

1 **TITLE**

2 Systems biology of plant microbiome interactions

3

4 **AUTHORS**5 Patricia A. Rodriguez¹, Michael Rothballer¹, Soumitra Paul Chowdhury¹, Thomas6 Nussbaumer^{1,2}, Caroline Gutjahr³ and Pascal Falter-Braun^{1,4} *

7

8 **AFFILIATIONS**9 ¹ Institute of Network Biology (INET), Helmholtz Zentrum München, German
10 Research Center for Environmental Health, Munich, Germany11 ² Institute of Environmental Medicine, UNIKA-T, Technical University of Munich,
12 Augsburg, Germany13 ³ Plant Genetics, TUM School of Life Science Weihenstephan, Technical University
14 of Munich (TUM), Freising, Germany15 ⁴ Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität
16 (LMU) München, Munich, Germany

17

18 *Corresponding Author: Pascal Falter-Braun ([pascal.falter-braun@helmholtz-
19 muenchen.de](mailto:pascal.falter-braun@helmholtz-muenchen.de))

20

21

22

23 **Abstract**

24 In natural environments plants are exposed to diverse microbiota that they interact with in
25 complex ways. While plant-pathogen interactions have been intensely studied to understand
26 defense mechanisms in plants, many microbes and microbial communities can have
27 substantial beneficial effects on their plant host. Such beneficial effects include improved
28 acquisition of nutrients, accelerated growth, resilience against pathogens, and improved
29 resistance against abiotic stress conditions such as heat, drought, and salinity. However, the
30 beneficial effects of bacterial strains or consortia on their host are often cultivar- and species-
31 specific posing an obstacle to their general application. Remarkably many of the signals that
32 trigger plant immune responses are molecularly highly similar and often identical in
33 pathogenic and beneficial microbes. Thus, it is unclear what determines the outcome of a
34 particular microbe-host interaction and which factors enable plants to distinguish beneficiais
35 from pathogens. To unravel the complex network of genetic, microbial, and metabolic
36 interactions including the signaling events mediating microbe-host interactions,
37 comprehensive quantitative systems biology approaches will be needed.

38

39 **Introduction**

40 The microbial world has caught immense attention in recent years as the decrease of
41 sequencing costs has enabled an in-depth analysis on the composition and dynamics of
42 host-associated microbiota. For both humans and plants, it is recognized that microbes hold
43 an enormous potential to increase host health. In the vision of a future precision agriculture,
44 targeted application of beneficial microbial cocktails may be a sustainable path to counteract
45 biotic and abiotic stress conditions and ensure yield stability. However, most beneficial
46 microbes have close pathogenic relatives and it is currently unclear how the plant immune
47 system differentiates between pathogenic and beneficial microbes to fight infection by the
48 former and facilitate colonization by the latter. From an evolutionary perspective it is likely
49 that even the earliest eukaryotes were surrounded by diverse prokaryotes and that
50 eukaryotic immune systems evolved to differentiate between beneficial and pathogenic
51 bacteria. Therefore, a deep-rooted and complex interplay between microbes and hosts is
52 expected that touches all aspects of eukaryote biology. Understanding of microbe-host
53 interactions will therefore require classical as well as systems biological 'omics' and
54 quantitative modeling approaches.

55 ***The plant microbiome***

56 Plants share their habitat with a variety of microbes that include bacteria, oomycetes, fungi,
57 archaea, and a poorly explored universe of viruses (reviewed in Agler et al., 2016;
58 Berendsen et al., 2012; Buée et al., 2009; Swanson et al., 2009). The composition of the
59 plant microbiota is shaped by complex multilateral interactions between the abiotic
60 environment and its biotic inhabitants. Depending on the outcome of an interaction for the
61 host, microbes are considered as mutualistic, commensal, or pathogenic. In this review we
62 focus on the interplay between bacteria and to a lesser extend filamentous eukaryotes with
63 the plant host.

64 ***Composition and dynamics of host associated microbial communities***

65 Microbiome profiling of plants, plant organs and root associated soils has revealed a diverse
66 and highly dynamic plant microbiome. Several studies have shown that bacterial
67 communities are dynamically shaped by environmental factors like soil, season, daytime, as
68 well as host-factors like species, developmental stage, and compartment. Soil and air and
69 their properties provide the physical reservoir for the plant-associated microbiome (reviewed
70 in Vorholt, 2012). The microbiota of aerial plant parts is more influenced by long distance
71 transport processes, whereas for roots soil-type, soil history, nutrient and water content are
72 influential factors (Bogino et al., 2013). Especially at the beginning of the growth season, soil

73 also influences the plant associated microbial communities aboveground (Copeland *et al.*,
74 2015). A richer and functionally better characterized microbiome is found belowground.
75 Microbial species richness is highest in bulk soil, decreases in the rhizosphere and is lowest
76 in the endophytic compartment, indicating a strong selective gradient. In parallel, microbial
77 cell-count increases from bulk soil towards the root surface indicating favourable conditions
78 for the selected microbial species. Despite the great biodiversity of soils, the microbial
79 community in the rhizosphere and endosphere of plants is dominated by four bacterial phyla:
80 Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Bulgarelli *et al.*, 2012;
81 Bulgarelli *et al.*, 2013; Edwards *et al.*, 2015; Fierer *et al.*, 2009; Lundberg *et al.*, 2012;
82 Schlaeppi *et al.*, 2014; Zarraonaindia *et al.*, 2015). Interestingly, the same phyla are also
83 enriched within the human gut (Ley *et al.*, 2008), suggesting that they are adapted to interact
84 with complex eukaryotes. This interaction-potential is likely due to their ability to metabolize
85 nutrients spared or actively made available by their host. As up to 40% of the carbon fixed by
86 a plant can be released via roots into the rhizosphere, it is obvious that the plant takes an
87 active role in shaping the microbial communities (Bais *et al.*, 2006).

88 Within the bacterial communities, members exert strong influence on each other by
89 antagonistic, competitive, and mutualistic interactions. Common modes of microbial
90 interaction are nutritional competition, exchange, and even interdependence where
91 metabolite exchange among microbes facilitates growth of some microbial species (Peterson
92 *et al.*, 2006). This also extends to bacterial-fungal interactions as the ability of the plant to
93 form symbioses with arbuscular mycorrhiza (AM) fungi or nitrogen fixing rhizobia strongly
94 affects surrounding microbial communities (Pii *et al.*, 2016; Zgadzaj *et al.*, 2016; Zgadzaj *et*
95 *al.*, 2019). Thus, direct cooperative or competitive interactions among the community
96 members can influence microbiome composition and their effect on the host, and therefore
97 determine the outcome of plant-microbiota interactions in a given condition. While the
98 mechanisms of direct microbe-microbe interactions are not the focus of this review, they are
99 important to keep in mind when introducing new species or communities into an agricultural
100 field or when trying to isolate the causative beneficial species in complex microbiomes.

101 Given the strong selective force the root exerts on the microbial communities in the
102 rhizosphere, the question arises whether plant genotype in form of species and cultivars
103 affect microbiome composition. It has been described that the microbiota associated with
104 different plant species can differ considerably (Pérez-Jaramillo *et al.*, 2016; Wieland *et al.*,
105 2001). Initial studies in maize (Peiffer *et al.*, 2013), barley (Bulgarelli *et al.*, 2015), and
106 *Arabidopsis thaliana* and its relatives (Schlaeppi *et al.*, 2014) revealed only subtle
107 ecotype/cultivar effects on the root bacterial microbiome in a given soil. Peiffer and
108 colleagues attributed 5-7% of microbiome variation to the host genotype. These differences
109 were mostly of quantitative nature and they were not able to find a bacterial taxon that is

110 diagnostic for a given host genotype (Peiffer et al., 2013). Recently, a large-scale field study
111 of the maize rhizosphere microbiome, using 27 maize genotypes, in five different fields
112 sampled throughout the growing season and replicated five years later, succeeded in
113 identifying root-associated microbiota displaying reproducible plant genotype associations.
114 They were able to identify 143 operational taxonomic units (OTUs) that were significantly
115 correlated with plant genotype, despite the confounding effects of plant age, climate, and soil
116 (Walters et al., 2018). Genotype effects of the plant hosts can be more dramatic for individual
117 microbial species. Haney and colleagues screened approx. 200 naturally occurring *A.*
118 *thaliana* accessions in a hydroponic system with a single-member of the rhizosphere
119 community: the beneficial root-associated bacterium *Pseudomonas fluorescens* WCS365.
120 Selected accessions were then planted in natural soils and two were found to inhibit the
121 growth of some *Pseudomonadaceae* species, while leaving the majority of the microbiome
122 intact (Haney et al., 2015). Thus, individual cultivars can influence the structure of microbial
123 communities and sometimes in a precise manner.

124 These interactions are not static. The emerging ‘cry for help’ hypothesis posits that plants
125 recruit specific microbes that are able to alleviate plant stress in a given situation (López-
126 Ráez et al., 2011; Neal et al., 2012; Rudrappa et al., 2008). This was first noted in the
127 recruitment of nutrient delivering AM fungi and nitrogen-fixing rhizobia when plants are grown
128 at low phosphate or nitrogen conditions (Carbonnel and Gutjahr, 2014; Nishida and Suzuki,
129 2018). Recruitment appears to be more widespread, though. Upon infection by
130 *Hyaloperonospora arabidopsis*, *A. thaliana* accessions specifically recruited a synergistic
131 group of three bacterial strains that helped fend off the infection and even fortified the soil to
132 become ‘disease-suppressive’ to protect subsequent generations against the pathogen
133 (Berendsen et al., 2018). Thus, the shaping of microbial communities by plants is not limited
134 to individual species, but extends to small microbial communities. The use of synthetic
135 communities (SynComs) (Vorholt et al., 2017) has started to help unravel the underlying
136 relationships.

137 *Understanding microbiome-host relationships using SynComs*

138 The complexity of multi-kingdom interactions in the rhizosphere makes it challenging to
139 unravel the mechanisms and the genetics of plant-microbe associations in a natural habitat.
140 A powerful approach to study complexity in a controlled setting is the use of bacterial
141 SynComs (**Table 1**). Starting from a collection of isolated microbial cultures, SynComs can
142 be mixed and used as inoculants for a given host in a gnotobiotic system. This allows
143 dissecting how one or few community members affect the plant and how host genes affect
144 microbiome composition. Bodenhausen and colleagues screened a SynCom of seven
145 strains, representing the most abundant phyla in the *Arabidopsis* phyllosphere, against 55 *A.*

146 *thaliana* mutants. The host alleles that displayed the strongest perturbation of the microbiota
 147 were mutants affecting cuticle formation (Bodenhausen et al., 2014), whereas immune
 148 mutants had only minor effects in this setting. A representative SynCom for the maize
 149 rhizosphere was used to investigate the functional contribution of individual members on
 150 overall community structure in maize. Removal of one community member led to a reduction
 151 of species richness, suggesting that this strain has a key role within the tested SynCom

Host	Microbial kingdom	Strains number	Tissue/compartment	Microbial origin	Reference
<i>A. thaliana</i>	Bacteria	440	Root (responses to Pi starvation)		(Herrera Paredes et al., 2018)
<i>A. thaliana</i>	Bacteria	148 bacteria; 34	Root, rhizosphere	Cologne agricultural soil (CAS)	(Duran et al., 2018)
	Fungi	fungi; 8			
	Oomycete	oomycetes			
<i>Saccharum sp. (sugarcane)</i>	Bacteria	20	Root, rhizosphere, stalks	Greenhouse	(Armanhi et al., 2017)
<i>Trifolium pratense (legume)</i>	Bacteria		Rhizosphere		(Hartman et al., 2017)
<i>Zea mays (maize)</i>	Bacteria	7	Roots	Greenhouse	(Niu et al., 2017)
<i>A. thaliana, other Brassicaceae</i>	Bacteria	35	Roots	North Carolina	(Castrillo et al., 2017)
<i>Solanum lycopersicum (tomato)</i>	Bacteria (Pseudomonas PGPR)	8	Rhizosphere	Nanjing	(Hu et al., 2016)
<i>A. thaliana</i>	Bacteria	218 (leaf); 188 (root and soil)	Leaf, root and rhizosphere	Cologne, Golm, Widdersdorf, Saint-Evarzec, Roscoff	(Bai et al., 2015)
<i>A. thaliana</i>	Bacteria	38	Roots	North Carolina	(Lebeis et al., 2015)
<i>A. thaliana</i>	Bacteria	7	Leaf	Madrid	(Bodenhausen et al., 2014)

152 **Table 1.** Microbial strain collections used in SynCom studies.

153
 154 (Niu et al., 2017). An exciting study towards understanding cross-kingdom interactions was
 155 reported by Duran and colleagues studying the *A. thaliana* root microbiome (Duran et al.,
 156 2018). After profiling bacteria, fungi, and oomycetes, they established microbial cultures for
 157 all three groups to investigate their interactions. In the absence of bacteria, fungi and
 158 oomycetes had a strong detrimental effect on plant growth and survival. Both effects were
 159 neutralized upon co-inoculation of bacterial strains. Strains of the *Pseudomonadaceae* and
 160 *Comamonadaceae* families were particularly effective; however, in the absence of the
 161 respective 18 strains from these two families, other bacterial taxonomic lineages still
 162 positively affected plant survival. Thus, bacterial communities aid in maintaining the microbial
 163 balance and protect host plants against the detrimental effects of filamentous eukaryotic
 164 microbes.

165 An analytical approach to identify potential functional relationships takes advantage of
166 increasingly available microbiome datasets. Similar to transcriptional co-expression
167 networks, it is possible to identify positive and negative co-occurrence correlations between
168 microbial community members, which may reflect synergistic and antagonistic functional
169 relationships (Faust and Raes, 2012). Such relationships can be displayed as networks and
170 analysed using graph theory approaches. If the correlations are reflecting functional
171 interactions, co-occurrence networks may help developing control strategies for microbial
172 communities. Initial results indicate that positive correlations are more abundant among
173 microbes from the same kingdom, whereas, as illustrated in the previous example, negative
174 correlations are more common among inter-kingdom associations (Agler et al., 2016). In
175 another study, several bacterial taxa were anti-correlated with the pathogenic wheat fungus
176 *Rhizoctonia solani* (Poudel et al., 2016). Similar to other biological networks, hub species can
177 be identified that have an extraordinary large number of positive and negative interactions
178 and thus appear important for shaping communities (Agler et al., 2016; Layeghifard et al.,
179 2017). Network approaches can thus be an important tool for understanding host associated
180 microbiome dynamics.

181 Plant associated microbiomes can have beneficial effects for their hosts, however microbial
182 composition in the rhizosphere as well as colonization efficiency are affected by
183 environmental parameters and by the genetics and physiological state of the host. SynComs
184 and network approaches are important research tools to dissect the shaping factors and
185 understand the highly interdependent causalities of microbiome assembly. The plant immune
186 system needs to differentiate between beneficial and pathogenic microbes and mount
187 appropriate, yet diametrically opposed, colonization-enabling or defence responses.

188 ***Functions of beneficial microbes and similarities to pathogens***

189 Among beneficial microbiota, endosymbionts that colonize the inside of root cells have been
190 most extensively studied as they can promote plant growth and stress resistance. The best
191 studied of these endosymbioses are AM and root nodule symbioses. AM symbiosis occurs
192 between approximately 80% of land plants and fungi of the *Glomeromycota*, which increase
193 plant nutrition with mineral nutrients in exchange for photosynthetically fixed organic carbon
194 (reviewed in Keymer and Gutjahr, 2018; Roth and Paszkowski, 2017; Smith and Smith,
195 2011). Root nodule symbiosis with nitrogen fixing bacteria is limited to one clade of the
196 eudicots, *i.e.* the Fabales, Fagales, Cucurbitales and Rosales, of which the legumes form
197 root nodule symbiosis with rhizobia, the others engage with Frankia bacteria (Griesmann et
198 al., 2018; Kistner and Parniske, 2002).

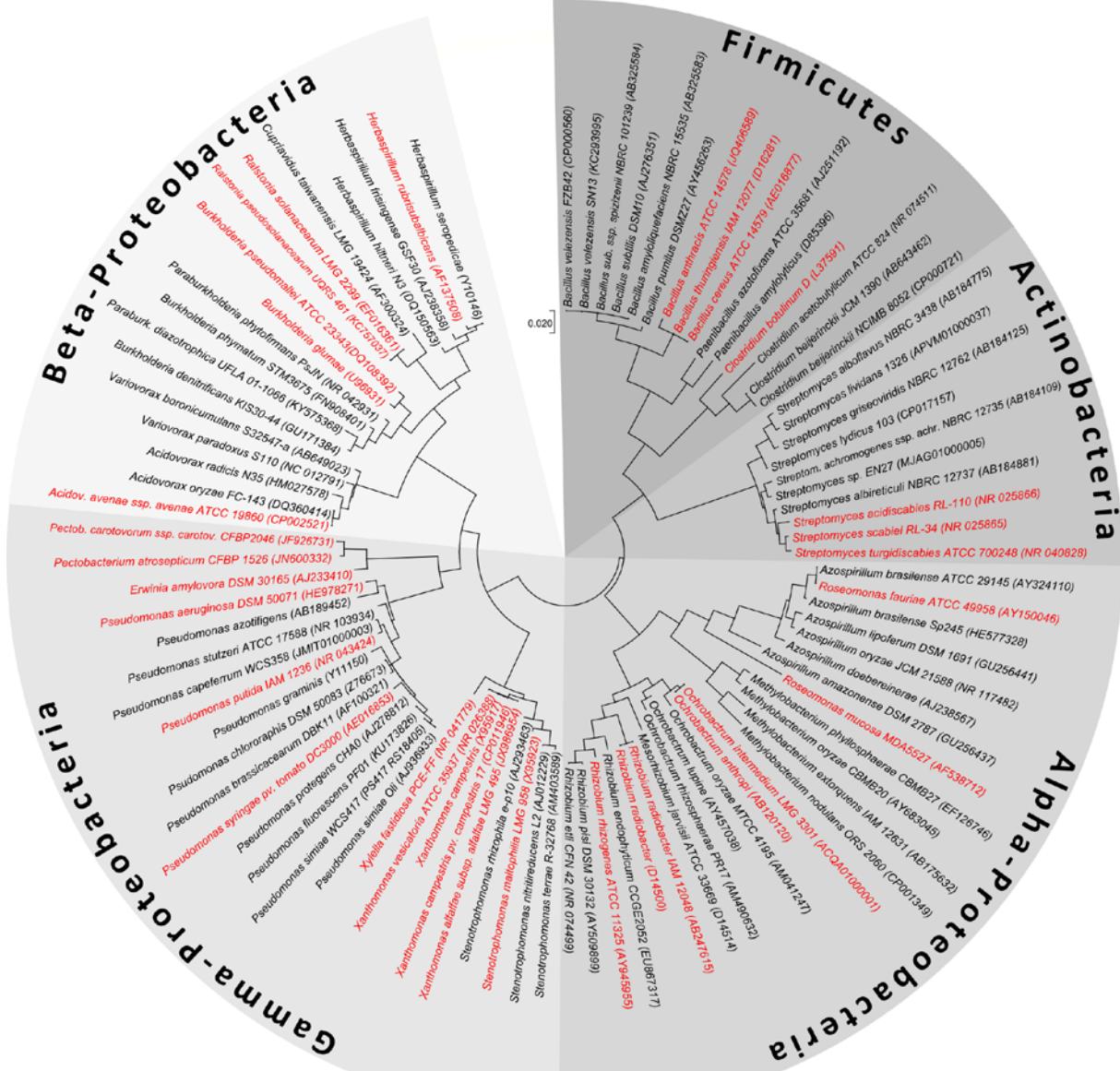
199 In contrast, plant-growth promoting (rhizo-) bacteria (PGPB or PGPR) are defined as 'free
200 living plant beneficial bacteria' that promote plant health (Kloepper and Schroth, 1981)
201 especially when the plant is exposed to abiotic or biotic stressors (Fahad et al., 2015). Many
202 strains are helpful against more than one stress scenario which makes them appealing for
203 agricultural applications in a variety of environments. For instance, *Azospirillum brasiliense*
204 NH, originally isolated from salty soil in northern Algeria, can significantly improve growth and
205 yield of durum wheat in salt affected soils and under arid field conditions (Nabti et al., 2010).
206 In *A. thaliana*, *Paraburkholderia* (formerly *Burkholderia*) *phytostimans* induces cell wall
207 strengthening and an increase of photosynthetic pigments, which lead to improved cold
208 tolerance (Su et al., 2015). In addition, *P. phytofirmans* can increase host resistance against
209 fungal and bacterial pathogens (Miotto-Vilanova et al., 2016; Timmermann et al., 2017).
210 Equally versatile traits were reported for *Bacillus velezensis* strain NBRI-SN13, which
211 protects rice against diverse abiotic stresses including heat, cold, and freezing (Tiwari et al.,
212 2017). Members of the *Paenibacillaceae*, e.g. *P. azotofixans*, can provide multiple benefits to
213 their host including nitrogen fixation, phosphate solubilization, and biocontrol (Grady et al.,
214 2016). Several molecular mechanisms have been identified that contribute to the beneficial
215 effects, including chemically increasing accessibility and concentration of nutrients (nitrogen
216 fixation, solubilization of phosphate or potassium, iron uptake), and modification of host
217 physiology by signaling molecules (reviewed in Gouda et al., 2018; Olanrewaju et al., 2017).
218 In addition to these effects related to abiotic stressors, many PGPR increase host pathogens
219 resistance. In contrast to pathogen-triggered systemic acquired resistance (SAR) (Chester,
220 1933), induced systemic resistance (ISR) (Kloepper et al., 1992) can be triggered by non-
221 pathogenic and symbiotic microbes in the rhizosphere or by chemical inducers. Similar to
222 SAR, ISR renders the above-ground plant tissues resistant against the attack of microbial
223 pathogens. Inoculation of barley with *Pseudomonas* spp., e.g., increased crop resistance to
224 the fungal pathogen *Gaeumannomyces graminis*, the causal agent of take-all-disease
225 (Fröhlich et al., 2012). In *Medicago truncatula* the AM fungus *Rhizosphagus irregularis*
226 enhanced resistance to *Xanthomonas campestris* and rhizobia increased resistance to
227 *Erysiphe pisi* (Liu et al., 2007; Smigelski et al., 2019). In several cases microbial mixtures
228 have a more pronounced and consistent effect than inoculation with single strains. A
229 combination of *Bacillus pumilus*, *B. subtilis* and *Curtobacterium flaccumfaciens* was highly
230 effective in enhancing resistance against different pathogens in cucumbers (Raupach and
231 Kloepper, 1998). Drought stress resistance of maize was enhanced by a combination of
232 *Pseudomonas putida*, *Sphingomonas* sp., *Azospirillum brasiliense* and *Acinetobacter* sp.
233 (Molina-Romero et al., 2017), and *A. thaliana* fungal pathogen resistance was enhanced by

234 inoculation with *Xanthomonas* sp., *Stenotrophomonas* sp., and *Microbacterium* sp.
235 (Berendsen et al., 2018).

236 Overall little is known about the interaction of beneficial bacterial communities with
237 endosymbionts in the promotion or neutralization of beneficial effects. Colonization of *Lotus*
238 *japonicus* by rhizobia, e.g., enables other endophytic bacteria to colonize the nodule by
239 hitchhiking along the infection thread, a plant-derived subcellular structure that guides
240 rhizobia into the nodule (Zgadzaj et al., 2015). These co-colonizers can be neutral or
241 beneficial but they may also cause a carbon drain to the plant with detrimental effects on
242 growth and yield. A few synergistic combinations of AM fungi and PGPR have been
243 described. Growth of tomato plants was increased more strongly after co-inoculation of the
244 AM fungi *Glomus mosseae* or *Glomus versiforme* with a PGPR (either *Bacillus* sp. or *Bacillus*
245 *polymyxa*) than with any of the microorganisms alone. Similarly, incidence of the root-knot
246 nematode *Meloidogyne incognita* in tomato was reduced most efficiently after co-inoculation
247 of an AM fungi with PGPR (Liu et al., 2012).

248 Although many PGPR, especially commercially available strains, colonize and exert
249 beneficial effects on different plants, their performance can be strongly species- or cultivar-
250 specific (Chanway et al., 1988; Germida and Walley, 1996; Montalban et al., 2017). Wheat
251 cultivars differ in their colonization by and responsiveness to beneficial strains, such as
252 *Azospirillum brasilense* (Rothballer et al., 2003; Walker et al., 2011) or *Pseudomonas putida*.
253 For wheat the effect of the AM fungus *Rhizophagus irregularis*, the PGPR *P. putida* and a
254 combination of both on systemic priming of Mercato and Avalon cultivars was compared. In
255 Mercato, the two microbes had a substantial synergistic effect on priming and callose
256 deposition, whereas in Avalon, the callose response was equally weak after individual and
257 combined inoculation. Avalon roots were also less colonized by both microbes (Perez-de-
258 Luque et al., 2017).

259 As discussed above, plant can also recruit specific microbes to help them cope with a
260 specific abiotic or biotic stress. Generally, the molecular determinants of triggered or
261 constitutive cultivar-competence for PGPR colonization are incompletely understood.
262 Besides direct genetic determinants, e.g. ability to communicate, indirect factors may play a
263 role. For example, different nutrient requirements of cultivars may be a factor that determines
264 whether a condition is experienced as stress and consequently if PGPR are recruited.
265 Important questions in host-microbe research regard the underlying genetic determinants
266 and their molecular mechanisms of recruitment and probiotic competence, e.g. to breed such
267 competence into existing elite cultivars. To avoid undesirable consequences, this requires


268 the ability of crops to differentiate between probiotic beneficials and closely related
269 detrimental pathogens.

270 *Friend or foe - closely related beneficials and pathogens*

271 Pathogenic and beneficial lifestyles both require recognition and communication with a host,
272 the ability to benefit from biological nutrient sources and an ability to at least partially
273 suppress the host immune response. This is especially true for endophytes and mutualistic
274 symbionts, which, similar to pathogens, are able to enter plant host tissue but remain there
275 without harming and often benefitting the host. As a consequence of these similar
276 requirements, in essentially all phyla of host-associated microbiomes, closely related species
277 with pathogenic and beneficial lifestyles can be found (Figure 1). Frequently, relatives with
278 opposite effects are found within the same genus, e.g. among the *Paenibacilleae*: *P.*
279 *azotofixans* and *P. amylolyticus* (Grady et al., 2016), among *Bacilleae*: *B. velezensis* and *B.*
280 *cereus* (Radhakrishnan et al., 2017), among *Pseudomonas*: *P. simiae* and *P. syringae*
281 (Anderson et al., 2018) and even within the same species, e.g. *Pseudomonas aeruginosa*
282 (Ndiddy Aka and Babalola, 2016; Steindler et al., 2009). Among the *Streptomyces* (Viaene
283 et al., 2016), *S. lividans* can protect plants against fungal pathogens (Meschke and
284 Schrempf, 2010), while *S. scabiei* causes rot on roots and tubers of potatoes, beets, and
285 carrots (Hiltunen et al., 2009). Members of the *Herbaspirillum rubrisubalbicans* species are
286 usually mild pathogens in sugarcane, sorghum and rice (Valdameri et al., 2017), while *H.*
287 *seropedicae* and some strains of *H. rubrisubalbicans* were reported to promote sugarcane
288 growth (Ferreira da Silva et al., 2017). Especially for endophytes, although defined as living
289 inside plants as commensals or mutualists (Hallmann et al., 1997; Hardoim et al., 2015), a
290 broad spectrum of interactions can be detected spanning from beneficial to pathogenic in
291 plant and human hosts (Berg et al., 2005; Mendes et al., 2013). In ferns, inoculation with
292 bacterial endophytes from commonly beneficial fluorescent pseudomonads resulted in
293 detrimental effects (Kloepper et al., 2013). The human pathogen *Clostridium botulinum* is a
294 potent endophytic plant growth promoter in white clover, but can cause lethal botulism in
295 cattle grazing on the affected site (Zeiller et al., 2015). A similar host-genotype dependence
296 of interaction outcome can be observed for AM fungi, where symbiosis may lead to growth
297 depression (Grace et al., 2009). The molecular cause for this phenomenon has not been
298 established but it could be due to enhanced carbon drain due to suboptimal compatibility.
299 Interestingly, in a panel of Sorghum accessions, different growth responses to AM fungi were
300 recorded and ranged from strongly positive to negative and the outcome depended on plant
301 and fungal genotypes; negative growth responses were correlated with expression of
302 defense related genes (Watts-Williams et al., 2019). An interesting case is *Rhizobium*
303 *radiobacter* F4, which has been isolated from its host, *Serendipita indica* (formerly

304 *Piriformospora indica*) a mutualistic root fungus that can colonize a broad range of higher
305 plants including barley and *Arabidopsis* (Guo et al., 2017). The association between
306 endobacterium and fungus seems to be essential for the fungus, as *S. indica* cannot be
307 completely cured from its endobacterium by antibiotic treatment (Glaeser et al., 2016). *R.*
308 *radiobacter* F4 is a close relative of the well-characterized plant pathogen *R. radiobacter* C58
309 (formerly *Agrobacterium tumefaciens*). When the isolated F4 strain was used as an inoculum
310 on different plants, *R. radiobacter* F4 was detected endophytically and its beneficial effects
311 were hardly distinguishable from an inoculation with the fungus (including the
312 endobacterium) (Glaeser et al., 2016). This qualifies F4 to be a true PGPR and suggests that
313 *S. indica* may act as a vector for the PGPR.

314 Thus, beneficial and pathogenic microbes share physiological features and an evolutionary
315 proximity to an extent that manifestation of a pathogenic phenotype may depend on small
316 differences of the microbe and sometimes even on the host. Conversely plants must have
317 evolved sophisticated mechanisms to distinguish a potentially beneficial microbe, which may
318 ensure survival, from a closely related potentially fatal pathogen.

319

320

321 **Figure 1.** Phylogenetic tree of plant growth promoting (black) and pathogenic bacteria (red),
322 and their corresponding phyla (in different shades of grey) mentioned in the text. The tree
323 was supplemented with sequences from some widely applied PGPR and closely related
324 plant and human pathogens for comparison. Evolutionary analyses were conducted in
325 MEGA7 (Kumar et al., 2016) using the Maximum Likelihood method based on the Tamura-
326 Nei model.

327 **Systems biological approaches to molecular microbe-host interactions**

328 Genetic and mechanistic studies of plant immunity in the context of infections have shaped
329 the general understanding of plant pathogen interactions. However, how the differentiation

330 between beneficials and pathogens is achieved by plant recognition and information
331 processing systems will be a key question for plant systems biology in the coming decade.

332 *Plant perception of microbes*

333 Successful pathogens and endophytes must first overcome structural barriers such as cell
334 walls (Miedes et al., 2014), waxy epidermal cuticles (Yeats and Rose, 2013) and constitutive
335 antimicrobial products like phytoanticipins (VanEtten et al., 1994). This common requirement
336 may partly explain the evolutionary proximity of beneficials and pathogens. Close to the cell
337 membrane, the presence of microbes is recognized by plant surface receptors called pattern-
338 recognition-receptors (PRR). This recognition of conserved pathogen- or microbe-
339 associated-molecular-patterns (PAMPs/MAMPs), e.g. bacterial flagellin or EF-Tu, results in
340 intracellular signaling that culminates in defense responses known as pathogen- or microbe-
341 triggered immunity (PTI/MTI) (Boller and Felix, 2009; Macho and Zipfel, 2014). MTI includes
342 production of reactive oxygen species and nitrogen oxide, stomata closure, directed callose
343 deposition, relocation of nutrients, release of antimicrobial metabolites, initiation of plant
344 defense hormone signaling, and transcriptional changes. A transcriptome analysis of *A.*
345 *thaliana* exposed to two leaf commensals showed that these non-pathogenic microbes do
346 activate the first layer of plant immune responses. Approximately 400 genes were induced
347 upon commensal treatment and partly overlapped with host genes induced by the pathogen
348 *P. syringae* (Vogel et al., 2016). The strong immune response may partially explain the
349 induction of ISR by beneficials, however does not address, how plants recognize beneficials.
350 The presence or absence of PRRs could serve as host range determinants for microbial
351 colonizers (Hacquard et al., 2017). However, the molecular patterns of beneficials and
352 pathogens are similar if not identical, which in turn renders their differentiation by specific
353 PRRs difficult. One of the main models to study PRR function is FLS2, which recognizes
354 flg22 the most conserved motif in bacterial flagellin (Chinchilla et al., 2006; Zipfel et al.,
355 2004). FLS2 requires a co-receptor, BAK1, in order to activate downstream signaling
356 (Schulze et al., 2010; Schwessinger et al., 2011). Intriguingly, BAK1 is also a co-receptor for
357 BRI1 (brassinosteroid insensitive 1), a leucine-rich repeat receptor kinase (LRR-RK) that
358 perceives plant brassinosteroids (BR) and acts as an integrator between defense and growth
359 signaling (Li et al., 2002; Nam and Li, 2002). Additional receptors recognize other parts of the
360 protein. Tomato can perceive flgII-28 through FLS3 in an FLS2-independent manner
361 (Fliemann and Felix, 2016) and the rice pathogen *Acidovorax avenae* harbors a different
362 flagellin motif, CD2-1, whose receptor remains unknown to date (Katsuragi et al., 2015).
363 Interestingly, some strains of *A. avenae* avoid recognition by flagellin glycosylation (Hirai et
364 al., 2011). In contrast to such masking exploited also by pathogens, some beneficials have
365 epitopes that avoid detection by one or the other receptor (Gomez-Gomez et al., 1999).

366 However, besides MAMP-masking or evasion mechanisms, many beneficials are likely
367 recognized by their flagellin and suppress full-blown immune responses by yet unknown
368 mechanisms. Garrido-Oter and colleagues showed that most genes induced by perception of
369 purified flg22 in *Arabidopsis* were downregulated in response to colonization by the
370 commensal *Rhizobium* sp. 129E. Their analysis suggests that this commensal has the ability
371 to interfere with MAMP-induced transcriptional responses through alternative pathways. As
372 this rhizobium strain does neither possess Type-III-secretion system (T3SS) nor Nod factor
373 biosynthesis genes (Garrido-Oter et al., 2018), it is likely that signaling via other heteromeric
374 PRRs complexes plays a role.

375 Symbiont-plant interactions point to mechanisms underlying friend-vs-foe distinction. Upon
376 first contact, AM fungi and rhizobia trigger transient defense-like responses that are quickly
377 repressed (Libault et al., 2010; Liu et al., 2003). It has been suggested that Myc- and Nod-
378 factor signaling is important for this repression (Gourion et al., 2015). Both symbiotic signals
379 are defined by their ability to elicit nuclear calcium oscillations dependent on a signaling
380 cascade comprising a number of conserved symbiosis proteins (Gourion et al., 2015; Singh
381 and Parniske, 2012). Hosts perceive Nod factors by Lysine-motif (LysM) receptor like
382 kinases (RLK) (reviewed in Gough and Cullimore, 2011) and it is suspected that similar
383 receptors exist for Myc factors (Buendia et al., 2016). Some of these receptors appear to
384 also mediate recognition of pathogens. OsCERK1 is a LysM-RLK important for establishment
385 of mycorrhizal root symbiosis and resistance against rice blast fungus (Miyata et al., 2014;
386 Zhang et al., 2015), suggesting that it acts as a “molecular switch” between symbiotic and
387 defense responses. Although the molecular mechanism underlying this dual functionality is
388 unknown, it is thought that specificity comes from interactions with other LysM-RLK (Gourion
389 et al., 2015). Other examples of such dual functionality suggest that this could be a more
390 widely used mechanism. NFP is a *Medicago truncatula* Nod factor receptor that also
391 mediates perception and defense against the fungus *Colletotrichum trifolii* and the
392 oomycetes *Aphanomyces euteiches* and *Phytophthora palmivora* (Gough and Jacquet, 2013;
393 Rey et al., 2015; Rey et al., 2013).

394 The detailed studies of exemplary PRRs and LysM-RLK suggest that combinatorial physical
395 interactions among receptors and co-receptors are important for signal specificity and signal
396 integration. Plant roots in nature are in simultaneous contact with a plethora of MAMPs and a
397 soup of different signaling molecules. Thus, it is possible, if not likely, that a tailored response
398 is mounted to specific microbial assemblages recognized via combinatorial and quantitative
399 perception of the diverse signaling molecules by a network of interacting receptors.
400 Consequently, integrated global systems approaches to PRR signaling will be required. A
401 proteome-scale interactome study by Smakowska-Luzan and colleagues constitutes an
402 important step towards a comprehensive understanding of this crucial plant perception

403 system. Using biochemical pull-down experiments they mapped the physical cell surface
404 interaction network formed by 225 LRR-RKs (CSI^{LRR}) in *A. thaliana* (Smakowska-Luzan et
405 al., 2018). CSI^{LRR} revealed a very high interconnectivity of all LRR-RKs, which clustered in
406 several modules whose biological relevance remains to be clarified. Importantly, the authors
407 showed that not only direct interactions, but also indirect network effects modulate the
408 downstream signaling output and that the full network jointly provides the well-balanced
409 responses of the plant immune system. Characterizing the integrated information processing
410 by this LRR-RK network will be critical for understanding plant immunity.

411 *Bacterial signaling: quorum sensing and symbiosis factors*

412 In addition to sensing conserved microbial patterns, plants tap bacterial communication
413 mediated by metabolites, volatiles, symbiosis signals, and quorum sensing (QS) molecules
414 (Chowdhury et al., 2015; Jourdan et al., 2009). N-acyl homoserine lactones (AHL) are key
415 components in bacterial communication that can also be perceived by plants. This was
416 demonstrated for the beneficial *Acidovorax radicis* N35, where the AHL-producing wildtype
417 was able to dampen the defense response of barley, whereas flavonoid defense was
418 upregulated after inoculation of the non-AHL producing mutant (Han et al., 2016). Other
419 examples demonstrate the growth promoting and priming effects of AHLs on host plants like
420 *Medicago*, tomato, *Arabidopsis*, and barley (Mathesius et al., 2003; Schenk et al., 2014;
421 Schuhhegger et al., 2006; von Rad et al., 2008). As pathogenic bacteria similarly produce AHL
422 (Cha et al., 1998; von Bodman et al., 2003) it is unlikely that these signaling substances
423 alone provide sufficient information for the plant to modulate its defense responses. Possibly
424 the combinations and concentrations of QS molecules indicate an imbalanced microbial
425 composition. While the physiological effects of AHLs have been characterized in some detail,
426 the pathways and mechanisms by which plants perceive these bacterial molecules remain
427 unknown (Schikora et al., 2016). Interestingly, also lipochitooligosaccharides, i.e. Myc and
428 Nod symbiosis factors, can promote root development, seed germination, and plant growth
429 even in plants that do not form symbiosis (Maillet et al., 2011; Prithiviraj et al., 2003; Tanaka
430 et al., 2015). Thus the symbiosis factor recognition and signaling system is partially
431 independent of symbiosis competence of the host. Further research is needed to understand
432 how the range of rhizosphere signals released by microorganisms is co-interpreted by the
433 plant and in how far different molecules may have synergistic or antagonistic effects on plant
434 growth and stress resistance.

435 *Hormone signaling in microbe-host interactions*

436 Phytohormone signaling is central to essentially all plant processes. Defense responses are
437 canonically mediated by salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Whereas

438 SA mediates SAR and defense against biotrophic and hemibiotrophic pathogen attack, JA
439 and ET mediate ISR and defense against necrotrophs and insects (Glazebrook, 2005;
440 Pieterse et al., 2014). Other hormones predominantly control developmental processes
441 (auxin, gibberellins (GA), BR, or cytokinins (CK)), or abiotic stress responses (abscisic acid
442 (ABA)). Beyond these seemingly clean classifications, however, it is clear that hormone
443 signaling is highly integrated and multiple hormones influence any process of interest
444 (Nguyen et al., 2016; Vos et al., 2015). Accordingly, phytohormones are also significant for
445 the bi-directional communication between plant and microbes. Strigolactones, e.g., are
446 exuded from roots under phosphate or nitrogen starvation to attract AM fungi and their
447 biosynthesis is downregulated upon colonization (Yoneyama et al., 2012). In contrast, GA,
448 SA, and ET inhibit both AM and root nodule symbiosis, whereas auxin and ABA have a
449 concentration dependent positive impact on AM development. CK and localized auxin
450 signaling are required for nodule formation (reviewed in Gutjahr, 2014; Oldroyd et al., 2011;
451 Pozo et al., 2015). The role of JA in symbiosis establishment is ambiguous and can be
452 positive, negative, or neutral depending on the conditions and plant species (reviewed in
453 Gutjahr and Paszkowski, 2009).

454 The hormone signaling system is actively modulated by beneficial and pathogenic bacteria.
455 Most famously, coronatine (COR) is a toxin produced by pathogenic *P. syringae* pv. *tomato*
456 DC3000 (*Pst*), which mimics plant JA-isoleucine (JA-Ile), but is even more active (Katsir et
457 al., 2008). This activation of JA-dependent defense mechanisms leads to suppression of the
458 appropriate SA-mediated defenses against the hemibiotrophic *Pst* (Wasternack and Hause,
459 2013). In general, pathogens manipulate plant signaling to suppress defense responses and
460 redirecting nutrient allocation to infested tissues for sustained pathogenic colonization (Ma
461 and Ma, 2016). Beneficial strains often have the opposite effect on SA-JA balance, which
462 can manifest in different ways: in *A. thaliana* *P. fluorescens* Pf4, *P. aeruginosa* Pag (Singh et
463 al., 2003), or *B. velezensis* LJ02 (Li et al., 2015) trigger an increase of endogenous SA levels
464 in different plant parts, other strains decrease JA-Ile levels (Srivastava et al., 2012), and
465 *Paraburkholderia phytofirmans* PsJN decreases expression of JA-biosynthesis and wound-
466 induced JA accumulation (Pinedo et al., 2015). Thus, phytohormones of microbial origin
467 mediate versatile effects depending on the individual plant-microbe combination. The SA
468 signaling system also appears central for shaping the root microbiome although different
469 studies report opposing results. One study reported only minor effects of SA mutants on
470 microbiome composition (Bodenhausen et al., 2014). In contrast, Lebeis and colleagues
471 reported that *A. thaliana* mutants deficient in synthesis or perception of SA had altered
472 rhizosphere microbiota, whereas no such effect was observed for the corresponding JA and
473 ET mutants (Lebeis et al., 2015).

474 Beyond modulating defences, which is common to pathogens and beneficials, many PGPR
475 modulate plant development, especially root growth, by production of auxins, gibberellins, or
476 cytokinins (reviewed in Backer et al., 2018). To dissect the underlying complexity, it will be
477 important to complement genetics with systems biological approaches that include
478 metabolomics, global network analysis, hormone profiling, and focused quantitative modeling
479 of molecular processes in plants and soil. The latter is actively pursued for auxin signaling in
480 the plant root, for which advanced models are available (Clark et al., 2014; Mironova et al.,
481 2010). The development of such quantitative models was enabled by detailed mechanistic
482 knowledge (Grieneisen et al., 2007; Mironova et al., 2010) and fluorescent auxin reporters
483 that provide time-resolved data on auxin distribution (Liao et al., 2015). Both together provide
484 the basis for quantitative time-resolved models. Generally missing are quantitative data on
485 the molecules and receptors that translate a given auxin concentration into specific
486 transcriptional responses, although first data on the effects of auxin concentrations on
487 receptor pairs are available (Fendrych et al., 2016). For understanding microbe-host
488 interactions a model of the SA signaling pathway will be powerful. The recently described SA
489 receptors NPR1, NPR3, NPR4, (Canet et al., 2010) together mediate responses to different
490 SA concentrations (Castello et al., 2018; Fu et al., 2012; Kuai et al., 2015). In contrast, the
491 more distant family members BOP1 and BOP2 appear to have no function in SA signaling
492 (Canet et al., 2012), but have been implicated in developmental programs like flowering and
493 nodule formation in legumes (Couzigou et al., 2012; Magne et al., 2018). At the same time,
494 the biochemical regulation of NPR1, and possibly also its paralogues, is complex and
495 involves multiple cellular compartments, redox potential, phosphorylation, and degradation.
496 Thus, although key elements for model development are known (Seyfferth and Tsuda, 2014),
497 including TGA transcription factors (Li et al., 2004; Wu et al., 2012), and signaling network
498 components (Innes, 2018), understanding of this key immune signaling system remains
499 incomplete. The development of fluorescent SA sensors and quantitative protein level and
500 binding data are important elements for quantitatively modeling of SA signaling.
501 Apart from the individual pathways all hormone signaling pathways are interconnected and
502 very few biological responses are mediated by a single hormone. Great efforts in deciphering
503 the crosstalk of SA, JA and ET during immunity in *Arabidopsis* are represented by the
504 integrative works of Tsuda and colleagues. They divided the hormone signaling network in
505 four sectors (SA, JA, ET and PAD4), and quantitatively assessed immunity in all possible
506 mutants belonging to these sectors after stimulation with a panel of MAMPs and effectors.
507 Their work showed strong interactions of the hormone network components with additive,
508 synergistic and compensatory interactions (Tsuda et al., 2009). Later works by the same
509 group led them to propose that the PTI signaling network is highly buffered against
510 interference, e.g. by pathogen effectors (Hillmer et al., 2017).

511 *Interactome network analysis*

512 In the absence of quantitative dynamic models, molecular interaction network approaches
 513 can be powerful to identify modules, pathways, components, and system-level patterns of
 514 molecular host-microbe interactions (Marin-de la Rosa and Falter-Braun, 2015). To place
 515 host-microbe interaction data in the context of host biology, a reference protein network is
 516 required. Plant interactome analysis commenced with publication of the first experimental
 517 map of physical protein-protein interactions among several thousand *Arabidopsis* proteins:
 518 *Arabidopsis* Interactome-1 (AI-1) (*Arabidopsis* Interactome Mapping Consortium, 2011),
 519 which offered a first integrated organizational view of plant molecular connectivity.
 520 Complementary and more specialized maps have been produced since, which facilitate
 521 analysis of specific processes (Table 2). For membrane proteins a map with approx. 12,000
 522 protein-protein interactions was acquired using the split-ubiquitin system (Jones et al., 2014).
 523 A G-protein interactome revealed a new role of G-proteins in regulation of cell wall
 524 modification, a process highly relevant for defense (Klopfleisch et al., 2011). Recently, a
 525 protein-protein interaction network for the fungus *Phomopsis longicolla*, causative for
 526 *Phomopsis* seed decay in soybean, was generated by interolog mapping (Yu et al., 2004),
 527 i.e. transferring interaction annotations among conserved protein pairs between organisms,
 528 and allowed detection of disease associated subnetworks (Li et al., 2018).
 529

Study	Organism_1	Organism_2	Year	Reference
<i>A. thaliana</i> Interactome	<i>A. thaliana</i>		2011	(Arabidopsis Interactome Mapping Consortium, 2011)
Convergent targeting of hubs in a plant-pathogen interactome network	<i>Hyaloperonospora arabidopsis</i> and <i>Pseudomonas syringae</i> effectors	<i>A. thaliana</i>	2011	(Mukhtar et al., 2011)
Convergent targeting of a conserved host-microbe interface	<i>Golovinomyces orontii</i> effectors	<i>A. thaliana</i>	2014	(Wessling et al., 2014)
Pathogenicity genes in <i>U.</i> <i>virens</i>	<i>Ustilaginoidea virens</i>		2017	(Zhang et al., 2017)
Extracellular network of <i>A.</i> <i>thaliana</i> LRR-RKs	<i>A. thaliana</i>		2018	(Smakowska- Luzan et al., 2018)
Pathogenic Protein Networks in <i>Phomopsis</i> <i>longicolla</i>	<i>Phomopsis longicolla</i>		2018	(Li et al., 2018)

530 **Table 2.** Interactome network datasets for plant-microbe interactions studies

532 Pathogens and beneficial microbes can deliver hundreds of (virulence) effector proteins into
533 the cytosol and apoplast of the host plant to modulate plant defense and physiology (Boller
534 and Felix, 2009; Jones and Dangl, 2006). To comprehend host-microbe interactions their
535 functions need to be understood in an integrated and time-resolved way. Initial plant-targeted
536 pathogen effectors were characterized by small-scale studies and revealed that virulence
537 effectors modify host protein functions to interfere with immune responses and promote
538 disease, known as effector-triggered susceptibility (ETS) (Dou and Zhou, 2012). Recognition
539 of pathogen effectors by a host resistance protein (R protein) can result in effector-triggered
540 immunity (ETI) (Coll et al., 2011; Jacob et al., 2013; Jones and Dangl, 2006). In order to gain
541 a systems-level perspective on effector functions, a large-scale interactome study (PPIN-1)
542 mapped the interactions of virulence effectors of the bacterial pathogen *Pst* and the
543 oomycete pathogen *H. arabidopsis* with proteins in the AI-1 host network (Mukhtar et al.,
544 2011); a follow-up study later added interactions of effectors from the biotrophic ascomycete
545 *Golovinomyces orontii* (Wessling et al., 2014). The data revealed that effectors from three
546 pathogens partially converge on common host proteins, many of which are highly connected
547 hubs in the host network. Depending on the extent of convergence, the host proteins had
548 genetic validation rates between 100% for the most targeted proteins, and 40% for the less
549 intensely targeted proteins. In addition to convergence, many effectors targeted proteins
550 across the host network, likely as consequence of the highly buffered immune signaling
551 network (Hillmer et al., 2017). Population genetic analyses revealed evidence of positive and
552 balancing selection in the immediate network vicinity of the highly targeted proteins. Thus,
553 the selective pressure imposed by pathogens appears to be absorbed by the network
554 surrounding the effector targets (Wessling et al., 2014). This finding reinforces the notion that
555 host-microbe interactions are mediated by a highly integrated network and can only
556 incompletely understood by analysis of isolated pathways. Studies in the *Yersinia pestis*
557 interactome showed that pathogens appear to rearrange host networks instead of
558 dismantling network integrity (Crua Asensio et al., 2017).

559 The presence of effector proteins is not limited to pathogens. Mycorrhizal fungi, endophytic
560 fungi and nitrogen-fixing rhizobia have effector proteins that can modulate plant immune
561 responses and symbiotic interactions (Miwa and Okazaki, 2017). Several PGPR, e.g. *P.*
562 *simiae* WCS417, and many proteobacterial strains in complex microbiome datasets are
563 predicted to have functional T3SS and effectors (Berendsen et al., 2015). For the beneficial
564 fungus *S. indica* and rhizobial bacteria, it is known that their virulence effectors are important
565 for productive and beneficial interactions (Akum et al., 2015; Clua et al., 2018; Rafiqi et al.,
566 2013). T3SS-delivered effectors of *Bradyrhizobium elkanii* even permitted Nod-Factor
567 independent nodulation of soybean (Okazaki et al., 2013). In addition to T3SS many
568 proteobacteria have type-IV and type-VI secretion systems that can deliver bacterial protein

569 into hosts and other microbes. *P. simiae* WCS417 has two T6SS loci (Berendsen et al.,
570 2015) and may deliver effectors not only to its plant host, but also to other competing
571 microbes to modulate the surrounding microbiota. Proteomic approaches can be helpful to
572 unravel the diversity of the effector repertoire of microbes (Schumacher et al., 2014). A study
573 comparing the genome of a beneficial soil fungus, *Colletotrichum tofieldiae*, with a closely
574 related pathogenic counterpart, *Colletotrichum incanum*, revealed that their secretome did
575 not substantially differ, but the beneficial fungus had 50% less effector genes and a reduced
576 activation of pathogenicity-related genes *in planta* (Hacquard et al., 2016). Thus, microbial
577 secretomes and the number and nature of secreted effectors may constitute an important
578 differentiation point between beneficials and pathogens. Most likely the beneficial effector
579 complement is important for non-pathogenic interactions. An important challenge for systems
580 biology will be to understand the global dynamics of effectors targeting different parts of the
581 host network, and how this dynamic relates to ETS, ETI, and what are the systems-level and
582 dynamic differences between effector secretion by pathogens and beneficials.

583 Beyond proteins, RNA emerged in recent years as important communication molecules
584 between hosts and microbes, which are delivered to the host by extracellular vesicles (EVs).
585 Found first in mammalian cells, EVs are present in bacteria, archaea, and eukaryotes. Small
586 RNA from the fungus *Botrytis cinerea* was shown to target host defense genes in
587 *Arabidopsis* (Weiberg et al., 2013). Plants are able to silence such foreign transcripts via
588 host-induced gene silencing (HIGS) using dsRNA, and plant EVs and multivesicular bodies
589 accumulate around plasmodesmata during fungal infections to facilitate callose deposition at
590 infection sites (An et al., 2006). EVs and their RNA cargo constitute another communication
591 layer, whose significance is just emerging.

592 *Transcriptional regulatory networks*

593 Transcriptional profiling is widely used and results of key studies are mentioned throughout
594 this text. While comparative transcriptomics are routine, co-expression correlation networks
595 and causal regulatory networks are less commonly employed. Co-expression networks are
596 based on the concept that transcript profiles of time series may be indicative of causal
597 relationships between transcripts. The Weighted Gene Correlation Network Analysis
598 (WGCNA) (Langfelder and Horvath, 2008) is a commonly used method to group genes by
599 hierarchical clustering into co-expression modules. These modules are compared to
600 signaling network connectivity, metabolic paths, or phenotypic traits. Beyond WGCNA
601 Saelens and colleagues (Saelens et al., 2018) have systematically compared 42 different
602 methods for clustering, decomposition, bi-clustering and iterative network inference. These
603 techniques have been applied in *A. thaliana* and other plants like maize and wheat (Kim et
604 al., 2018) to explore their interactions with microbes. The identified modules provide a first

605 insight into genes sharing same functionalities (Vella et al., 2017), and can help to achieve a
606 better understanding of processes relevant for infection or commensalism.

607 *Metabolic exchanges and nutrient competition in the soil*

608 Among the fundamental principles of microbiome-host interactions are metabolic exchanges.
609 Plants provide up to 40% of complex carbons produced by photosynthesis via roots into the
610 rhizosphere to nourish the microbiome (Whipps, 1990). Conversely, fungi and bacteria
611 facilitate solubilization and uptake of essential nutrients like phosphorus, nitrogen, and iron to
612 the plant (Jacoby et al., 2017; Rashid et al., 2016). Relocalization of nutrients is an important
613 goal of plant reprogramming by pathogens via effectors and hormone signaling. Genome-
614 scale metabolic modeling has been used to study the metabolism of an individual organism
615 and modeling of community level reactions is progressing but challenging (reviewed by
616 Kruger and Ratcliffe, 2015; Topfer et al., 2015). Metabolic modeling of prokaryotes is routine
617 nowadays (Heavner and Price, 2015); on the plant side metabolic models have been
618 generated for *Arabidopsis*, barley, maize, sorghum, sugarcane and canola (Botero et al.,
619 2018). Thus, the metabolic capabilities of beneficials and pathogens can be analyzed by
620 networks comparison. Mithani and colleagues tested the hypothesis that *P. syringae* has
621 evolved to be metabolically specialized for a plant-pathogenic lifestyle (Mithani et al., 2011).
622 Comparison of metabolic networks for nine *Pseudomonas* strains showed that the
623 pathogenic *P. syringae* is metabolically very similar to its beneficial relative *P. fluorescens* Pf-
624 5 and thus that metabolism may not be a key distinguishing feature. Recently, a life-stage-
625 specific genome-scale metabolic model for the oomycete *Phytophthora infestans* was
626 generated, which predicts biochemical reactions in diverse cellular compartments and in the
627 pathogens stage context (Rodenburg et al., 2018). It will be important to constrain these
628 models by measurements of metabolite levels to obtain a more precise picture of the
629 metabolic changes induced in plant and microbe in the context of colonization.

630 *Integrated multi-omics modeling*

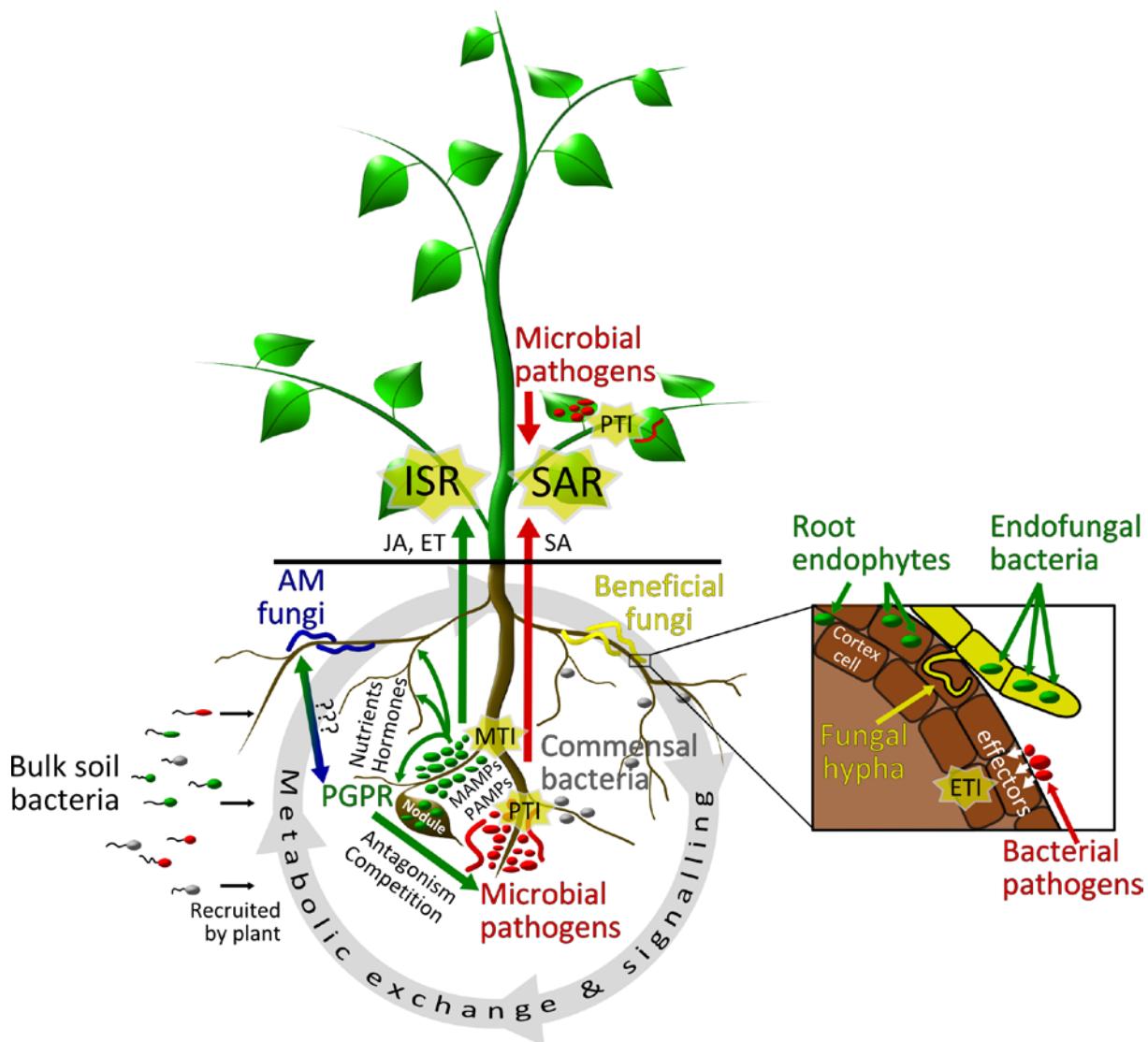
631 While there is obvious mutual benefit between plants and their microbiome and a ‘cry-for-
632 help’ can recruit microbes to support the host, to date it is unclear how the plant integrates
633 recognition of microbes with nutrient-related signals. Phosphorus is usually present in high
634 concentrations, but plant-absorbable orthophosphate is scarce in soil (Raghothama, 1999).
635 In a beautiful multi-omics, systems biology exercise Castrillo and colleagues shed light into
636 the link between nutrition and defense. Using a combination of 16S rRNA sequencing,
637 genome-wide expression analysis, analysis and modeling of SynComs, and functional
638 assays they showed that the plant phosphate starvation response (PSR) has an important
639 role in modulating the root microbiome. They demonstrated that different root-associated
640 microbiomes were assembled by phosphate uptake-deficient and phosphate-

641 hyperaccumulating *Arabidopsis* mutants compared to wild-type. The transcription factors
642 PHR1, and probably PHL1 are integrators of PSR and immune responses (Castrillo et al.,
643 2017), as *phr1* and *phr1;phl1* mutant plants were more resistant to the oomycete and
644 bacterial pathogens. The connection between PSR and plant immunity seems to be not only
645 modulated by the surrounding microbiota but also by pathogens (Lu et al., 2014) again
646 raising questions about the differences between beneficials and pathogens.

647 *From systems biology to crop protection*

648 The conceptual and molecular advances in understanding microbe-host biology are
649 increasingly helpful in understanding crops-microbe relationships. For the emerging foliar
650 fungal barley pathogen *Ramularia collo-cygni*, causing *Ramularia* leaf spot, McGrann and
651 colleagues used a draft genome assembly to predict a secretome of around 1,000 proteins
652 (McGrann et al., 2016). Based on the reduced number of plant cell wall degrading enzymes
653 and the presence of genes related to chitin recognition avoidance, they proposed that *R.*
654 *collo-cygni* first behaves as an endophyte without causing disease symptoms and then
655 changes to a necrotrophic phase. Understanding such dynamics and the underlying
656 molecular processes and signals will be an important aspect of systems biological analysis.
657 In another study the host specialization of four *Rhynchosporium* species on grasses has
658 been investigated (Penselin et al., 2016). *Rhynchosporia* are hemibiotrophic fungal
659 pathogens that colonize the intercellular matrix of host leaves relatively slowly without
660 symptoms. Penselin and colleagues found that six specific effector proteins from *R.*
661 *commune* appeared responsible for stabilizing the biotrophic growth stage in favor of the
662 necrotrophic destructive stage thus providing leads for treatment. In a remarkable study
663 combining multi 'omics' approaches the effects of beneficial microbes towards increased
664 biomass and higher tolerance to biotic and abiotic stresses in monocot crops was
665 investigated. Fiorilli and colleagues studied the three-way interactions between the wheat
666 pathogen *Xanthomonas translucens*, the protective symbiotic AM fungus, and the host using
667 phenotyping, transcriptomic, molecular and metabolomic approaches. They proposed a two-
668 step process for conferring *Xanthomonas* resistance to AM-treated wheat: first the activation
669 of a broad-spectrum defense (BSD) response that takes place in roots and leaves of AM-
670 treated plants, and secondly a switch to pathogen-specific defense (PSD) upon bacterial
671 infection, which ultimately leads to protection against the pathogen (Fiorilli et al., 2018).

672 ***Outlook: tailored microbiomes for sustainable precision agriculture***


673 The versatility for counteracting a number of stressors makes beneficial microbes attractive
674 tools for sustainable intensification of agricultural production. In the emerging big data driven
675 precision agriculture, crop health is constantly monitored remotely and targeted probiotic

676 treatments may be applied precisely when and where indicated. For this vision it is
677 necessary to have cultivars that are competent to optimally profit from a mix of beneficial
678 microbes without increased pathogen susceptibility. For this, a deep understanding of
679 microbe-host interactions, their genetic determinants and the influence on other plant growth
680 parameters is necessary (Figure 2). The connection between plant nutritional stress
681 responses, immune system function, and microbiome assembly revealed by Castrillo and
682 colleagues is likely only the tip of the iceberg and many exciting mechanisms remain to be
683 uncovered (Castrillo et al., 2017).

684 Equally important are microbial formulations that are able to establish themselves in the
685 rhizosphere of crops growing in natural soils. Thus, manipulation of the soil microbiome will
686 require an understanding of microbial community dynamics and of plant mechanisms to
687 control the microbiome. Practical questions also regard probiotic formulation development,
688 cultivation and synchronization of multiple species, and delivery of SynComs in the field.

689 Strategically, understanding host-microbe compatibility in reference organisms will allow
690 transfer of these insights to crops and identification of the underlying genetics. Once the
691 genetic determinants have been identified in crops, probiotic competence can become a
692 target for breeders. Abiotic and biotic stress conditions that threaten agricultural productivity
693 may then be counteracted by application of probiotic cocktails on the field. Due to the
694 complexity of microbe-host interactions, systems biology will have to play an essential role in
695 understanding of these complex inter-organismic relations.

696

697

698 **Figure 2.** Schematic representation of the multiple and complex interorganismal interactions
 699 taking place in the plant rhizosphere and phyllosphere. Beneficial bacteria are depicted in
 700 green, fungal and bacterial pathogens in red, commensal bacteria in grey, arbuscular
 701 mycorrhizal fungi in blue and other beneficial fungi in yellow. Arrows in the corresponding
 702 color indicate known interactions described in the text. Inset on the right represents a
 703 magnification of the small frame in the main image.

704 **Acknowledgments**

705 We thank C. Falter for critical reading of the manuscript. This work was supported by DFG
 706 SPP2125 DECRyPT (GU1423/3-1) to CG, by DFG SFB 924/2-A10 and the European
 707 Research Council's Horizon 2020 Research and Innovation Programme (Grant Agreement
 708 648420) grants to PFB and grants by the German Federal Ministry of Education and
 709 Research (BMBF) to PFB (01EA1803) and MR (031A560 F).

References

- Agler, M.T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.T., Weigel, D., and Kemen, E.M. (2016). Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. *PLoS biology* 14:e1002352.
- Akum, F.N., Steinbrenner, J., Biedenkopf, D., Imani, J., and Kogel, K.H. (2015). The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis. *Frontiers in plant science* 6:906.
- An, Q., Ehlers, K., Kogel, K.H., van Bel, A.J., and Huckelhoven, R. (2006). Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. *The New phytologist* 172:563-576.
- Anderson, J.A., Staley, J., Challender, M., and Heuton, J. (2018). Safety of *Pseudomonas chlororaphis* as a gene source for genetically modified crops. *Transgenic research* 27:103-113.
- Arabidopsis Interactome Mapping Consortium (2011). Evidence for network evolution in an *Arabidopsis* interactome map. *Science* (New York, N.Y.) 333:601-607.
- Armanhi, J.S.L., de Souza, R.S.C., Damasceno, N.B., de Araujo, L.M., Imperial, J., and Arruda, P. (2017). A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. *Frontiers in plant science* 8:2191.
- Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., and Smith, D.L. (2018). Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. *Frontiers in plant science* 9:1473.
- Bai, Y., Müller, D.B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., Dombrowski, N., Münch, P.C., Spaepen, S., Remus-Emsermann, M., et al. (2015). Functional overlap of the *Arabidopsis* leaf and root microbiota. *Nature* 528:364.
- Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. *Annual review of plant biology* 57:233-266.
- Berendsen, R.L., Pieterse, C.M., and Bakker, P.A. (2012). The rhizosphere microbiome and plant health. *Trends in plant science* 17:478-486.
- Berendsen, R.L., van Verk, M.C., Stringlis, I.A., Zamioudis, C., Tommassen, J., Pieterse, C.M.J., and Bakker, P.A.H.M. (2015). Unearthing the genomes of plant-beneficial *Pseudomonas* model strains WCS358, WCS374 and WCS417. *BMC genomics* 16:539-539.
- Berendsen, R.L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W.P., Burmolle, M., Herschend, J., Bakker, P., and Pieterse, C.M.J. (2018). Disease-induced assemblage of a plant-beneficial bacterial consortium. *The ISME journal* 12:1496-1507.
- Berg, G., Eberl, L., and Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. *Environmental microbiology* 7:1673-1685.
- Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M., and Vorholt, J.A. (2014). A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. *PLoS genetics* 10:e1004283.
- Bogino, P., Abod, A., Nievas, F., and Giordano, W. (2013). Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere. *PloS one* 8:e79614.
- Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. *Annual review of plant biology* 60:379-406.
- Botero, D., Alvarado, C., Bernal, A., Danies, G., and Restrepo, S. (2018). Network Analyses in Plant Pathogens. *Frontiers in microbiology* 9:35.
- Buée, M., De Boer, W., Martin, F., van Overbeek, L., and Jurkewitch, E. (2009). The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. *Plant and Soil* 321:189-212.

- Buendia, L., Wang, T., Girardin, A., and Lefebvre, B. (2016). The LysM receptor-like kinase SLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. *The New phytologist* 210:184-195.
- Bulgarelli, D., Garrido-Oter, R., Münch, Philipp C., Weiman, A., Dröge, J., Pan, Y., McHardy, Alice C., and Schulze-Lefert, P. (2015). Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley. *Cell Host & Microbe* 17:392-403.
- Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., et al. (2012). Revealing structure and assembly cues for *Arabidopsis* root-inhabiting bacterial microbiota. *Nature* 488:91.
- Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., and Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. *Annual review of plant biology* 64:807-838.
- Canet, J.V., Dobon, A., Fajmonova, J., and Tornero, P. (2012). The BLADE-ON-PETIOLE genes of *Arabidopsis* are essential for resistance induced by methyl jasmonate. *BMC plant biology* 12:199.
- Canet, J.V., Dobon, A., Ibanez, F., Perales, L., and Tornero, P. (2010). Resistance and biomass in *Arabidopsis*: a new model for salicylic acid perception. *Plant biotechnology journal* 8:126-141.
- Carbonnel, S., and Gutjahr, C. (2014). Control of arbuscular mycorrhiza development by nutrient signals. *Frontiers in plant science* 5:462.
- Castello, M.J., Medina-Puche, L., Lamilla, J., and Tornero, P. (2018). NPR1 paralogs of *Arabidopsis* and their role in salicylic acid perception. *PloS one* 13:e0209835.
- Castrillo, G., Teixeira, P.J., Paredes, S.H., Law, T.F., de Lorenzo, L., Feltcher, M.E., Finkel, O.M., Breakfield, N.W., Mieczkowski, P., Jones, C.D., et al. (2017). Root microbiota drive direct integration of phosphate stress and immunity. *Nature* 543:513-518.
- Cha, C., Gao, P., Chen, Y.C., Shaw, P.D., and Farrand, S.K. (1998). Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. *Molecular plant-microbe interactions* : MPMI 11:1119-1129.
- Chanway, C.P., Nelson, L., and Holl, F.B. (1988). Cultivar-specific growth promotion of spring wheat (*Triticum aestivum* L.) by coexistent *Bacillus* species. *Canadian Journal of Microbiology* 34:925-929.
- Chester, K.S. (1933). The Problem of Acquired Physiological Immunity in Plants. *The Quarterly Review of Biology* 8:275-324.
- Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2006). The *Arabidopsis* receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. *Plant Cell* 18:465-476.
- Chowdhury, S.P., Hartmann, A., Gao, X., and Borri, R. (2015). Biocontrol mechanism by root-associated *Bacillus amyloliquefaciens* FZB42 - a review. *Frontiers in microbiology* 6:780.
- Clark, N.M., de Luis Balaguer, M.A., and Sozzani, R. (2014). Experimental data and computational modeling link auxin gradient and development in the *Arabidopsis* root. *Frontiers in plant science* 5:328.
- Clua, J., Roda, C., Zanetti, M.E., and Blanco, F.A. (2018). Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. *Genes* 9.
- Coll, N.S., Epple, P., and Dangl, J.L. (2011). Programmed cell death in the plant immune system. *Cell Death Differ* 18:1247-1256.
- Copeland, J.K., Yuan, L., Layeghifard, M., Wang, P.W., and Guttman, D.S. (2015). Seasonal community succession of the phyllosphere microbiome. *Molecular plant-microbe interactions* : MPMI 28:274-285.
- Couzigou, J.M., Zhukov, V., Mondy, S., Abu el Heba, G., Cosson, V., Ellis, T.H., Ambrose, M., Wen, J., Tadege, M., Tikhonovich, I., et al. (2012). NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of *Arabidopsis* BLADE-ON-PETIOLE genes. *Plant Cell* 24:4498-4510.

- Crua Asensio, N., Munoz Giner, E., de Groot, N.S., and Torrent Burgas, M. (2017). Centrality in the host-pathogen interactome is associated with pathogen fitness during infection. *Nature communications* 8:14092.
- Dou, D., and Zhou, J.M. (2012). Phytopathogen effectors subverting host immunity: different foes, similar battleground. *Cell Host Microbe* 12:484-495.
- Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., and Hacquard, S. (2018). Microbial interkingdom interactions in roots promote *Arabidopsis* survival. *bioRxiv*.
- Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., and Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. *Proceedings of the National Academy of Sciences of the United States of America* 112:E911-920.
- Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F.A., Khan, F., Chen, Y., Wu, C., et al. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. *Environmental science and pollution research international* 22:4907-4921.
- Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. *Nature reviews. Microbiology* 10:538-550.
- Fendrych, M., Leung, J., and Friml, J. (2016). TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of *Arabidopsis* hypocotyls. *eLife* 5.
- Ferreira da Silva, S., Olivares, F.L., and Canellas, L.P. (2017). The biostimulant manufactured using diazotrophic endophytic bacteria and humates is effective to increase sugarcane yield. *Chemical and Biological Technologies in Agriculture* 4:24.
- Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A., and Cleveland, C.C. (2009). Global patterns in belowground communities. *Ecology Letters* 12:1238-1249.
- Fiorilli, V., Vannini, C., Ortolani, F., Garcia-Seco, D., Chiapello, M., Novero, M., Domingo, G., Terzi, V., Morcia, C., Bagnaresi, P., et al. (2018). Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. *Scientific reports* 8:9625.
- Fliegmann, J., and Felix, G. (2016). Immunity: Flagellin seen from all sides. *Nature plants* 2:16136.
- Fröhlich, A., Buddrus-Schiemann, K., Durner, J., Hartmann, A., and von Rad, U. (2012). Response of barley to root colonization by *Pseudomonas* sp. DSMZ 13134 under laboratory, greenhouse, and field conditions. *Journal of Plant Interactions* 7:1-9.
- Fu, Z.Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S.H., Tada, Y., Zheng, N., et al. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. *Nature* 486:228-232.
- Garrido-Oter, R., Nakano, R.T., Dombrowski, N., Ma, K.W., McHardy, A.C., and Schulze-Lefert, P. (2018). Modular Traits of the Rhizobiales Root Microbiota and Their Evolutionary Relationship with Symbiotic Rhizobia. *Cell Host Microbe* 24:155-167.e155.
- Germida, J.J., and Walley, F.L. (1996). Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. *Biology and Fertility of Soils* 23:113-120.
- Glaeser, S.P., Imani, J., Alabid, I., Guo, H., Kumar, N., Kampfer, P., Hardt, M., Blom, J., Goesmann, A., Rothbauer, M., et al. (2016). Non-pathogenic *Rhizobium* radiobacter F4 deploys plant beneficial activity independent of its host *Piriformospora indica*. *The ISME journal* 10:871-884.
- Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. *Annual review of phytopathology* 43:205-227.
- Gomez-Gomez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in *Arabidopsis thaliana*. *The Plant journal : for cell and molecular biology* 18:277-284.
- Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S., and Patra, J.K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. *Microbiological research* 206:131-140.

- Gough, C., and Cullimore, J. (2011). Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. *Molecular plant-microbe interactions : MPMI* 24:867-878.
- Gough, C., and Jacquet, C. (2013). Nod factor perception protein carries weight in biotic interactions. *Trends in plant science* 18:566-574.
- Gourion, B., Berrabah, F., Ratet, P., and Stacey, G. (2015). Rhizobium-legume symbioses: the crucial role of plant immunity. *Trends in plant science* 20:186-194.
- Grace, E.J., Cotsaftis, O., Tester, M., Smith, F.A., and Smith, S.E. (2009). Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. *The New phytologist* 181:938-949.
- Grady, E.N., MacDonald, J., Liu, L., Richman, A., and Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. *Microbial cell factories* 15:203.
- Grieneisen, V.A., Xu, J., Marée, A.F.M., Hogeweg, P., and Scheres, B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. *Nature* 449:1008.
- Griesmann, M., Chang, Y., Liu, X., Song, Y., Haberer, G., Crook, M.B., Billault-Penneteau, B., Laressergues, D., Keller, J., Imanishi, L., et al. (2018). Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. *Science (New York, N.Y.)* 361.
- Guo, H., Glaeser, S.P., Alabid, I., Imani, J., Haghghi, H., Kampfer, P., and Kogel, K.H. (2017). The Abundance of Endofungal Bacterium Rhizobium radiobacter (syn. Agrobacterium tumefaciens) Increases in Its Fungal Host Piriformospora indica during the Tripartite Sebacinalean Symbiosis with Higher Plants. *Frontiers in microbiology* 8:629.
- Gutjahr, C. (2014). Phytohormone signaling in arbuscular mycorrhiza development. *Curr Opin Plant Biol* 20:26-34.
- Gutjahr, C., and Paszkowski, U. (2009). Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. *Molecular plant-microbe interactions : MPMI* 22:763-772.
- Hacquard, S., Kracher, B., Hiruma, K., Münch, P.C., Garrido-Oter, R., Thon, M.R., Weimann, A., Damm, U., Dallery, J.-F., Hainaut, M., et al. (2016). Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. *Nature communications* 7:11362-11362.
- Hacquard, S., Spaepen, S., Garrido-Oter, R., and Schulze-Lefert, P. (2017). Interplay Between Innate Immunity and the Plant Microbiota. *Annual review of phytopathology* 55:565-589.
- Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F., and Kloepper, J.W. (1997). Bacterial endophytes in agricultural crops. *Canadian journal of microbiology* 43:895-914.
- Han, S., Li, D., Trost, E., Mayer, K.F., Vlot, A.C., Heller, W., Schmid, M., Hartmann, A., and Rothbauer, M. (2016). Systemic Responses of Barley to the 3-hydroxy-decanoyl-homoserine Lactone Producing Plant Beneficial Endophyte Acidovorax radicis N35. *Frontiers in plant science* 7:1868.
- Haney, C.H., Samuel, B.S., Bush, J., and Ausubel, F.M. (2015). Associations with rhizosphere bacteria can confer an adaptive advantage to plants. *Nature plants* 1.
- Harboim, P.R., van Overbeek, L.S., Berg, G., Pirttilä, A.M., Compant, S., Campisano, A., Doring, M., and Sessitsch, A. (2015). The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. *Microbiology and molecular biology reviews : MMBR* 79:293-320.
- Hartman, K., van der Heijden, M.G., Roussely-Provent, V., Walser, J.C., and Schlaepi, K. (2017). Deciphering composition and function of the root microbiome of a legume plant. *Microbiome* 5:2.
- Heavner, B.D., and Price, N.D. (2015). Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction. *PLoS computational biology* 11:e1004530.

- Herrera Paredes, S., Gao, T., Law, T.F., Finkel, O.M., Mucyn, T., Teixeira, P., Salas Gonzalez, I., Feltcher, M.E., Powers, M.J., Shank, E.A., et al. (2018). Design of synthetic bacterial communities for predictable plant phenotypes. *PLoS biology* 16:e2003962.
- Hillmer, R.A., Tsuda, K., Rallapalli, G., Asai, S., Truman, W., Papke, M.D., Sakakibara, H., Jones, J.D.G., Myers, C.L., and Katagiri, F. (2017). The highly buffered *Arabidopsis* immune signaling network conceals the functions of its components. *PLoS genetics* 13:e1006639.
- Hiltunen, L.H., Ojanpera, T., Kortemaa, H., Richter, E., Lehtonen, M.J., and Valkonen, J.P. (2009). Interactions and biocontrol of pathogenic *Streptomyces* strains co-occurring in potato scab lesions. *Journal of applied microbiology* 106:199-212.
- Hirai, H., Takai, R., Iwano, M., Nakai, M., Kondo, M., Takayama, S., Isogai, A., and Che, F.S. (2011). Glycosylation regulates specific induction of rice immune responses by *Acidovorax avenae* flagellin. *The Journal of biological chemistry* 286:25519-25530.
- Hu, J., Wei, Z., Friman, V.P., Gu, S.H., Wang, X.F., Eisenhauer, N., Yang, T.J., Ma, J., Shen, Q.R., Xu, Y.C., et al. (2016). Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression. *mBio* 7.
- Innes, R. (2018). The Positives and Negatives of NPR: A Unifying Model for Salicylic Acid Signaling in Plants. *Cell* 173:1314-1315.
- Jacob, F., Vernaldi, S., and Maekawa, T. (2013). Evolution and Conservation of Plant NLR Functions. *Front Immunol* 4:297.
- Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., and Kopriva, S. (2017). The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. *Frontiers in plant science* 8:1617.
- Jones, A.M., Xuan, Y., Xu, M., Wang, R.S., Ho, C.H., Lalonde, S., You, C.H., Sardi, M.I., Parsa, S.A., Smith-Valle, E., et al. (2014). Border control--a membrane-linked interactome of *Arabidopsis*. *Science* (New York, N.Y.) 344:711-716.
- Jones, J.D., and Dangl, J.L. (2006). The plant immune system. *Nature* 444:323-329.
- Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J.P., Thonart, P., and Ongena, M. (2009). Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from *Bacillus subtilis*. *Molecular plant-microbe interactions* : MPMI 22:456-468.
- Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., and Howe, G.A. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. *Proceedings of the National Academy of Sciences of the United States of America* 105:7100-7105.
- Katsuragi, Y., Takai, R., Furukawa, T., Hirai, H., Morimoto, T., Katayama, T., Murakami, T., and Che, F.S. (2015). CD2-1, the C-Terminal Region of Flagellin, Modulates the Induction of Immune Responses in Rice. *Molecular plant-microbe interactions* : MPMI 28:648-658.
- Keymer, A., and Gutjahr, C. (2018). Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. *Curr Opin Plant Biol* 44:137-144.
- Kim, M.S., Zhang, H., Yan, H., Yoon, B.J., and Shim, W.B. (2018). Characterizing co-expression networks underpinning maize stalk rot virulence in *Fusarium verticillioides* through computational subnetwork module analyses. *Scientific reports* 8:8310.
- Kistner, C., and Parniske, M. (2002). Evolution of signal transduction in intracellular symbiosis. *Trends in plant science* 7:511-518.
- Kloepper, J.W., McInroy, J.A., Liu, K., and Hu, C.H. (2013). Symptoms of Fern Distortion Syndrome resulting from inoculation with opportunistic endophytic fluorescent *Pseudomonas* spp. *PLoS one* 8:e58531.
- Kloepper, J.W., and Schroth, M.N. (1981). Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. *Phytopathology* 71:642-644.
- Kloepper, J.W., Tuzun, S., and Kuć, J.A. (1992). Proposed definitions related to induced disease resistance. *Biocontrol Science and Technology* 2:349-351.

- Kloppfleisch, K., Phan, N., Augustin, K., Bayne, R.S., Booker, K.S., Botella, J.R., Carpita, N.C., Carr, T., Chen, J.G., Cooke, T.R., et al. (2011). Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. *Molecular systems biology* 7:532.
- Kruger, N.J., and Ratcliffe, R.G. (2015). Fluxes through plant metabolic networks: measurements, predictions, insights and challenges. *The Biochemical journal* 465:27-38.
- Kuai, X., MacLeod, B.J., and Despres, C. (2015). Integrating data on the Arabidopsis NPR1/NPR3/NPR4 salicylic acid receptors; a differentiating argument. *Frontiers in plant science* 6:235.
- Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Molecular biology and evolution* 33:1870-1874.
- Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics* 9:559.
- Layeghifard, M., Hwang, D.M., and Guttman, D.S. (2017). Disentangling Interactions in the Microbiome: A Network Perspective. *Trends in microbiology* 25:217-228.
- Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C.D., Tringe, S.G., et al. (2015). PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. *Science (New York, N.Y.)* 349:860-864.
- Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., et al. (2008). Evolution of Mammals and Their Gut Microbes. *Science (New York, N.Y.)* 320:1647.
- Li, J., Brader, G., and Palva, E.T. (2004). The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. *Plant Cell* 16:319-331.
- Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. *Cell* 110:213-222.
- Li, S., Musungu, B., Lightfoot, D., and Ji, P. (2018). The Interactomic Analysis Reveals Pathogenic Protein Networks in *Phomopsis longicolla* Underlying Seed Decay of Soybean. *Frontiers in genetics* 9:104.
- Li, Y., Gu, Y., Li, J., Xu, M., Wei, Q., and Wang, Y. (2015). Biocontrol agent *Bacillus amyloliquefaciens* LJ02 induces systemic resistance against cucurbits powdery mildew. *Frontiers in microbiology* 6:883.
- Liao, C.Y., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T., and Weijers, D. (2015). Reporters for sensitive and quantitative measurement of auxin response. *Nature methods* 12:207-210, 202 p following 210.
- Libault, M., Farmer, A., Brechenmacher, L., Drnevich, J., Langley, R.J., Bilgin, D.D., Radwan, O., Neece, D.J., Clough, S.J., May, G.D., et al. (2010). Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to *Bradyrhizobium japonicum* infection. *Plant physiology* 152:541-552.
- Liu, J., Blaylock, L.A., Endre, G., Cho, J., Town, C.D., VandenBosch, K.A., and Harrison, M.J. (2003). Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. *Plant Cell* 15:2106-2123.
- Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C.D., and Harrison, M.J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. *The Plant journal : for cell and molecular biology* 50:529-544.
- Liu, R., Dai, M., Wu, X., Li, M., and Liu, X. (2012). Suppression of the root-knot nematode [*Meloidogyne incognita* (Kofoid & White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. *Mycorrhiza* 22:289-296.
- López-Ráez, J.A., Pozo, M.J., and García-Garrido, J.M. (2011). Strigolactones: a cry for help in the rhizosphere. *Botany* 89:513-522.

- Lu, Y.T., Li, M.Y., Cheng, K.T., Tan, C.M., Su, L.W., Lin, W.Y., Shih, H.T., Chiou, T.J., and Yang, J.Y. (2014). Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. *Plant physiology* 164:1456-1469.
- Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T.G.d., et al. (2012). Defining the core *Arabidopsis thaliana* root microbiome. *Nature* 488:86.
- Ma, K.-W., and Ma, W. (2016). Phytohormone pathways as targets of pathogens to facilitate infection. *Plant Molecular Biology* 91:713-725.
- Macho, A.P., and Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. *Mol Cell* 54:263-272.
- Magne, K., George, J., Berbel Tornero, A., Broquet, B., Madueno, F., Andersen, S.U., and Ratet, P. (2018). *Lotus japonicus* NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development. *The Plant journal : for cell and molecular biology* 94:880-894.
- Maillet, F., Poinsot, V., Andre, O., Puech-Pages, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., et al. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. *Nature* 469:58-63.
- Marin-de la Rosa, N., and Falter-Braun, P. (2015). Primer on Protein–Protein Interaction Maps. In: eLS: John Wiley & Sons.
- Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles, G., Rolfe, B.G., and Bauer, W.D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. *Proceedings of the National Academy of Sciences of the United States of America* 100:1444-1449.
- McGrann, G.R., Andongabo, A., Sjokvist, E., Trivedi, U., Dussart, F., Kaczmarek, M., Mackenzie, A., Fountaine, J.M., Taylor, J.M., Paterson, L.J., et al. (2016). The genome of the emerging barley pathogen *Ramularia collo-cygni*. *BMC genomics* 17:584.
- Mendes, R., Garbeva, P., and Raaijmakers, J.M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. *FEMS microbiology reviews* 37:634-663.
- Meschke, H., and Schrempf, H. (2010). *Streptomyces lividans* inhibits the proliferation of the fungus *Verticillium dahliae* on seeds and roots of *Arabidopsis thaliana*. *Microbial biotechnology* 3:428-443.
- Miedes, E., Vanholme, R., Boerjan, W., and Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. *Frontiers in plant science* 5:358.
- Miotto-Vilanova, L., Jacquard, C., Courteaux, B., Wortham, L., Michel, J., Clément, C., Barka, E.A., and Sanchez, L. (2016). *Burkholderia phytofirmans* PsJN Confers Grapevine Resistance against *Botrytis cinerea* via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization. *Frontiers in plant science* 7:1236-1236.
- Mironova, V.V., Omelyanchuk, N.A., Yosiphon, G., Fadeev, S.I., Kolchanov, N.A., Mjolsness, E., and Likhoshvai, V.A. (2010). A plausible mechanism for auxin patterning along the developing root. *BMC systems biology* 4:98.
- Mithani, A., Hein, J., and Preston, G.M. (2011). Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in *Pseudomonas*. *Molecular biology and evolution* 28:483-499.
- Miwa, H., and Okazaki, S. (2017). How effectors promote beneficial interactions. *Curr Opin Plant Biol* 38:148-154.
- Miyata, K., Kozaki, T., Kouzai, Y., Ozawa, K., Ishii, K., Asamizu, E., Okabe, Y., Umehara, Y., Miyamoto, A., Kobae, Y., et al. (2014). The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. *Plant Cell Physiol* 55:1864-1872.
- Molina-Romero, D., Baez, A., Quintero-Hernandez, V., Castaneda-Lucio, M., Fuentes-Ramirez, L.E., Bustillos-Cristales, M.D.R., Rodriguez-Andrade, O., Morales-Garcia, Y.E., Munive, A., and

- Munoz-Rojas, J. (2017). Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. *PLoS one* 12:e0187913.
- Montalban, B., Thijs, S., Lobo, M.C., Weyens, N., Ameloot, M., Vangronsveld, J., and Perez-Sanz, A. (2017). Cultivar and Metal-Specific Effects of Endophytic Bacteria in *Helianthus tuberosus* Exposed to Cd and Zn. *International journal of molecular sciences* 18.
- Mukhtar, M.S., Carvunis, A.R., Dreze, M., Epple, P., Steinbrenner, J., Moore, J., Tasan, M., Galli, M., Hao, T., Nishimura, M.T., et al. (2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. *Science (New York, N.Y.)* 333:596-601.
- Nabti, E., Sahnoune, M., Ghoul, M., Fischer, D., Hofmann, A., Rothballer, M., Schmid, M., and Hartmann, A. (2010). Restoration of Growth of Durum Wheat (*Triticum durum* var. *waha*) Under Saline Conditions Due to Inoculation with the Rhizosphere Bacterium *Azospirillum brasilense* NH and Extracts of the Marine Alga *Ulva lactuca*. *Journal of Plant Growth Regulation* 29:6-22.
- Nam, K.H., and Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. *Cell* 110:203-212.
- Ndeddy Aka, R.J., and Babalola, O.O. (2016). Effect of bacterial inoculation of strains of *Pseudomonas aeruginosa*, *Alcaligenes faecalis* and *Bacillus subtilis* on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of *Brassica juncea*. *International journal of phytoremediation* 18:200-209.
- Neal, A.L., Ahmad, S., Gordon-Weeks, R., and Ton, J. (2012). Benzoxazinoids in root exudates of maize attract *Pseudomonas putida* to the rhizosphere. *PLoS one* 7:e35498.
- Nguyen, D., Rieu, I., Mariani, C., and van Dam, N.M. (2016). How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. *Plant Mol Biol* 91:727-740.
- Nishida, H., and Suzuki, T. (2018). Nitrate-mediated control of root nodule symbiosis. *Curr Opin Plant Biol* 44:129-136.
- Niu, B., Paulson, J.N., Zheng, X., and Kolter, R. (2017). Simplified and representative bacterial community of maize roots. *Proceedings of the National Academy of Sciences of the United States of America* 114:E2450-e2459.
- Okazaki, S., Kaneko, T., Sato, S., and Saeki, K. (2013). Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. *Proceedings of the National Academy of Sciences of the United States of America* 110:17131-17136.
- Olanrewaju, O.S., Glick, B.R., and Babalola, O.O. (2017). Mechanisms of action of plant growth promoting bacteria. *World J Microbiol Biotechnol* 33:197.
- Oldroyd, G.E., Murray, J.D., Poole, P.S., and Downie, J.A. (2011). The rules of engagement in the legume-rhizobial symbiosis. *Annual review of genetics* 45:119-144.
- Peiffer, J.A., Spor, A., Koren, O., Jin, Z., Tringe, S.G., Dangl, J.L., Buckler, E.S., and Ley, R.E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. *Proceedings of the National Academy of Sciences of the United States of America* 110:6548-6553.
- Penselin, D., Munsterkotter, M., Kirsten, S., Felder, M., Taudien, S., Platzer, M., Ashelford, K., Paskiewicz, K.H., Harrison, R.J., Hughes, D.J., et al. (2016). Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of *Rhynchosporium* species on grasses. *BMC genomics* 17:953.
- Perez-de-Luque, A., Tille, S., Johnson, I., Pascual-Pardo, D., Ton, J., and Cameron, D.D. (2017). The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. *Scientific reports* 7:16409.
- Pérez-Jaramillo, J.E., Mendes, R., and Raaijmakers, J.M. (2016). Impact of plant domestication on rhizosphere microbiome assembly and functions. *Plant molecular biology* 90:635-644.
- Peterson, S.B., Dunn, A.K., Klimowicz, A.K., and Handelsman, J. (2006). Peptidoglycan from *Bacillus cereus* mediates commensalism with rhizosphere bacteria from the *Cytophaga-Flavobacterium* group. *Applied and environmental microbiology* 72:5421-5427.

- Pieterse, C.M., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C., and Bakker, P.A. (2014). Induced systemic resistance by beneficial microbes. *Annual review of phytopathology* 52:347-375.
- Pii, Y., Borruso, L., Brusetti, L., Crecchio, C., Cesco, S., and Mimmo, T. (2016). The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. *Plant Physiology and Biochemistry* 99:39-48.
- Pinedo, I., Ledger, T., Greve, M., and Poupin, M.J. (2015). *Burkholderia phytofirmans* PsJN induces long-term metabolic and transcriptional changes involved in *Arabidopsis thaliana* salt tolerance. *Frontiers in plant science* 6:466.
- Poudel, R., Jumpponen, A., Schiesser, D.C., Paulitz, T.C., Gardener, B.B., Kinkel, L.L., and Garrett, K.A. (2016). Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management. *Phytopathology* 106:1083-1096.
- Pozo, M.J., Lopez-Raez, J.A., Azcon-Aguilar, C., and Garcia-Garrido, J.M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. *The New phytologist* 205:1431-1436.
- Prithiviraj, B., Zhou, X., Souleimanov, A., Khan, W.M., and Smith, D.L. (2003). A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. *Planta* 216:437-445.
- Radhakrishnan, R., Hashem, A., and Abd Allah, E.F. (2017). *Bacillus*: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. *Frontiers in physiology* 8:667.
- Rafiqi, M., Jelonek, L., Akum, N.F., Zhang, F., and Kogel, K.H. (2013). Effector candidates in the secretome of *Piriformospora indica*, a ubiquitous plant-associated fungus. *Frontiers in plant science* 4:228.
- Raghothama, K.G. (1999). PHOSPHATE ACQUISITION. *Annual review of plant physiology and plant molecular biology* 50:665-693.
- Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I., and Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. *Microbiological research* 183:26-41.
- Raupach, G.S., and Kloepper, J.W. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. *Phytopathology* 88:1158-1164.
- Rey, T., Chatterjee, A., Buttay, M., Toulouze, J., and Schornack, S. (2015). *Medicago truncatula* symbiosis mutants affected in the interaction with a biotrophic root pathogen. *The New phytologist* 206:497-500.
- Rey, T., Nars, A., Bonhomme, M., Bottin, A., Huguet, S., Balzergue, S., Jardinaud, M.F., Bono, J.J., Cullimore, J., Dumas, B., et al. (2013). NFP, a LysM protein controlling Nod factor perception, also intervenes in *Medicago truncatula* resistance to pathogens. *The New phytologist* 198:875-886.
- Rodenburg, S.Y.A., Seidl, M.F., de Ridder, D., and Govers, F. (2018). Genome-wide characterization of *Phytophthora infestans* metabolism: a systems biology approach. *Mol Plant Pathol* 19:1403-1413.
- Roth, R., and Paszkowski, U. (2017). Plant carbon nourishment of arbuscular mycorrhizal fungi. *Curr Opin Plant Biol* 39:50-56.
- Rothbauer, M., Schmid, M., and Hartmann, A. (2003). In situ Localization and PGPR-Effect of *Azospirillum brasilense* Strains Colonizing Roots of Different Wheat Varieties.
- Rudrappa, T., Czermak, K.J., Pare, P.W., and Bais, H.P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. *Plant physiology* 148:1547-1556.
- Saelens, W., Cannoodt, R., and Saeys, Y. (2018). A comprehensive evaluation of module detection methods for gene expression data. *Nature communications* 9:1090.
- Schenk, S.T., Hernandez-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithofer, A., Becker, A., Kogel, K.H., et al. (2014). N-Acyl-Homoserine Lactone Primes Plants

- for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway. *Plant Cell* 26:2708-2723.
- Schikora, A., Schenk, S.T., and Hartmann, A. (2016). Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. *Plant Mol Biol* 90:605-612.
- Schlaeppi, K., Dombrowski, N., Oter, R.G., Ver Loren van Themaat, E., and Schulze-Lefert, P. (2014). Quantitative divergence of the bacterial root microbiota in *Arabidopsis thaliana* relatives. *Proceedings of the National Academy of Sciences of the United States of America* 111:585-592.
- Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., et al. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. *Plant, cell & environment* 29:909-918.
- Schulze, B., Mentzel, T., Jehle, A.K., Mueller, K., Beeler, S., Boller, T., Felix, G., and Chinchilla, D. (2010). Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. *The Journal of biological chemistry* 285:9444-9451.
- Schumacher, J., Waite, C.J., Bennett, M.H., Perez, M.F., Shethi, K., and Buck, M. (2014). Differential secretome analysis of *Pseudomonas syringae* pv tomato using gel-free MS proteomics. *Frontiers in plant science* 5:242.
- Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., and Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. *PLoS genetics* 7:e1002046.
- Seyfferth, C., and Tsuda, K. (2014). Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. *Frontiers in plant science* 5:697.
- Singh, S., and Parniske, M. (2012). Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. *Curr Opin Plant Biol* 15:444-453.
- Singh, U.P., Sarma, B.K., and Singh, D.P. (2003). Effect of plant growth-promoting Rhizobacteria and culture filtrate of *Sclerotium rolfsii* on phenolic and salicylic acid contents in chickpea (*Cicer arietinum*). *Current microbiology* 46:131-140.
- Smakowska-Luzan, E., Mott, G.A., Parys, K., Stegmann, M., Howton, T.C., Layeghifard, M., Neuhold, J., Lehner, A., Kong, J., Grunwald, K., et al. (2018). An extracellular network of *Arabidopsis* leucine-rich repeat receptor kinases. *Nature* 553:342-346.
- Smigelski, L., Laubach, E.M., Pesch, L., Glock, J.M.L., Albrecht, F., Slusarenko, A.J., Panstruga, R., and Kuhn, H. (2019). Nodulation induces systemic resistance of *Medicago truncatula* and *Pisum sativum* against *Erysiphe pisi* and primes for powdery mildew-triggered salicylic acid accumulation. *Molecular plant-microbe interactions : MPMI*.
- Smith, S.E., and Smith, F.A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. *Annual review of plant biology* 62:227-250.
- Srivastava, S., Chaudhry, V., Mishra, A., Chauhan, P.S., Rehman, A., Yadav, A., Tuteja, N., and Nautiyal, C.S. (2012). Gene expression profiling through microarray analysis in *Arabidopsis thaliana* colonized by *Pseudomonas putida* MTCC5279, a plant growth promoting rhizobacterium. *Plant signaling & behavior* 7:235-245.
- Steindler, L., Bertani, I., De Sordi, L., Schwager, S., Eberl, L., and Venturi, V. (2009). LasI/R and RhI/R quorum sensing in a strain of *Pseudomonas aeruginosa* beneficial to plants. *Applied and environmental microbiology* 75:5131-5140.
- Su, F., Jacquard, C., Villaume, S., Michel, J., Rabenoelina, F., Clément, C., Barka, E.A., Dhondt-Cordelier, S., and Vaillant-Gaveau, N. (2015). *Burkholderia phytofirmans* PsJN reduces impact of freezing temperatures on photosynthesis in *Arabidopsis thaliana*. *Frontiers in plant science* 6:810-810.
- Swanson, M.M., Fraser, G., Daniell, T.J., Torrance, L., Gregory, P.J., and Taliinsky, M. (2009). Viruses in soils: morphological diversity and abundance in the rhizosphere. *Annals of Applied Biology* 155:51-60.

- Tanaka, K., Cho, S.H., Lee, H., Pham, A.Q., Batek, J.M., Cui, S., Qiu, J., Khan, S.M., Joshi, T., Zhang, Z.J., et al. (2015). Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings. *Journal of experimental botany* 66:5727-5738.
- Timmermann, T., Armijo, G., Donoso, R., Seguel, A., Holuigue, L., and Gonzalez, B. (2017). *Paraburkholderia phytofirmans* PsJN Protects *Arabidopsis thaliana* Against a Virulent Strain of *Pseudomonas syringae* Through the Activation of Induced Resistance. *Molecular plant-microbe interactions : MPMI* 30:215-230.
- Tiwari, S., Prasad, V., Chauhan, P.S., and Lata, C. (2017). *Bacillus amyloliquefaciens* Confers Tolerance to Various Abiotic Stresses and Modulates Plant Response to Phytohormones through Osmoprotection and Gene Expression Regulation in Rice. *Frontiers in plant science* 8:1510.
- Topfer, N., Kleessen, S., and Nikoloski, Z. (2015). Integration of metabolomics data into metabolic networks. *Frontiers in plant science* 6:49.
- Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., and Katagiri, F. (2009). Network properties of robust immunity in plants. *PLoS genetics* 5:e1000772.
- Valdameri, G., Alberton, D., Moure, V.R., Kokot, T.B., Kukolj, C., Brusamarello-Santos, L.C.C., Monteiro, R.A., Pedrosa, F.O., and de Souza, E.M. (2017). *Herbaspirillum rubrisubalbicans*, a mild pathogen impairs growth of rice by augmenting ethylene levels. *Plant Mol Biol* 94:625-640.
- VanEtten, H.D., Mansfield, J.W., Bailey, J.A., and Farmer, E.E. (1994). Two Classes of Plant Antibiotics: Phytoalexins versus "Phytoanticipins". *The Plant Cell* 6:1191.
- Vella, D., Zoppis, I., Mauri, G., Mauri, P., and Di Silvestre, D. (2017). From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data. *EURASIP journal on bioinformatics & systems biology* 2017:6.
- Viaene, T., Langendries, S., Beirinckx, S., Maes, M., and Goormachtig, S. (2016). Streptomyces as a plant's best friend? *FEMS microbiology ecology* 92.
- Vogel, C., Bodenhausen, N., Gruissem, W., and Vorholt, J.A. (2016). The *Arabidopsis* leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. *The New phytologist* 212:192-207.
- von Bodman, S.B., Bauer, W.D., and Coplin, D.L. (2003). QUORUM SENSING IN PLANT-PATHOGENIC BACTERIA. *Annual review of phytopathology* 41:455-482.
- von Rad, U., Klein, I., Dobrev, P.I., Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A., Schmitt-Kopplin, P., and Durner, J. (2008). Response of *Arabidopsis thaliana* to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. *Planta* 229:73-85.
- Vorholt, J.A. (2012). Microbial life in the phyllosphere. *Nature Reviews Microbiology* 10:828.
- Vorholt, J.A., Vogel, C., Carlström, C.I., and Müller, D.B. (2017). Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. *Cell Host & Microbe* 22:142-155.
- Vos, I.A., Moritz, L., Pieterse, C.M., and Van Wees, S.C. (2015). Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. *Frontiers in plant science* 6:639.
- Walker, V., Bertrand, C., Bellvert, F., Moenne-Locoz, Y., Bally, R., and Comte, G. (2011). Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus *Azospirillum*. *The New phytologist* 189:494-506.
- Walters, W.A., Jin, Z., Youngblut, N., Wallace, J.G., Sutter, J., Zhang, W., Gonzalez-Pena, A., Peiffer, J., Koren, O., Shi, Q., et al. (2018). Large-scale replicated field study of maize rhizosphere identifies heritable microbes. *Proceedings of the National Academy of Sciences of the United States of America* 115:7368-7373.
- Wasternack, C., and Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in *Annals of Botany*. *Annals of botany* 111:1021-1058.

- Watts-Williams, S.J., Emmett, B.D., Levesque-Tremblay, V., MacLean, A.M., Sun, X., Satterlee, J.W., Fei, Z., and Harrison, M.J. (2019). Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi. *Plant, cell & environment* 42:1758-1774.
- Weiberg, A., Wang, M., Lin, F.M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H.D., and Jin, H. (2013). Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. *Science (New York, N.Y.)* 342:118-123.
- Wessling, R., Epple, P., Altmann, S., He, Y., Yang, L., Henz, S.R., McDonald, N., Wiley, K., Bader, K.C., Glasser, C., et al. (2014). Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. *Cell Host Microbe* 16:364-375.
- Whipps, J.M. (1990). Carbon economy. In: The rhizosphere--Lynch, J.M., ed.: Wiley. 59-97.
- Wieland, G., Neumann, R., and Backhaus, H. (2001). Variation of Microbial Communities in Soil, Rhizosphere, and Rhizoplane in Response to Crop Species, Soil Type, and Crop Development. *Applied and environmental microbiology* 67:5849.
- Wu, Y., Zhang, D., Chu, J.Y., Boyle, P., Wang, Y., Brindle, I.D., De Luca, V., and Despres, C. (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. *Cell reports* 1:639-647.
- Yeats, T.H., and Rose, J.K.C. (2013). The Formation and Function of Plant Cuticles. *Plant physiology* 163:5-20.
- Yoneyama, K., Xie, X., Kim, H.I., Kisugi, T., Nomura, T., Sekimoto, H., Yokota, T., and Yoneyama, K. (2012). How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? *Planta* 235:1197-1207.
- Yu, H., Luscombe, N.M., Lu, H.X., Zhu, X., Xia, Y., Han, J.D., Bertin, N., Chung, S., Vidal, M., and Gerstein, M. (2004). Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. *Genome research* 14:1107-1118.
- Zarraonaindia, I., Owens, S.M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., Bokulich, N.A., Mills, D.A., Martin, G., Taghavi, S., et al. (2015). The soil microbiome influences grapevine-associated microbiota. *mBio* 6.
- Zeiller, M., Rothballer, M., Iwobi, A.N., Bohnel, H., Gessler, F., Hartmann, A., and Schmid, M. (2015). Systemic colonization of clover (*Trifolium repens*) by *Clostridium botulinum* strain 2301. *Frontiers in microbiology* 6:1207.
- Zgadzaj, R., Garrido-Oter, R., Jensen, D.B., Koprivova, A., Schulze-Lefert, P., and Radutoiu, S. (2016). Root nodule symbiosis in *Lotus japonicus* drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. *Proceedings of the National Academy of Sciences of the United States of America* 113:E7996-e8005.
- Zgadzaj, R., James, E.K., Kelly, S., Kawaharada, Y., de Jonge, N., Jensen, D.B., Madsen, L.H., and Radutoiu, S. (2015). A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. *PLoS genetics* 11:e1005280.
- Zgadzaj, R., Thiergart, T., Bozsoki, Z., Garrido Oter, R., Radutoiu, S., and Schulze-Lefert, P. (2019). *Lotus japonicus* symbiosis signaling genes and their role in the establishment of root-associated bacterial and fungal communities. *bioRxiv*:547687.
- Zhang, K., Li, Y., Li, T., Li, Z.G., Hsiang, T., Zhang, Z., and Sun, W. (2017). Pathogenicity Genes in *Ustilaginoidea virens* Revealed by a Predicted Protein-Protein Interaction Network. *Journal of proteome research* 16:1193-1206.
- Zhang, X., Dong, W., Sun, J., Feng, F., Deng, Y., He, Z., Oldroyd, G.E., and Wang, E. (2015). The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. *The Plant journal : for cell and molecular biology* 81:258-267.
- Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in *Arabidopsis* through flagellin perception. *Nature* 428:764-767.