2017), HGMD (Stenson PD et al 

2017), and OMIM (Amberger JS et al 2014). Typically, this rigorous stepwise approach does not reach 

a definitive diagnosis in over 50% of cases - these cases remain inconclusive and often harbor variants 

of uncertain significance (VUS). 

 

(Figure 3) The “multi-omics” approach to the diagnosis of Mendelian disease. Genomic data from 

inconclusive WES and WGS cases is analyzed in parallel with transcriptomic and proteomic data. 

Transcriptomics enables detection of aberrant transcript expression, aberrant splicing, and mono-

allelic expression (MAE) events, while proteomics enables detection of aberrant protein expression - 

providing evidence to localize causative variants on the gene-level. Integration of transcriptomics into 

the analysis pipeline achieves diagnostic gains of >10% in unsolved cases, this number is expected to 

increase with the integration of proteomics. 

 

(Figure 4) Tissue selection for transcriptomic investigation. Here we give examples of investigated 

tissue types using transcriptomics. The number of detected genes varies between 10,000-15,000. The 

number of detected IEM and mitochondrial disease genes is shown by tissue. Almost two thirds of 

OMIM disease genes (Online Mendelian Inheritance in Man - a comprehensive compendium of 

human genes and genetic phenotypes) are detected. 

 

(Figure 5) Schematic representation of a multiplexed proteomic experiment. Example of a Tandem 

Mass Tag (TMT) labelling proteomic experiment, which allows us to quantify almost 8,000 proteins in 

a human fibroblast cell line. The multiplexing of samples reduces missing values and improves 

quantitative precision and statistical analysis. 

 

(Figure 6) An example of the value of “multi-omics” analysis. Analysis of an unsolved mitochondrial 

disease case revealed TIMMDC1, a complex I assembly factor, as the underlying diagnosis of this 

patient’s disease. This is due to an aberrant splicing event (red-affected in comparison orange-

control) resulting in exon inclusion, a premature stop codon, and nonsense mediated decay of the 

transcript (a). In the Sashimi plot, RNA coverage is given as the log10 RPKM-value and the number of 
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split reads spanning the given intron is indicated on the exon-connecting lines. The gene model of the 

RefSeq annotation is depicted and the aberrantly spliced exon is coloured in red beneath. This is 

supported by aberrantly low RNA expression visualized by a volcano plot (b) and aberrantly low 

protein expression of TIMMDC1 but also instability of other complex I subunits (red) visualized by a 

scatter plot of protein versus RNA log-fold change (c). The volcano plot shows p-values and Z-scores 

for all transcripts detected in the sample. The scatter plot summarizes protein and RNA changes in a 

given sample against the median of all other samples investigated. The underlying variant was found 

to be a homozygous deep intronic variant of unknown significance (VUS) which was subsequently 

validated by complementation of the wild-type (WT) gene into the patient-derived fibroblast cell line 

and cellular phenotypic rescue (d). 

 

(Figure 7) Lentiviral-mediated complementation experiment in patient derived fibroblast cell lines. 

Wild-type (WT) cDNA of the gene of interest is cloned into the pLenti vector using appropriate 

primers. The pLenti expression construct containing the gene of interest plus the lentiviral packaging 

mix is co-transfected into 293T/293FT cells using the Lipofectamine reagent. Following an incubation 

period to allow transcription and synthesis of the viral RNA and viral proteins and viral budding, the 

supernatant containing the lentivirus is collected and mixed with cell culture medium. The lentivirus is 

applied to patient and control cell lines which subsequently undergo blasticidin selection to select 

successfully transduced cells. The complete method can be found in Kremer LS and Prokisch H 2017. 
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