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Abstract

In natural environments plants are exposed to diverse microbiota that they interact with in
complex ways. While plant-pathogen interactions have been intensely studied to understand
defense mechanisms in plants, many microbes and microbial communities can have
substantial beneficial effects on their plant host. Such beneficial effects include improved
acquisition of nutrients, accelerated growth, resilience against pathogens, and improved
resistance against abiotic stress conditions such as heat, drought, and salinity. However, the
beneficial effects of bacterial strains or consortia on their host are often cultivar- and species-
specific posing an obstacle to their general application. Remarkably many of the signals that
trigger plant immune responses are molecularly highly similar and often identical in
pathogenic and beneficial microbes. Thus, it is unclear what determines the outcome of a
particular microbe-host interaction and which factors enable plants to distinguish beneficials
from pathogens. To unravel the complex network of genetic, microbial, and metabolic
interactions including the signaling events mediating microbe-host interactions,

comprehensive quantitative systems biology approaches will be needed.
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Introduction

The microbial world has caught immense attention in recent years as the decrease of
sequencing costs has enabled an in-depth analysis on the composition and dynamics of
host-associated microbiota. For both humans and plants, it is recognized that microbes hold
an enormous potential to increase host health. In the vision of a future precision agriculture,
targeted application of beneficial microbial cocktails may be a sustainable path to counteract
biotic and abiotic stress conditions and ensure yield stability. However, most beneficial
microbes have close pathogenic relatives and it is currently unclear how the plant immune
system differentiates between pathogenic and beneficial microbes to fight infection by the
former and facilitate colonization by the latter. From an evolutionary perspective it is likely
that even the earliest eukaryotes were surrounded by diverse prokaryotes and that
eukaryotic immune systems evolved to differentiate between beneficial and pathogenic
bacteria. Therefore, a deep-rooted and complex interplay between microbes and hosts is
expected that touches all aspects of eukaryote biology. Understanding of microbe-host
interactions will therefore require classical as well as systems biological ‘omics’ and

guantitative modeling approaches.
The plant microbiome

Plants share their habitat with a variety of microbes that include bacteria, oomycetes, fungi,
archaea, and a poorly explored universe of viruses (reviewed in Agler et al.,, 2016;
Berendsen et al., 2012; Buée et al., 2009; Swanson et al., 2009). The composition of the
plant microbiota is shaped by complex multilateral interactions between the abiotic
environment and its biotic inhabitants. Depending on the outcome of an interaction for the
host, microbes are considered as mutualistic, commensal, or pathogenic. In this review we
focus on the interplay between bacteria and to a lesser extend filamentous eukaryotes with

the plant host.

Composition and dynamics of host associated microbial communities

Microbiome profiling of plants, plant organs and root associated soils has revealed a diverse
and highly dynamic plant microbiome. Several studies have shown that bacterial
communities are dynamically shaped by environmental factors like soil, season, daytime, as
well as host-factors like species, developmental stage, and compartment. Soil and air and
their properties provide the physical reservoir for the plant-associated microbiome (reviewed
in Vorholt, 2012). The microbiota of aerial plant parts is more influenced by long distance
transport processes, whereas for roots soil-type, soil history, nutrient and water content are

influential factors (Bogino et al., 2013). Especially at the beginning of the growth season, soil
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also influences the plant associated microbial communities aboveground (Copeland et al.,
2015). A richer and functionally better characterized microbiome is found belowground.
Microbial species richness is highest in bulk soil, decreases in the rhizosphere and is lowest
in the endophytic compartment, indicating a strong selective gradient. In parallel, microbial
cell-count increases from bulk soil towards the root surface indicating favourable conditions
for the selected microbial species. Despite the great biodiversity of soils, the microbial
community in the rhizosphere and endosphere of plants is dominated by four bacterial phyla:
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Bulgarelli et al., 2012;
Bulgarelli et al., 2013; Edwards et al., 2015; Fierer et al., 2009; Lundberg et al., 2012;
Schlaeppi et al., 2014; Zarraonaindia et al., 2015). Interestingly, the same phyla are also
enriched within the human gut (Ley et al., 2008), suggesting that they are adapted to interact
with complex eukaryotes. This interaction-potential is likely due to their ability to metabolize
nutrients spared or actively made available by their host. As up to 40% of the carbon fixed by
a plant can be released via roots into the rhizosphere, it is obvious that the plant takes an
active role in shaping the microbial communities (Bais et al., 2006).

Within the bacterial communities, members exert strong influence on each other by
antagonistic, competitive, and mutualistic interactions. Common modes of microbial
interaction are nutritional competition, exchange, and even interdependence where
metabolite exchange among microbes facilitates growth of some microbial species (Peterson
et al., 2006). This also extends to bacterial-fungal interactions as the ability of the plant to
form symbioses with arbuscular mycorrhiza (AM) fungi or nitrogen fixing rhizobia strongly
affects surrounding microbial communities (Pii et al., 2016; Zgadzaj et al., 2016; Zgadzaj et
al., 2019). Thus, direct cooperative or competitive interactions among the community
members can influence microbiome composition and their effect on the host, and therefore
determine the outcome of plant-microbiota interactions in a given condition. While the
mechanisms of direct microbe-microbe interactions are not the focus of this review, they are
important to keep in mind when introducing new species or communities into an agricultural
field or when trying to isolate the causative beneficial species in complex microbiomes.

Given the strong selective force the root exerts on the microbial communities in the
rhizosphere, the question arises whether plant genotype in form of species and cultivars
affect microbiome composition. It has been described that the microbiota associated with
different plant species can differ considerably (Pérez-Jaramillo et al., 2016; Wieland et al.,
2001). Initial studies in maize (Peiffer et al., 2013), barley (Bulgarelli et al., 2015), and
Arabidopsis thaliana and its relatives (Schlaeppi et al., 2014) revealed only subtle
ecotype/cultivar effects on the root bacterial microbiome in a given soil. Peiffer and
colleagues attributed 5-7% of microbiome variation to the host genotype. These differences

were mostly of quantitative nature and they were not able to find a bacterial taxon that is



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137

138
139
140
141
142
143
144
145

diagnostic for a given host genotype (Peiffer et al., 2013). Recently, a large-scale field study
of the maize rhizosphere microbiome, using 27 maize genotypes, in five different fields
sampled throughout the growing season and replicated five years later, succeeded in
identifying root-associated microbiota displaying reproducible plant genotype associations.
They were able to identify 143 operational taxonomic units (OTUs) that were significantly
correlated with plant genotype, despite the confounding effects of plant age, climate, and soil
(Walters et al., 2018). Genotype effects of the plant hosts can be more dramatic for individual
microbial species. Haney and colleagues screened approx. 200 naturally occurring A.
thaliana accessions in a hydroponic system with a single-member of the rhizosphere
community: the beneficial root-associated bacterium Pseudomonas fluorescens WCS365.
Selected accessions were then planted in natural soils and two were found to inhibit the
growth of some Pseudomonadaceae species, while leaving the majority of the microbiome
intact (Haney et al., 2015). Thus, individual cultivars can influence the structure of microbial
communities and sometimes in a precise manner.

These interactions are not static. The emerging ‘cry for help’ hypothesis posits that plants
recruit specific microbes that are able to alleviate plant stress in a given situation (Lépez-
Raez et al., 2011; Neal et al.,, 2012; Rudrappa et al., 2008). This was first noted in the
recruitment of nutrient delivering AM fungi and nitrogen-fixing rhizobia when plants are grown
at low phosphate or nitrogen conditions (Carbonnel and Gutjahr, 2014; Nishida and Suzaki,
2018). Recruitment appears to be more widespread, though. Upon infection by
Hyaloperonospora arabidopsidis, A. thaliana accessions specifically recruited a synergistic
group of three bacterial strains that helped fend off the infection and even fortified the soil to
become ‘disease-suppressive’ to protect subsequent generations against the pathogen
(Berendsen et al., 2018). Thus, the shaping of microbial communities by plants is not limited
to individual species, but extends to small microbial communities. The use of synthetic
communities (SynComs) (Vorholt et al., 2017) has started to help unravel the underlying
relationships.

Understanding microbiome-host relationships using SynComs

The complexity of multi-kingdom interactions in the rhizosphere makes it challenging to
unravel the mechanisms and the genetics of plant-microbe associations in a natural habitat.
A powerful approach to study complexity in a controlled setting is the use of bacterial
SynComs (Table 1). Starting from a collection of isolated microbial cultures, SynComs can
be mixed and used as inoculants for a given host in a gnotobiotic system. This allows
dissecting how one or few community members affect the plant and how host genes affect
microbiome composition. Bodenhausen and colleagues screened a SynCom of seven

strains, representing the most abundant phyla in the Arabidopsis phyllosphere, against 55 A.
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thaliana mutants. The host alleles that displayed the strongest perturbation of the microbiota
were mutants affecting cuticle formation (Bodenhausen et al., 2014), whereas immune
mutants had only minor effects in this setting. A representative SynCom for the maize
rhizosphere was used to investigate the functional contribution of individual members on
overall community structure in maize. Removal of one community member led to a reduction

of species richness, suggesting that this strain has a key role within the tested SynCom

Microbial kingdom Strains Tissue/compartment Microbial origin Reference

number

A. thaliana Bacteria 440 Root (responses to Pi (Herrera Paredes
starvation) etal.,, 2018)
A. thaliana Bacteria 148 bacteria; 34 Root, rhizosphere Cologne agricultural (Duran et al.,
Fungi fungi; 8 soil (CAS) 2018)
Oomycete oomycetes
Saccharum sp. Bacteria 20 Root, rhizosphere, stalks Greenhouse (Armanhi et al.,
(sugarcane) 2017)
Trifolium Bacteria Rhizosphere (Hartman et al.,
pratense 2017)
(legume)
Zea mays Bacteria 7 Roots Greenhouse (Niu et al., 2017)
(maize)
A. thaliana, other  Bacteria 35 Roots North Carolina (Castrillo et al.,
Brassicaceae 2017)
Solanum Bacteria 8 Rhizosphere Nanjing (Hu et al., 2016)
lycopersicum (Pseudomonas
(tomato) PGPR)
A. thaliana Bacteria 218 (leaf); 188 Leaf, root and Cologne, Golm, (Bai et al., 2015)
(root and soil) rhizosphere Widdersdorf, Saint-
Evarzec, Roscoff
A. thaliana Bacteria 38 Roots North Carolina (Lebeis et al.,
2015)
A. thaliana Bacteria 7 Leaf Madrid (Bodenhausen et
al., 2014)

Table 1. Microbial strain collections used in SynCom studies.

(Niu et al., 2017). An exciting study towards understanding cross-kingdom interactions was
reported by Duran and colleagues studying the A. thaliana root microbiome (Duran et al.,
2018). After profiling bacteria, fungi, and oomycetes, they established microbial cultures for
all three groups to investigate their interactions. In the absence of bacteria, fungi and
oomycetes had a strong detrimental effect on plant growth and survival. Both effects were
neutralized upon co-inoculation of bacterial strains. Strains of the Pseudomonadaceae and
Comamonadaceae families were particularly effective; however, in the absence of the
respective 18 strains from these two families, other bacterial taxonomic lineages still
positively affected plant survival. Thus, bacterial communities aid in maintaining the microbial
balance and protect host plants against the detrimental effects of filamentous eukaryotic

microbes.
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An analytical approach to identify potential functional relationships takes advantage of
increasingly available microbiome datasets. Similar to transcriptional co-expression
networks, it is possible to identify positive and negative co-occurrence correlations between
microbial community members, which may reflect synergistic and antagonistic functional
relationships (Faust and Raes, 2012). Such relationships can be displayed as networks and
analysed using graph theory approaches. If the correlations are reflecting functional
interactions, co-occurrence networks may help developing control strategies for microbial
communities. Initial results indicate that positive correlations are more abundant among
microbes from the same kingdom, whereas, as illustrated in the previous example, negative
correlations are more common among inter-kingdom associations (Agler et al., 2016). In
another study, several bacterial taxa were anti-correlated with the pathogenic wheat fungus
Rhizoctonia solani (Poudel et al., 2016). Similar to other biological networks, hub species can
be identified that have an extraordinary large number of positive and negative interactions
and thus appear important for shaping communities (Agler et al., 2016; Layeghifard et al.,
2017). Network approaches can thus be an important tool for understanding host associated

microbiome dynamics.

Plant associated microbiomes can have beneficial effects for their hosts, however microbial
composition in the rhizosphere as well as colonization efficiency are affected by
environmental parameters and by the genetics and physiological state of the host. SynComs
and network approaches are important research tools to dissect the shaping factors and
understand the highly interdependent causalities of microbiome assembly. The plant immune
system needs to differentiate between beneficial and pathogenic microbes and mount

appropriate, yet diametrically opposed, colonization-enabling or defence responses.

Functions of beneficial microbes and similarities to pathogens

Among beneficial microbiota, endosymbionts that colonize the inside of root cells have been
most extensively studied as they can promote plant growth and stress resistance. The best
studied of these endosymbioses are AM and root nodule symbioses. AM symbiosis occurs
between approximately 80% of land plants and fungi of the Glomeromycota, which increase
plant nutrition with mineral nutrients in exchange for photosynthetically fixed organic carbon
(reviewed in Keymer and Gutjahr, 2018; Roth and Paszkowski, 2017; Smith and Smith,
2011). Root nodule symbiosis with nitrogen fixing bacteria is limited to one clade of the
eudicots, i.e. the Fabales, Fagales, Cucurbitales and Rosales, of which the legumes form
root nodule symbiosis with rhizobia, the others engage with Frankia bacteria (Griesmann et
al., 2018; Kistner and Parniske, 2002).
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In contrast, plant-growth promoting (rhizo-) bacteria (PGPB or PGPR) are defined as ‘free
living plant beneficial bacteria’ that promote plant health (Kloepper and Schroth, 1981)
especially when the plant is exposed to abiotic or biotic stressors (Fahad et al., 2015). Many
strains are helpful against more than one stress scenario which makes them appealing for
agricultural applications in a variety of environments. For instance, Azospirillum brasilense
NH, originally isolated from salty soil in northern Algeria, can significantly improve growth and
yield of durum wheat in salt affected soils and under arid field conditions (Nabti et al., 2010).
In A. thaliana, Paraburkholderia (formerly Burkholderia) phytofirmans induces cell wall
strengthening and an increase of photosynthetic pigments, which lead to improved cold
tolerance (Su et al., 2015). In addition, P. phytofirmans can increase host resistance against
fungal and bacterial pathogens (Miotto-Vilanova et al., 2016; Timmermann et al., 2017).
Equally versatile traits were reported for Bacillus velezensis strain NBRI-SN13, which
protects rice against diverse abiotic stresses including heat, cold, and freezing (Tiwari et al.,
2017). Members of the Paenibacilleae, e.g. P. azotofixans, can provide multiple benefits to
their host including nitrogen fixation, phosphate solubilization, and biocontrol (Grady et al.,
2016). Several molecular mechanisms have been identified that contribute to the beneficial
effects, including chemically increasing accessibility and concentration of nutrients (nitrogen
fixation, solubilization of phosphate or potassium, iron uptake), and modification of host

physiology by signaling molecules (reviewed in Gouda et al., 2018; Olanrewaju et al., 2017).

In addition to these effects related to abiotic stressors, many PGPR increase host pathogens
resistance. In contrast to pathogen-triggered systemic acquired resistance (SAR) (Chester,
1933), induced systemic resistance (ISR) (Kloepper et al., 1992) can be triggered by non-
pathogenic and symbiotic microbes in the rhizosphere or by chemical inducers. Similar to
SAR, ISR renders the above-ground plant tissues resistant against the attack of microbial
pathogens. Inoculation of barley with Pseudomonas spp., e.g., increased crop resistance to
the fungal pathogen Gaeumanomyces graminis, the causal agent of take-all-disease
(Frohlich et al.,, 2012). In Medicago truncatula the AM fungus Rhizosphagus irregularis
enhanced resistance to Xanthomonas campestris and rhizobia increased resistance to
Erysiphe pisi (Liu et al., 2007; Smigielski et al., 2019). In several cases microbial mixtures
have a more pronounced and consistent effect than inoculation with single strains. A
combination of Bacillus pumilus, B. subtilis and Curtobacterium flaccumfaciens was highly
effective in enhancing resistance against different pathogens in cucumbers (Raupach and
Kloepper, 1998). Drought stress resistance of maize was enhanced by a combination of
Pseudomonas putida, Sphingomonas sp., Azospirillum brasilense and Acinetobacter sp.

(Molina-Romero et al., 2017), and A. thaliana fungal pathogen resistance was enhanced by
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inoculation with Xanthomonas sp., Stenotrophomonas sp., and Microbacterium sp.
(Berendsen et al., 2018).

Overall little is known about the interaction of beneficial bacterial communities with
endosymbionts in the promotion or neutralization of beneficial effects. Colonization of Lotus
japonicus by rhizobia, e.g., enables other endophytic bacteria to colonize the nodule by
hitchhiking along the infection thread, a plant-derived subcellular structure that guides
rhizobia into the nodule (Zgadzaj et al., 2015). These co-colonizers can be neutral or
beneficial but they may also cause a carbon drain to the plant with detrimental effects on
growth and vyield. A few synergistic combinations of AM fungi and PGPR have been
described. Growth of tomato plants was increased more strongly after co-inoculation of the
AM fungi Glomus mosseae or Glomus versiforme with a PGPR (either Bacillus sp. or Bacillus
polymyxa) than with any of the microorganisms alone. Similarly, incidence of the root-knot
nematode Meloidogyne incognita in tomato was reduced most efficiently after co-inoculation
of an AM fungi with PGPR (Liu et al., 2012).

Although many PGPR, especially commercially available strains, colonize and exert
beneficial effects on different plants, their performance can be strongly species- or cultivar-
specific (Chanway et al., 1988; Germida and Walley, 1996; Montalban et al., 2017). Wheat
cultivars differ in their colonization by and responsiveness to beneficial strains, such as
Azospirillum brasilense (Rothballer et al., 2003; Walker et al., 2011) or Pseudomonas putida.
For wheat the effect of the AM fungus Rhizophagus irregularis, the PGPR P. putida and a
combination of both on systemic priming of Mercato and Avalon cultivars was compared. In
Mercato, the two microbes had a substantial synergistic effect on priming and callose
deposition, whereas in Avalon, the callose response was equally weak after individual and
combined inoculation. Avalon roots were also less colonized by both microbes (Perez-de-
Luque et al., 2017).

As discussed above, plant can also recruit specific microbes to help them cope with a
specific abiotic or biotic stress. Generally, the molecular determinants of triggered or
constitutive cultivar-competence for PGPR colonization are incompletely understood.
Besides direct genetic determinants, e.g. ability to communicate, indirect factors may play a
role. For example, different nutrient requirements of cultivars may be a factor that determines
whether a condition is experienced as stress and consequently if PGPR are recruited.
Important questions in host-microbe research regard the underlying genetic determinants
and their molecular mechanisms of recruitment and probiotic competence, e.g. to breed such

competence into existing elite cultivars. To avoid undesirable consequences, this requires
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the ability of crops to differentiate between probiotic beneficials and closely related

detrimental pathogens.

Friend or foe - closely related beneficials and pathogens

Pathogenic and beneficial lifestyles both require recognition and communication with a host,
the ability to benefit from biological nutrient sources and an ability to at least partially
suppress the host immune response. This is especially true for endophytes and mutualistic
symbionts, which, similar to pathogens, are able to enter plant host tissue but remain there
without harming and often benefitting the host. As a consequence of these similar
requirements, in essentially all phyla of host-associated microbiomes, closely related species
with pathogenic and beneficial lifestyles can be found (Figure 1). Frequently, relatives with
opposite effects are found within the same genus, e.g. among the Paenibacilleae: P.
azotofixans and P. amylolyticus (Grady et al., 2016), among Bacilleae: B. velezensis and B.
cereus (Radhakrishnan et al., 2017), among Pseudomonas: P. simiae and P. syringae
(Anderson et al., 2018) and even within the same species, e.g. Pseudomonas aeruginosa
(Ndeddy Aka and Babalola, 2016; Steindler et al., 2009). Among the Streptomyces (Viaene
et al., 2016), S. lividans can protect plants against fungal pathogens (Meschke and
Schrempf, 2010), while S. scabiei causes rot on roots and tubers of potatoes, beets, and
carrots (Hiltunen et al., 2009). Members of the Herbasprillum rubrisubalbicans species are
usually mild pathogens in sugarcane, sorghum and rice (Valdameri et al., 2017), while H.
seropedicae and some strains of H. rubrisubalbicans were reported to promote sugarcane
growth (Ferreira da Silva et al., 2017). Especially for endophytes, although defined as living
inside plants as commensals or mutualists (Hallmann et al., 1997; Hardoim et al., 2015), a
broad spectrum of interactions can be detected spanning from beneficial to pathogenic in
plant and human hosts (Berg et al., 2005; Mendes et al., 2013). In ferns, inoculation with
bacterial endophytes from commonly beneficial fluorescent pseudomonads resulted in
detrimental effects (Kloepper et al., 2013). The human pathogen Clostridium botulinum is a
potent endophytic plant growth promoter in white clover, but can cause lethal botulism in
cattle grazing on the affected site (Zeiller et al., 2015). A similar host-genotype dependence
of interaction outcome can be observed for AM fungi, where symbiosis may lead to growth
depression (Grace et al., 2009). The molecular cause for this phenomenon has not been
established but it could be due to enhanced carbon drain due to suboptimal compatibility.
Interestingly, in a panel of Sorghum accessions, different growth responses to AM fungi were
recorded and ranged from strongly positive to negative and the outcome depended on plant
and fungal genotypes; negative growth responses were correlated with expression of
defense related genes (Watts-Williams et al., 2019). An interesting case is Rhizobium

radiobacter F4, which has been isolated from its host, Serendipita indica (formerly
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Piriformospora indica) a mutualistic root fungus that can colonize a broad range of higher
plants including barley and Arabidopsis (Guo et al., 2017). The association between
endobacterium and fungus seems to be essential for the fungus, as S. indica cannot be
completely cured from its endobacterium by antibiotic treatment (Glaeser et al., 2016). R.
radiobacter F4 is a close relative of the well-characterized plant pathogen R. radiobacter C58
(formerly Agrobacterium tumefaciens). When the isolated F4 strain was used as an inoculum
on different plants, R. radiobacter F4 was detected endophytically and its beneficial effects
were hardly distinguishable from an inoculation with the fungus (including the
endobacterium) (Glaeser et al., 2016). This qualifies F4 to be a true PGPR and suggests that

S. indica may act as a vector for the PGPR.

Thus, beneficial and pathogenic microbes share physiological features and an evolutionary
proximity to an extent that manifestation of a pathogenic phenotype may depend on small
differences of the microbe and sometimes even on the host. Conversely plants must have
evolved sophisticated mechanisms to distinguish a potentially beneficial microbe, which may

ensure survival, from a closely related potentially fatal pathogen.
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Figure 1. Phylogenetic tree of plant growth promoting (black) and pathogenic bacteria (red),
and their corresponding phyla (in different shades of grey) mentioned in the text. The tree
was supplemented with sequences from some widely applied PGPR and closely related
plant and human pathogens for comparison. Evolutionary analyses were conducted in

MEGA7 (Kumar et al., 2016) using the Maximum Likelihood method based on the Tamura-
Nei model.

Systems biological approaches to molecular microbe-host interactions

Genetic and mechanistic studies of plant immunity in the context of infections have shaped

the general understanding of plant pathogen interactions. However, how the differentiation
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between beneficials and pathogens is achieved by plant recognition and information

processing systems will be a key question for plant systems biology in the coming decade.
Plant perception of microbes

Successful pathogens and endophytes must first overcome structural barriers such as cell
walls (Miedes et al., 2014), waxy epidermal cuticles (Yeats and Rose, 2013) and constitutive
antimicrobial products like phytoanticipins (VanEtten et al., 1994). This common requirement
may partly explain the evolutionary proximity of beneficials and pathogens. Close to the cell
membrane, the presence of microbes is recognized by plant surface receptors called pattern-
recognition-receptors (PRR). This recognition of conserved pathogen- or microbe-
associated-molecular-patterns (PAMPs/MAMPS), e.g. bacterial flagellin or EF-Tu, results in
intracellular signaling that culminates in defense responses known as pathogen- or microbe-
triggered immunity (PTI/MTI) (Boller and Felix, 2009; Macho and Zipfel, 2014). MTI includes
production of reactive oxygen species and nitrogen oxide, stomata closure, directed callose
deposition, relocation of nutrients, release of antimicrobial metabolites, initiation of plant
defense hormone signaling, and transcriptional changes. A transcriptome analysis of A.
thaliana exposed to two leaf commensals showed that these non-pathogenic microbes do
activate the first layer of plant immune responses. Approximately 400 genes were induced
upon commensal treatment and partly overlapped with host genes induced by the pathogen
P. syringae (Vogel et al.,, 2016). The strong immune response may partially explain the
induction of ISR by beneficials, however does not address, how plants recognize beneficials.
The presence or absence of PRRs could serve as host range determinants for microbial
colonizers (Hacquard et al., 2017). However, the molecular patterns of beneficials and
pathogens are similar if not identical, which in turn renders their differentiation by specific
PRRs difficult. One of the main models to study PRR function is FLS2, which recognizes
flg22 the most conserved motif in bacterial flagellin (Chinchilla et al., 2006; Zipfel et al.,
2004). FLS2 requires a co-receptor, BAK1, in order to activate downstream signaling
(Schulze et al., 2010; Schwessinger et al., 2011). Intriguingly, BAK1 is also a co-receptor for
BRI1 (brassinosteroid insensitive 1), a leucine-rich repeat receptor kinase (LRR-RK) that
perceives plant brassinosteroids (BR) and acts as an integrator between defense and growth
signaling (Li et al., 2002; Nam and Li, 2002). Additional receptors recognize other parts of the
protein. Tomato can perceive flgll-28 through FLS3 in an FLS2-independent manner
(Fliegmann and Felix, 2016) and the rice pathogen Acidovorax avenae harbors a different
flagellin motif, CD2-1, whose receptor remains unknown to date (Katsuragi et al., 2015).
Interestingly, some strains of A. avenae avoid recognition by flagellin glycosylation (Hirai et
al., 2011). In contrast to such masking exploited also by pathogens, some beneficials have

epitopes that avoid detection by one or the other receptor (Gomez-Gomez et al., 1999).
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However, besides MAMP-masking or evasion mechanisms, many beneficials are likely
recognized by their flagellin and suppress full-blown immune responses by yet unknown
mechanisms. Garrido-Oter and colleagues showed that most genes induced by perception of
purified flg22 in Arabidopsis were downregulated in response to colonization by the
commensal Rhizobium sp. 129E. Their analysis suggests that this commensal has the ability
to interfere with MAMP-induced transcriptional responses through alternative pathways. As
this rhizobium strain does neither possess Type-lll-secretion system (T3SS) nor Nod factor
biosynthesis genes (Garrido-Oter et al., 2018), it is likely that signaling via other heteromeric
PRRs complexes plays a role.

Symbiont-plant interactions point to mechanisms underlying friend-vs-foe distinction. Upon
first contact, AM fungi and rhizobia trigger transient defense-like responses that are quickly
repressed (Libault et al., 2010; Liu et al., 2003). It has been suggested that Myc- and Nod-
factor signaling is important for this repression (Gourion et al., 2015). Both symbiotic signals
are defined by their ability to elicit nuclear calcium oscillations dependent on a signaling
cascade comprising a number of conserved symbiosis proteins (Gourion et al., 2015; Singh
and Parniske, 2012). Hosts perceive Nod factors by Lysine-motif (LysM) receptor like
kinases (RLK) (reviewed in Gough and Cullimore, 2011) and it is suspected that similar
receptors exist for Myc factors (Buendia et al., 2016). Some of these receptors appear to
also mediate recognition of pathogens. OsCERK1 is a LysM-RLK important for establishment
of mycorrhizal root symbiosis and resistance against rice blast fungus (Miyata et al., 2014;
Zhang et al., 2015), suggesting that it acts as a “molecular switch” between symbiotic and
defense responses. Although the molecular mechanism underlying this dual functionality is
unknown, it is thought that specificity comes from interactions with other LysM-RLK (Gourion
et al., 2015). Other examples of such dual functionality suggest that this could be a more
widely used mechanism. NFP is a Medicago truncatula Nod factor receptor that also
mediates perception and defense against the fungus Colletotrichum trifolii and the
oomycetes Aphanomyces euteiches and Phytophthora palmivora (Gough and Jacquet, 2013;
Rey et al., 2015; Rey et al., 2013).

The detailed studies of exemplary PRRs and LysM-RLK suggest that combinatorial physical
interactions among receptors and co-receptors are important for signal specificity and signal
integration. Plant roots in nature are in simultaneous contact with a plethora of MAMPs and a
soup of different signaling molecules. Thus, it is possible, if not likely, that a tailored response
is mounted to specific microbial assemblages recognized via combinatorial and quantitative
perception of the diverse signaling molecules by a network of interacting receptors.
Consequently, integrated global systems approaches to PRR signaling will be required. A
proteome-scale interactome study by Smakowska-Luzan and colleagues constitutes an

important step towards a comprehensive understanding of this crucial plant perception
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system. Using biochemical pull-down experiments they mapped the physical cell surface
interaction network formed by 225 LRR-RKs (CSIF®) in A. thaliana (Smakowska-Luzan et
al., 2018). CSI'*® revealed a very high interconnectivity of all LRR-RKs, which clustered in
several modules whose biological relevance remains to be clarified. Importantly, the authors
showed that not only direct interactions, but also indirect network effects modulate the
downstream signaling output and that the full network jointly provides the well-balanced
responses of the plant immune system. Characterizing the integrated information processing

by this LRR-RK network will be critical for understanding plant immunity.
Bacterial signaling: quorum sensing and symbiosis factors

In addition to sensing conserved microbial patterns, plants tap bacterial communication
mediated by metabolites, volatiles, symbiosis signals, and quorum sensing (QS) molecules
(Chowdhury et al., 2015; Jourdan et al., 2009). N-acyl homoserine lactones (AHL) are key
components in bacterial communication that can also be perceived by plants. This was
demonstrated for the beneficial Acidovorax radicis N35, where the AHL-producing wildtype
was able to dampen the defense response of barley, whereas flavonoid defense was
upregulated after inoculation of the non-AHL producing mutant (Han et al., 2016). Other
examples demonstrate the growth promoting and priming effects of AHLs on host plants like
Medicago, tomato, Arabidopsis, and barley (Mathesius et al., 2003; Schenk et al., 2014;
Schuhegger et al., 2006; von Rad et al., 2008). As pathogenic bacteria similarly produce AHL
(Cha et al., 1998; von Bodman et al., 2003) it is unlikely that these signaling substances
alone provide sufficient information for the plant to modulate its defense responses. Possibly
the combinations and concentrations of QS molecules indicate an imbalanced microbial
composition. While the physiological effects of AHLs have been characterized in some detail,
the pathways and mechanisms by which plants perceive these bacterial molecules remain
unknown (Schikora et al., 2016). Interestingly, also lipochitooligosaccharides, i.e. Myc and
Nod symbiosis factors, can promote root development, seed germination, and plant growth
even in plants that do not form symbiosis (Maillet et al., 2011; Prithiviraj et al., 2003; Tanaka
et al., 2015). Thus the symbiosis factor recognition and signaling system is partially
independent of symbiosis competence of the host. Further research is needed to understand
how the range of rhizosphere signals released by microorganisms is co-interpreted by the
plant and in how far different molecules may have synergistic or antagonistic effects on plant
growth and stress resistance.

Hormone signaling in microbe-host interactions

Phytohormone signaling is central to essentially all plant processes. Defense responses are

canonically mediated by salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Whereas
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SA mediates SAR and defense against biotrophic and hemibiotrophic pathogen attack, JA
and ET mediate ISR and defense against necrotrophs and insects (Glazebrook, 2005;
Pieterse et al., 2014). Other hormones predominantly control developmental processes
(auxin, gibberellins (GA), BR, or cytokinins (CK)), or abiotic stress responses (abscisic acid
(ABA)). Beyond these seemingly clean classifications, however, it is clear that hormone
signaling is highly integrated and multiple hormones influence any process of interest
(Nguyen et al., 2016; Vos et al., 2015). Accordingly, phytohormones are also significant for
the bi-directional communication between plant and microbes. Strigolactones, e.g., are
exuded from roots under phosphate or nitrogen starvation to attract AM fungi and their
biosynthesis is downregulated upon colonization (Yoneyama et al., 2012). In contrast, GA,
SA, and ET inhibit both AM and root nodule symbiosis, whereas auxin and ABA have a
concentration dependent positive impact on AM development. CK and localized auxin
signaling are required for nodule formation (reviewed in Gutjahr, 2014; Oldroyd et al., 2011;
Pozo et al.,, 2015). The role of JA in symbiosis establishment is ambiguous and can be
positive, negative, or neutral depending on the conditions and plant species (reviewed in
Gutjahr and Paszkowski, 2009).

The hormone signaling system is actively modulated by beneficial and pathogenic bacteria.
Most famously, coronatine (COR) is a toxin produced by pathogenic P. syringae pv. tomato
DC3000 (Pst), which mimics plant JA-isoleucine (JA-lle), but is even more active (Katsir et
al., 2008). This activation of JA-dependent defense mechanisms leads to suppression of the
appropriate SA-mediated defenses against the hemibiotrophic Pst (Wasternack and Hause,
2013). In general, pathogens manipulate plant signaling to suppress defense responses and
redirecting nutrient allocation to infested tissues for sustained pathogenic colonization (Ma
and Ma, 2016). Beneficial strains often have the opposite effect on SA-JA balance, which
can manifest in different ways: in A. thaliana P. fluorescens Pf4, P. aeruginosa Pag (Singh et
al., 2003), or B. velezensis LJO2 (Li et al., 2015) trigger an increase of endogenous SA levels
in different plant parts, other strains decrease JA-lle levels (Srivastava et al., 2012), and
Paraburkholderia phytofirmans PsJN decreases expression of JA-biosynthesis and wound-
induced JA accumulation (Pinedo et al., 2015). Thus, phytohormones of microbial origin
mediate versatile effects depending on the individual plant-microbe combination. The SA
signaling system also appears central for shaping the root microbiome although different
studies report opposing results. One study reported only minor effects of SA mutants on
microbiome composition (Bodenhausen et al., 2014). In contrast, Lebeis and colleagues
reported that A. thaliana mutants deficient in synthesis or perception of SA had altered
rhizosphere microbiota, whereas no such effect was observed for the corresponding JA and
ET mutants (Lebeis et al., 2015).
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Beyond modulating defences, which is common to pathogens and beneficials, many PGPR
modulate plant development, especially root growth, by production of auxins, gibberellins, or
cytokinins (reviewed in Backer et al., 2018). To dissect the underlying complexity, it will be
important to complement genetics with systems biological approaches that include
metabolomics, global network analysis, hormone profiling, and focused quantitative modeling
of molecular processes in plants and soil. The latter is actively pursued for auxin signaling in
the plant root, for which advanced models are available (Clark et al., 2014; Mironova et al.,
2010). The development of such quantitative models was enabled by detailed mechanistic
knowledge (Grieneisen et al., 2007; Mironova et al., 2010) and fluorescent auxin reporters
that provide time-resolved data on auxin distribution (Liao et al., 2015). Both together provide
the basis for quantitative time-resolved models. Generally missing are quantitative data on
the molecules and receptors that translate a given auxin concentration into specific
transcriptional responses, although first data on the effects of auxin concentrations on
receptor pairs are available (Fendrych et al.,, 2016). For understanding microbe-host
interactions a model of the SA signaling pathway will be powerful. The recently described SA
receptors NPR1, NPR3, NPR4, (Canet et al., 2010) together mediate responses to different
SA concentrations (Castello et al., 2018; Fu et al., 2012; Kuai et al., 2015). In contrast, the
more distant family members BOP1 and BOP2 appear to have no function in SA signaling
(Canet et al., 2012), but have been implicated in developmental programs like flowering and
nodule formation in legumes (Couzigou et al., 2012; Magne et al., 2018). At the same time,
the biochemical regulation of NPR1, and possibly also its paralogues, is complex and
involves multiple cellular compartments, redox potential, phosphorylation, and degradation.
Thus, although key elements for model development are known (Seyfferth and Tsuda, 2014),
including TGA transcription factors (Li et al., 2004; Wu et al., 2012), and signaling network
components (Innes, 2018), understanding of this key immune signaling system remains
incomplete. The development of fluorescent SA sensors and quantitative protein level and
binding data are important elements for quantitatively modeling of SA signaling.

Apart from the individual pathways all hormone signaling pathways are interconnected and
very few biological responses are mediated by a single hormone. Great efforts in deciphering
the crosstalk of SA, JA and ET during immunity in Arabidopsis are represented by the
integrative works of Tsuda and colleagues. They divided the hormone signaling network in
four sectors (SA, JA, ET and PAD4), and quantitatively assessed immunity in all possible
mutants belonging to these sectors after stimulation with a panel of MAMPs and effectors.
Their work showed strong interactions of the hormone network components with additive,
synergistic and compensatory interactions (Tsuda et al., 2009). Later works by the same
group led them to propose that the PTI signaling network is highly buffered against

interference, e.g. by pathogen effectors (Hillmer et al., 2017).
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Interactome network analysis

In the absence of quantitative dynamic models, molecular interaction network approaches
can be powerful to identify modules, pathways, components, and system-level patterns of
molecular host-microbe interactions (Marin-de la Rosa and Falter-Braun, 2015). To place
host-microbe interaction data in the context of host biology, a reference protein network is
required. Plant interactome analysis commenced with publication of the first experimental
map of physical protein-protein interactions among several thousand Arabidopsis proteins:
Arabidopsis Interactome-1 (Al-1) (Arabidopsis Interactome Mapping Consortium, 2011),
which offered a first integrated organizational view of plant molecular connectivity.
Complementary and more specialized maps have been produced since, which facilitate
analysis of specific processes (Table 2). For membrane proteins a map with approx. 12,000
protein-protein interactions was acquired using the split-ubiquitin system (Jones et al., 2014).
A G-protein interactome revealed a new role of G-proteins in regulation of cell wall
modification, a process highly relevant for defense (Klopffleisch et al., 2011). Recently, a
protein-protein interaction network for the fungus Phomopsis longicolla, causative for
Phomopsis seed decay in soybean, was generated by interolog mapping (Yu et al., 2004),

i.e. transferring interaction annotations among conserved protein pairs between organisms,

and allowed detection of disease associated subnetworks (Li et al., 2018).

Organism_1 Organism_2 Reference

A. thaliana Interactome A. thaliana 2011 (Arabidopsis
Interactome
Mapping
Consortium,
2011)

Convergent targeting of Hyaloperonospora arabidopsidis  A. thaliana 2011 (Mukhtar et al.,

hubs in a plant-pathogen and Pseudomonas syringae 2011)

interactome network effectors

Convergent targeting of a Golovinomyces orontii effectors  A. thaliana 2014 (Wessling et al.,

conserved host-microbe 2014)

interface

Pathogenicity genes in U. Ustilaginoidea virens 2017 (Zhang et al.,

virens 2017)

Extracellular network of A.  A. thaliana 2018 (Smakowska-

thaliana LRR-RKs Luzan et al.,
2018)

Pathogenic Protein Phomopsis longicolla 2018 (Li etal., 2018)

Networks in Phomopsis

longicolla

Table 2. Interactome network datasets for plant-microbe interactions studies
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Pathogens and beneficial microbes can deliver hundreds of (virulence) effector proteins into
the cytosol and apoplast of the host plant to modulate plant defense and physiology (Boller
and Felix, 2009; Jones and Dangl, 2006). To comprehend host-microbe interactions their
functions need to be understood in an integrated and time-resolved way. Initial plant-targeted
pathogen effectors were characterized by small-scale studies and revealed that virulence
effectors modify host protein functions to interfere with immune responses and promote
disease, known as effector-triggered susceptibility (ETS) (Dou and Zhou, 2012). Recoghnition
of pathogen effectors by a host resistance protein (R protein) can result in effector-triggered
immunity (ETI) (Coll et al., 2011; Jacob et al., 2013; Jones and Dangl, 2006). In order to gain
a systems-level perspective on effector functions, a large-scale interactome study (PPIN-1)
mapped the interactions of virulence effectors of the bacterial pathogen Pst and the
oomycete pathogen H. arabidopsidis with proteins in the Al-1 host network (Mukhtar et al.,
2011); a follow-up study later added interactions of effectors from the biotrophic ascomycete
Golovinomyces orontii (Wessling et al., 2014). The data revealed that effectors from three
pathogens partially converge on common host proteins, many of which are highly connected
hubs in the host network. Depending on the extent of convergence, the host proteins had
genetic validation rates between 100% for the most targeted proteins, and 40% for the less
intensely targeted proteins. In addition to convergence, many effectors targeted proteins
across the host network, likely as consequence of the highly buffered immune signaling
network (Hillmer et al., 2017). Population genetic analyses revealed evidence of positive and
balancing selection in the immediate network vicinity of the highly targeted proteins. Thus,
the selective pressure imposed by pathogens appears to be absorbed by the network
surrounding the effector targets (Wessling et al., 2014). This finding reinforces the notion that
host-microbe interactions are mediated by a highly integrated network and can only
incompletely understood by analysis of isolated pathways. Studies in the Yersinia pestis
interactome showed that pathogens appear to rearrange host networks instead of
dismantling network integrity (Crua Asensio et al., 2017).

The presence of effector proteins is not limited to pathogens. Mycorrhizal fungi, endophytic
fungi and nitrogen-fixing rhizobia have effector proteins that can modulate plant immune
responses and symbiotic interactions (Miwa and Okazaki, 2017). Several PGPR, e.g. P.
simiae WCS417, and many proteobacterial strains in complex microbiome datasets are
predicted to have functional T3SS and effectors (Berendsen et al., 2015). For the beneficial
fungus S. indica and rhizobial bacteria, it is known that their virulence effectors are important
for productive and beneficial interactions (Akum et al., 2015; Clua et al., 2018; Rafigi et al.,
2013). T3SS-delivered effectors of Bradyrhizobium elkanii even permitted Nod-Factor
independent nodulation of soybean (Okazaki et al., 2013). In addition to T3SS many

proteobacteria have type-1V and type-VI secretion systems that can deliver bacterial protein
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into hosts and other microbes. P. simiae WCS417 has two T6SS loci (Berendsen et al.,
2015) and may deliver effectors not only to its plant host, but also to other competing
microbes to modulate the surrounding microbiota. Proteomic approaches can be helpful to
unravel the diversity of the effector repertoire of microbes (Schumacher et al., 2014). A study
comparing the genome of a beneficial soil fungus, Colletotrichum tofieldiae, with a closely
related pathogenic counterpart, Colletotrichum incanum, revealed that their secretome did
not substantially differ, but the beneficial fungus had 50% less effector genes and a reduced
activation of pathogenicity-related genes in planta (Hacquard et al., 2016). Thus, microbial
secretomes and the number and nature of secreted effectors may constitute an important
differentiation point between beneficials and pathogens. Most likely the beneficial effector
complement is important for non-pathogenic interactions. An important challenge for systems
biology will be to understand the global dynamics of effectors targeting different parts of the
host network, and how this dynamic relates to ETS, ETI, and what are the systems-level and
dynamic differences between effector secretion by pathogens and beneficials.

Beyond proteins, RNA emerged in recent years as important communication molecules
between hosts and microbes, which are delivered to the host by extracellular vesicles (EVS).
Found first in mammalian cells, EVs are present in bacteria, archaea, and eukaryotes. Small
RNA from the fungus Botrytis cinerea was shown to target host defense genes in
Arabidopsis (Weiberg et al., 2013). Plants are able to silence such foreign transcripts via
host-induced gene silencing (HIGS) using dsRNA, and plant EVs and multivesicular bodies
accumulate around plasmodesmata during fungal infections to facilitate callose deposition at
infection sites (An et al., 2006). EVs and their RNA cargo constitute another communication

layer, whose significance is just emerging.
Transcriptional regulatory networks

Transcriptional profiling is widely used and results of key studies are mentioned throughout
this text. While comparative transcriptomics are routine, co-expression correlation networks
and causal regulatory networks are less commonly employed. Co-expression networks are
based on the concept that transcript profiles of time series may be indicative of causal
relationships between transcripts. The Weighted Gene Correlation Network Analysis
(WGCNA) (Langfelder and Horvath, 2008) is a commonly used method to group genes by
hierarchical clustering into co-expression modules. These modules are compared to
signaling network connectivity, metabolic paths, or phenotypic traits. Beyond WGCNA
Saelens and colleagues (Saelens et al., 2018) have systematically compared 42 different
methods for clustering, decomposition, bi-clustering and iterative network inference. These
techniques have been applied in A. thaliana and other plants like maize and wheat (Kim et

al., 2018) to explore their interactions with microbes. The identified modules provide a first
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insight into genes sharing same functionalities (Vella et al., 2017), and can help to achieve a

better understanding of processes relevant for infection or commensalism.

Metabolic exchanges and nutrient competition in the soill

Among the fundamental principles of microbiome-host interactions are metabolic exchanges.
Plants provide up to 40% of complex carbons produced by photosynthesis via roots into the
rhizosphere to nourish the microbiome (Whipps, 1990). Conversely, fungi and bacteria
facilitate solubilization and uptake of essential nutrients like phosphorus, nitrogen, and iron to
the plant (Jacoby et al., 2017; Rashid et al., 2016). Relocalization of nutrients is an important
goal of plant reprogramming by pathogens via effectors and hormone signaling. Genome-
scale metabolic modeling has been used to study the metabolism of an individual organism
and modeling of community level reactions is progressing but challenging (reviewed by
Kruger and Ratcliffe, 2015; Topfer et al., 2015). Metabolic modeling of prokaryotes is routine
nowadays (Heavner and Price, 2015); on the plant side metabolic models have been
generated for Arabidopsis, barley, maize, sorghum, sugarcane and canola (Botero et al.,
2018). Thus, the metabolic capabilities of beneficials and pathogens can be analyzed by
networks comparison. Mithani and colleagues tested the hypothesis that P. syringae has
evolved to be metabolically specialized for a plant-pathogenic lifestyle (Mithani et al., 2011).
Comparison of metabolic networks for nine Pseudomonas strains showed that the
pathogenic P. syringae is metabolically very similar to its beneficial relative P. fluorescens Pf-
5 and thus that metabolism may not be a key distinguishing feature. Recently, a life-stage-
specific genome-scale metabolic model for the oomycete Phytophthora infestans was
generated, which predicts biochemical reactions in diverse cellular compartments and in the
pathogens stage context (Rodenburg et al., 2018). It will be important to constrain these
models by measurements of metabolite levels to obtain a more precise picture of the

metabolic changes induced in plant and microbe in the context of colonization.
Integrated multi-omics modeling

While there is obvious mutual benefit between plants and their microbiome and a ‘cry-for-
help’ can recruit microbes to support the host, to date it is unclear how the plant integrates
recognition of microbes with nutrient-related signals. Phosphorus is usually present in high
concentrations, but plant-absorbable orthophosphate is scarce in soil (Raghothama, 1999).
In a beautiful multi-omics, systems biology exercise Castrillo and colleagues shed light into
the link between nutrition and defense. Using a combination of 16S rRNA sequencing,
genome-wide expression analysis, analysis and modeling of SynComs, and functional
assays they showed that the plant phosphate starvation response (PSR) has an important
role in modulating the root microbiome. They demonstrated that different root-associated

microbiomes were assembled by phosphate uptake-deficient and phosphate-
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hyperaccumulating Arabidopsis mutants compared to wild-type. The transcription factors
PHR1, and probably PHL1 are integrators of PSR and immune responses (Castrillo et al.,
2017), as phrl and phrl;phll mutant plants were more resistant to the oomycete and
bacterial pathogens. The connection between PSR and plant immunity seems to be not only
modulated by the surrounding microbiota but also by pathogens (Lu et al., 2014) again

raising questions about the differences between beneficials and pathogens.
From systems biology to crop protection

The conceptual and molecular advances in understanding microbe-host biology are
increasingly helpful in understanding crops-microbe relationships. For the emerging foliar
fungal barley pathogen Ramularia collo-cygni, causing Ramularia leaf spot, McGrann and
colleagues used a draft genome assembly to predict a secretome of around 1,000 proteins
(McGrann et al., 2016). Based on the reduced number of plant cell wall degrading enzymes
and the presence of genes related to chitin recognition avoidance, they proposed that R.
collo-cygni first behaves as an endophyte without causing disease symptoms and then
changes to a necrotrophic phase. Understanding such dynamics and the underlying
molecular processes and signals will be an important aspect of systems biological analysis.
In another study the host specialization of four Rhynchosporium species on grasses has
been investigated (Penselin et al., 2016). Rhynchosporia are hemibiotrophic fungal
pathogens that colonize the intercellular matrix of host leaves relatively slowly without
symptoms. Penselin and colleagues found that six specific effector proteins from R.
commune appeared responsible for stabilizing the biotrophic growth stage in favor of the
necrotrophic destructive stage thus providing leads for treatment. In a remarkable study
combining multi ‘omics’ approaches the effects of beneficial microbes towards increased
biomass and higher tolerance to biotic and abiotic stresses in monocot crops was
investigated. Fiorilli and colleagues studied the three-way interactions between the wheat
pathogen Xanthomonas translucens, the protective symbiotic AM fungus, and the host using
phenotyping, transcriptomic, molecular and metabolomic approaches. They proposed a two-
step process for conferring Xanthomonas resistance to AM-treated wheat: first the activation
of a broad-spectrum defense (BSD) response that takes place in roots and leaves of AM-
treated plants, and secondly a switch to pathogen-specific defense (PSD) upon bacterial
infection, which ultimately leads to protection against the pathogen (Fiorilli et al., 2018).

Outlook: tailored microbiomes for sustainable precision agriculture

The versatility for counteracting a number of stressors makes beneficial microbes attractive
tools for sustainable intensification of agricultural production. In the emerging big data driven

precision agriculture, crop health is constantly monitored remotely and targeted probiotic
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treatments may be applied precisely when and where indicated. For this vision it is
necessary to have cultivars that are competent to optimally profit from a mix of beneficial
microbes without increased pathogen susceptibility. For this, a deep understanding of
microbe-host interactions, their genetic determinants and the influence on other plant growth
parameters is necessary (Figure 2). The connection between plant nutritional stress
responses, immune system function, and microbiome assembly revealed by Castrillo and
colleagues is likely only the tip of the iceberg and many exciting mechanisms remain to be

uncovered (Castrillo et al., 2017).

Equally important are microbial formulations that are able to establish themselves in the
rhizosphere of crops growing in natural soils. Thus, manipulation of the soil microbiome will
require an understanding of microbial community dynamics and of plant mechanisms to
control the microbiome. Practical questions also regard probiotic formulation development,

cultivation and synchronization of multiple species, and delivery of SynComs in the field.

Strategically, understanding host-microbe compatibility in reference organisms will allow
transfer of these insights to crops and identification of the underlying genetics. Once the
genetic determinants have been identified in crops, probiotic competence can become a
target for breeders. Abiotic and biotic stress conditions that threaten agricultural productivity
may then be counteracted by application of probiotic cocktails on the field. Due to the
complexity of microbe-host interactions, systems biology will have to play an essential role in

understanding of these complex inter-organismic relations.
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698  Figure 2. Schematic representation of the multiple and complex interorganismal interactions
699 taking place in the plant rhizosphere and phyllosphere. Beneficial bacteria are depicted in
700 green, fungal and bacterial pathogens in red, commensal bacteria in grey, arbuscular
701  myecorrhizal fungi in blue and other beneficial fungi in yellow. Arrows in the corresponding
702  color indicate known interactions described in the text. Inset on the right represents a

703  magnification of the small frame in the main image.
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