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Abstract

Background: Although several studies have provided insights into the role of long non-coding RNAs (lncRNAs), the
majority of them have unknown function. Recent evidence has shown the importance of both lncRNAs and chromatin
interactions in transcriptional regulation. Although network-based methods, mainly exploiting gene-lncRNA
co-expression, have been applied to characterize lncRNA of unknown function by means of ’guilt-by-association’, no
strategy exists so far which identifies mRNA-lncRNA functional modules based on the 3D chromatin interaction graph.

Results: To better understand the function of chromatin interactions in the context of lncRNA-mediated gene
regulation, we have developed a multi-step graph analysis approach to examine the RNA polymerase II ChIA-PET
chromatin interaction network in the K562 human cell line. We have annotated the network with gene and lncRNA
coordinates, and chromatin states from the ENCODE project. We used centrality measures, as well as an adaptation of
our previously developed Markov State Models (MSM) clustering method, to gain a better understanding of lncRNAs
in transcriptional regulation. The novelty of our approach resides in the detection of fuzzy regulatory modules based
on network properties and their optimization based on co-expression analysis between genes and gene-lncRNA pairs.
This results in our method returning more bona fide regulatory modules than other state-of-the art approaches for
clustering on graphs.

Conclusions: Interestingly, we find that lncRNA network hubs tend to be significantly enriched in evolutionary
conserved lncRNAs and enhancer-like functions. We validated regulatory functions for well known lncRNAs, such as
MALAT1 and the enhancer-like lncRNA FALEC. In addition, by investigating the modular structure of bigger
components we mine putative regulatory functions for uncharacterized lncRNAs.
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Introduction
Long non-coding RNAs (lncRNAs), an heteroge-
neous group of non-coding transcripts longer than
200 nucleotides, are expressed in a time- and tissue-
specific fashion and have been shown to regulate
cellular processes such as development, imprinting, X-
chromosome inactivation, cancer and immunity [1, 2].
The discovery of extensive transcription of these non-
coding transcripts provides an important new perspective
on the centrality of RNAs in gene regulation [3]. To date,
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next-generation sequencing data generated by several
consortia, such as the ENCODE [4] or FANTOM5 [3]
leads to an estimate of the number of potential lncRNA
transcripts of about 20000. Although only a smaller
fraction of such transcripts might be functional, and
despite the substantial progress in mapping lncRNAs, the
detailed functional mechanisms for most of them remain
elusive [2]. The gap in the understanding of the functional
roles of the lncRNAs has largely been due to their poor
evolutionary conservation, but also to the limited ability
of tools to characterize lncRNA interactions with either
proteins, DNA and RNA on a large scale. Concomitant
with the increasing number of lncRNAs, a number of
resources collecting and curating functional information
about lncRNAs have been built in recent years [5–8].
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It has been shown, among others, that lncRNAs can reg-
ulate the expression either of their neighboring genes in
cis, or of more distant genes in trans. LncRNAs may func-
tion via binding to RNA Binding Proteins (RBPs), such as
chromatin regulators that can bind both RNA and DNA,
or by interactions with other nucleic acids [9].
A major category of well-studied functional lncRNAs

is those implicated in coordinated gene silencing, either
in cis (e.g. the lncRNA Xist, involved in X-chromosome
inactivation) or in trans (e.g. HOTAIR). Both XIST and
HOTAIR have been shown to mediate epigenetic mecha-
nisms of gene silencing [10, 11].
Genome-scale mapping of histone modifications and

enhancer-binding proteins has helped to identify lnc-
RNAs involved in gene activation. Enhancers are reg-
ulatory sequences that can activate gene expression,
and their function depends on the interplay between
DNA sequences, DNA-binding proteins, and architec-
ture [12]. In the last five years, the functional landscape
of enhancers has become more complex with the evi-
dence that active enhancers can transcribe structured lnc-
RNAs. A recent study performed loss-of-function exper-
iments and found 7 of 12 enhancer-transcribed lncRNAs
affecting expression of their cognate neighboring genes
[13]. More recently, HOTTIP, an enhancer-like lncRNA,
has been discovered to directly interact and activate the
WDR5 protein [10], a key component of the mixed lineage
leukemia-Trx complex. In other cases lncRNAs activate
a neighboring lncRNA, e.g., JPX regulates transcriptional
activation of XIST on chromosome X [10]. Long noncod-
ing RNAs with activating function may recruit transcrip-
tional activators involved in the establishment of chro-
mosome looping between the lncRNA loci and regulated
promoters, such as the mediator complex [14].
The architectural landscape of the nucleus has a pro-

found influence on gene regulation. Chromosome con-
formation capture technologies, such as 3C, Hi-C, 4C,
Capture-C and Chromatin Interaction Analysis by Paired-
End Tag Sequencing (ChIA-PET) have revealed elements
that are distally located either on the same or sepa-
rate chromosomes, to be proximal in the three dimen-
sional nucleus [15]. The effect of such contacts, espe-
cially when they correspond to enhancer-promoter or
promoter-promoter interactions, mediated by PolII or
other factors, is an area of intense research [15]. There
is evidence that enhancer-promoter interactions might be
induced by chromatin looping and mediated by enhancer-
like non-coding RNAs (ncRNAs), and that the ChIA-PET
technique is suitable to detect them [10, 16].
Additional evidence on potential functions of lncRNAs

have been obtained from methodologies which rely on
expression patterns and “Guilt by Association”: transcripts
sharing common expression patterns are expected to be
co-regulated or share common pathways [17, 18]. Most of

these methods build a coding-non-coding co-expression
network, in which a node represents a molecule and an
edge an expression correlation. Such a network is used
to identify cellular modules involving both protein cod-
ing genes and lncRNAs, and the unknown function of
lncRNAs is predicted by transferring functional annota-
tion (e.g. Gene Ontology (GO) terms) from protein coding
genes [10, 17, 19]. These approaches however detect sta-
tistical associations, and thus do not directly contribute
to an understanding of detailed mechanisms of lncRNA-
mediated gene regulation.
In this study we focused on lncRNA regulatory func-

tions in the cell nucleus and constructed the chromatin
interaction network involving lncRNAs, genes and other
genomic regions using ChIA-PET data in the K562 cell
line, which compared to HiC has higher genomic reso-
lution. ChIA-PET combines ChIP with chromatin cap-
ture technology to detect interactions between genomic
regions mediated by a transcription factor of interest [20].
Here, we focus on the Polymerase II (Pol II)-mediated
chromatin network, as it is directly linked to transcrip-
tional regulation. A natural representation of these data
amenable to efficient analysis are complex networks,
where nodes represent DNA segments or Paired-End
Tags (PETs), and edges represent ChIA-PET interactions
between two PETs. The analysis of chromatin interaction
networks has been an area of active research in the last
years, but very few studies have employed network analy-
sis and clustering methods to study chromatin interaction
networks [15, 21].
Formany biological networks, including gene regulatory

networks, the evaluation of well-established node char-
acteristics, in particular centrality measures, are highly
suitable for identification of functionally essential ele-
ments [22]. Similarly, modular organization is believed
to be a generic property of such networks, allowing to
uncover subnetworks responsible for a specific function.
In gene regulatory networks for instance, modules often
correspond to groups of interconnected cis-regulatory
elements.
We developed a hierarchical network analysis approach

to compute centrality properties of lncRNAs in the chro-
matin network, followed by a focus on the connected
components of the chromosome graphs and finally reach-
ing the level of density-based modules, that are amenable
to a detailed analysis in their entirety (Fig. 1). Specifically,
to identify these potential lncRNA-mediated functional
modules, we implement a modified version of our previ-
ously developed Markov State Models (MSM) clustering
approach [23, 24], which aims at identifying subgraphs
of high connectivity. Compared to previous methods we
do not rely on lncRNA-mRNA co-expression for network
building, neither for clustering, but only on the topol-
ogy and properties of the chromatin graph. Co-expression
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Fig. 1 Overview of the hierarchical graph analysis. The different levels represent a zoom into more detail in the graph, starting with the chromatin
graph at the top, then focusing on a single chromosome followed by large connected components and lastly modules detected in the large
component using the MSM algorithm or as small connected components of the corresponding chromosome. On the right, we list the different
analysis steps performed at each level, focusing only on degree centrality on the level of the chromatin graph, then adding in consideration of
connectivity properties as well as module detection and finally considering molecular information to assess possible functional interactions within
modules. Node shapes are arbitrary and node colors symbolize different node annotations

information is incorporated only in a second step by the
algorithm to fine-tune the final network partition, based
on the expectation that genes and lncRNAs which are
spatially coordinated and contained in the same func-
tional module also have related expression patterns. To
our knowledge, this is the first approach that defines mod-
ularity in a mRNA-lncRNA interaction network based on
chromatin interactions and uses the added value of co-
expression to refine interacting modules and characterize
unknown regulatory RNAs.
We compare our method with other state-of-the-art

graph clustering methods, and show that MSM clustering
is superior in returning clusters corresponding to genuine
regulatory modules, i.e. whose members exhibit a high
correlation in expression between gene-gene, lncRNA-
gene and lncRNA-lncRNA node pairs. We evaluated our
approach by matching modules and interactions to lnc-
RNAs of known function, such as ncRNA-a3, FALEC, Xist
and MALAT1 [9]. LncRNAs transcribed from enhancer
regions exhibit either a high degree or high betweenness
centrality, highlighting their regulatory potential in the
leukemia-specific network. Finally, we inspect potential
functions of lncRNA modules in big chromosome con-
nected components, making our strategy a valuable tool
towards functional annotation of lncRNAs with functions
in transcriptional gene regulation.

Methods
Data collection and Pre-processing
ChIA-PET Data. The Pol II ChIA-PET interaction net-
work in the K562 cell line was build based on the
already processed interaction files downloaded from the
ENCODE project website. Interacting pairs of genomic
regions from this files corresponds to two nodes linked by
an edge in our network. The data corresponding to two
different ChIA-PET replicates were downloaded and only
interactions supported by both replicates were retained
for further analysis.
Filtering of PET interactions. As we were interested

in cis long-range interactions we filtered out the 1.8%
inter-chromosomal PET interactions before further anal-
ysis. Also we excluded the so-called self-ligation PETs
from further analysis [25], as they represent an arti-
fact of ChIA-PET experiments, and originate from self-
circularization ligation of the same chromatin fragment
resulting in ChIA-PET sequences with both tags mapped
within a short genomic distance of each other. In order to
distinguish between self-ligation PETs and inter-ligations
PETs, which actually correspond to two distinct inter-
acting chromosomal regions, we performed a similar
analysis to Li et al. [25]. We computed the genomic dis-
tances between PETs and plotted their frequency in each
genomic bin on a log-log scale. The intersection of two
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fitted lines at 1691 nt was taken as distance cutoff to dis-
tinguish self-ligation from inter-ligation PETs, which seem
to follow two distinct power-law distributions (Fig. 2 left).
Self-ligation interactions, with distances below this cutoff,
were discarded from further analysis.
Expression analysis of lncRNAs and genes. Expres-

sion levels of both lncRNAs and protein-coding genes in
K562 were computed from the corresponding alignment
file of RNA sequencing (RNA-seq) from the Cold Spring
Harbor Lab (CSHL) ENCODE track (chromatin fraction).
Genomic annotation of lncRNAs and genes was taken
from Gencode v24. Coordinates were lifted over the hg19
human genome assembly as all other annotations were
on hg19. Read counts in protein-coding genes and lnc-
RNAs were obtained by means of htseq-count [26] for
two different replicates with default parameters (stranded,
skip all reads with alignment quality lower 10, overlapping
reads handled as union), using only complete gene regions
(introns included) from the annotation file and converted
to Reads Per Kilobase of transcript, per Million mapped
reads (RPKMs). Only genes with an RPKM > 0.041 and
lncRNAs with RPKM > 0 in both replicates or RPKM
> 0.041 in at least one replicate were considered ’detected’
and retained for further analysis. The 0.041 threshold was
determined by looking at the bimodal distribution of the
log RPKM expression values of all genes and corresponds
to the local minimum separating the two modes.
Network construction and annotation. PETs repre-

senting interacting genomic regions were annotated as
’gene’, and assigned their corresponding official gene sym-
bol if they overlapped the genomic coordinates of anno-
tated protein-coding genes from Gencode. PETs were
annotated as ’lncRNA’ if they overlapped the genomic
coordinates of annotated lncRNAs from Gencode. Given
that the resolution of the ChIA-PET data is in the order of
few kilobases, it could occur that interacting PETs might

cover wide genomic regions with more than one anno-
tated gene/lncRNA. In addition, ChIA-PET data are not
strand-specific, therefore they might overlap with two or
more genes/lncRNAs located on different strands. PETs
corresponding to more than one gene/lncRNA location,
either on the same or the opposite strand, were anno-
tated with both gene and lncRNA names. Chromatin
states in K562 from the chromHMM software genome
segmentation [27] downloaded from the ENCODE web-
site were also used to annotate interacting PETs in
the network as ’enhancer’, ’weak enhancer’, Transcription
Start Site (’TSS’), ’promoter flanking’, ’CTCF’, ’transcribed’
and ’repressed’ (Fig. 3b). The assignment ’repressed’ was
ignored because in a network containing interactions
mediated by Pol II, repressed regions hold no informa-
tion. It could occur that the same PET overlapped with
many different features. In this case annotations were
merged. For example a PET overlapping both an anno-
tated lncRNA and an enhancer region was defined as
’lncRNA_enhancer’. If PETs did not overlap with any
annotated gene, lncRNA or chromatin state, were labeled
as unknown. Annotated PETs were represented as nodes
in the network and an interaction between PETs as
an edge. A global (0,1)-adjacency matrix was build to
describe the overall graph, called from now on chromatin
graph. The number of rows and columns of the adja-
cency matrix represents the number of genomic regions
involved in at least one ChIA-PET interaction. A 0-
entry in the matrix cell corresponds to no interactions
between any two PETs overlapping with these regions,
while a 1-entry corresponds to a ChIA-PET interaction.
A schematic view of the steps described above is given in
Fig. 3b.
For gene disease annotation the disease databases

OMIM [28] and DisGenet [29] were used. Disease anno-
tation data for lncRNAs was taken from the database

Fig. 2 Filtering of interacting regions. Left panel: Fitted mixture model to classify PETS in self-ligation and inter-ligation. Middle panel: Distribution of
inter-ligation PET fragments’ length. Right panel: Relative abundance of ChIA-PET fragments across different genomic annotations on the chromatin
network
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a b

Fig. 3 Construction and annotation of the chromatin graph. aModular organization of chromatin on each chromosome with highlight on looping
between regulatory elements such as enhancers and promoters mediated by PolII, Mediator and nascent lncRNAs. b Steps involved in network
construction and annotation from ChIA-PET data

lncRNADisease (as of June 2015) [30], where we used both
experimentally validated associations between lncRNAs
and diseases, as well as predicted associations. LncRNAs
that were part of positionally conserved pairs of genes
and lncRNAs were obtained from [31]. Additional anno-
tations, such as functional lncRNAs in K562, VISTA and
FANTOM5 enhancers, enhancers annotated from other
sources [32], cancer risk Single Nucleotide Polymorphism
(SNP) annotation and mouse orthologs we taken form Liu
et al. [33].

Network analysis of the chromatin graph
Centrality measures For graph analysis we use standard
graph concepts of interest for biological network analy-
sis, see, e.g., [34] and [22]. To identify nodes of potential
functional importance, we first look for nodes with a high
degree, i.e., with a high number of incident edges, also
called hubs. For each node v in a graphG = (V ,E) we cal-
culate the number d(v) of edges incident to v and call it its
degree or degree centrality. For capturing the importance
of a node v ∈ V as an efficient connector between other
nodes in the network we consider its betweenness central-
ity. It is defined as b(v) = ∑

s�=v�=t(σst(v)/σst), where σst is
the number of shortest paths from node s to node t and
σst(v) is the number of such paths that pass through v.
MSMclustering formodule detectionApart from sin-

gle node characteristics, we are interested in sets of nodes
forming functional units. A connected component C =

(VC ,EC) of a graph is defined as an inclusion-wise maxi-
mal subgraph of G such that there exists a path between
v and w for all vertices v,w ∈ VC . If such a compo-
nent is rather large, it often consists of so-called modules,
i.e., subgraphs that have a high intra-connectivity but are
only sparsely connected to the rest of the network. The
modules are thus good candidates for functional units.
In this paper, we apply the MSM clustering method

developed in [23, 24] on large connected components
for finding modules. It is based on finding markov state
models of a time-continuous random walk process. More
precisely, it identifies modules as regions of the network
where the process is metastable, i.e. trapped for a longer
period of time. To this end, the number of network mod-
ules can be induced from the number of dominant eigen-
values of the generator matrix that governs the dynamics
of the random walk process. Unlike most of the common
approaches, MSM finds fuzzy instead of complete par-
titions of the network into modules, where some nodes
are not uniquely assigned to exactly one of the mod-
ules, but can belong to several modules or to none. This
allows to also capture intermodular nodes whose func-
tional significance lies in mediating interactions between
modules.
For every node x we can calculate a value qi(x) as the

random walk based probability of affiliation of a node x
to a module Mi. We then use a free parameter θ to refine
the partitioning, i.e. we assign a node x to a module Mi
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if qi(x) ≥ θ . If θ = 1 we obtain subgraphs exhibiting
the strongest cohesiveness. By decreasing θ we expand
modules until we reach a full partitioning of a graph by
associating each vertex from the transition region with
exactly one module it most likely belongs to. Fuzzy affilia-
tion functions qi, i = 1, . . . ,m can be obtained by solving
sparse, symmetric and positive definite linear systems
([23, 35]).
Another free parameter is a resolution parameter α,

indicating how densely connected the modules we are
interested in finding should be. For high values of α the
method finds dominant, highly intraconnected modules
and by decreasing α it finds also less pronouncedmodules.
This is connected to the timescale at which the random
walk leaves the transition region. It can be originally set
according to the gap in the dominant spectrum of the gen-
erator of the random walk and then varied to observe the
effect on the modules. In our application, it usually ranges
from 100 to 2000.
EmpiricalOptimization criteriaThe parameters θ and

α allow for an adaptation of the clustering to the spe-
cific application by integrating additional information on
the networks nodes beyond the characteristics given by
the network topology. Since we are looking for regu-
latory units involving lncRNAs, we chose to compare
co-expression levels of intra- versus inter-modular gene-
gene, lncRNA-gene and lncRNA-lncRNA pairs in order
to find the best clustering parametrization. We argue
that elements within the same module should have more
correlated expression profiles, indicating co-regulation or
potential mutual regulation, whereas intermodular node
pairs are more independently regulated. In detail, we per-
formed the MSM clustering for connected components
from all chromosome graphs for a range of α and θ com-
binations. We chose the best combination by optimizing
an empirical objective function (Eq.1) defined by the ratio
of the median intra-module Mutual Information (MI) and
the inter-module MI for all gene pairs in the connected
component.

{θ ,α}best = argmaxθ ,α
median(intra_MIs)
median(inter_MIs)

(1)

MI values between variables X, RPKM expression vector
of gene1/lncRNA1 across 24 tissues and Y, RPKM expres-
sion vector of gene2/lncRNA2 across 24 tissues, is defined
in terms of their marginal Shannon entropies H(X) and
H(Y ) and their joint entropy H(X,Y ), as implemented in
scikit-learn python package:

MI(X,Y ) = H(X) + H(Y ) − H(X,Y ) (2)

The entropy can explicitely be written as:

H(X) = −
n∑

i=1
p(xi)lnp(xi) (3)

where xi are the possible values of random variable X with
probability mass function p(X). In detail, we apply a Gaus-
sian smoothing to the histogram from the distributions of
X, Y and joint(X,Y ) and compute the entropy rather on
the continuous distribution as described in [36].
LncRNAs tended to be more cell type-specific than

protein-coding genes (Additional file 1: Figure S1a, b) and
this might bias the MI computation (Additional file 1:
Figure S1c). Computing the MI ratio on all gene pairs
provides a more robust value. The reported ratio in Eq.1
for a connected component serves also as indicator for
the quality of the clustering, where a high score implies
a better partitioning with respect to MI and a ratio of
at least one is expected for biologically meaningful clus-
terings. The best values for α and θ for each inspected
connected component are reported in the table of Addi-
tional file 2, together with other properties of the detected
clusters. We observe that generally clusterings with θ =
0.7 and small α (around 100–500), allowing more sparsely
connected and relaxed modules, provide the highest
MI ratio.

Comparison with other clustering methods
We compared our MSM clustering approach to other
state-of-the-art clustering methods with respect to the
mutual information ratio, which reflects our expectation
that nodes connected in a module have correlated expres-
sion profiles. It is important to note again that our primary
goal is to find modules that could represent functional
units. To allow for and strengthen such an interpreta-
tion we consider co-expression of the involved nodes. The
MSM approach allows us to integrate this aspect directly
in the module detection by optimizing its parameters
using MI ratios. This is a distinct advantage of our chosen
method that is not directly reproducible by most com-
monly used clustering methods. We nevertheless need to
consider whether other approaches might still yield more
appropriate modules with respect to their co-expression
in order to choose the most suitable method for our
analysis.
We used the following methods and their implementa-

tion from the R igraph package [37]:

• cluster_fast_greedy function (FG), which finds dense
subgraphs by directly optimizing a modularity score
Q. Given a set of modules, Q is computed as the ratio
between the fraction of within-community edges
versus the expected fraction of connections for the
randomized network [38].

• clustering via Edge Betweenness (EB),
cluster_edge_betweenness function, which is based
on iteratively removing edges with highest edge
betweenness from the graph [39], in order to
hierarchically split the graph into modules.
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• leading eigenvalue clustering algorithm (EV),
cluster_leading_eigen function, which implements
the popular graph clustering method from Newman
[40]. This method finds network modules by
calculating the leading non-negative eigenvector of
the so called modularity matrix.

• Walktrap algorithm which is a Repeated Random
Walk (RRW) based clustering, cluster_walktrap
function. Similarly to our MSM algorithm this
approach finds modules in a graph by exploiting
metastability of the random walk [41], but uses only a
time-discrete version of the process.

We compare these methods to our MSM procedure using
the largest connected component of our chromatin graph
on chromosome 1. As mentioned this comparison is not
straightforward since, firstly, none of these methods sup-
port fuzzy clustering as in the MSM approach. In particu-
lar, the modularity score Q which most of these methods
use is hard to compare between fuzzy and non-fuzzy clus-
tering and might not be very meaningful in our context.
Secondly, the other approaches do not allow us to opti-
mize for MI ratio in an integrated fashion that would
impact size and number of modules.
To address these issues, we evaluated a range of dif-

ferent modules for each of the considered methods from
the igraph package, mimicking optimization for MI ratio.
First, we run each algorithm unbiased and assess themod-
ules returned by the optimization algorithm underlying
the method. As additional information to this cluster-
ing, most of the considered algorithms return a hier-
archical overview of the best clusterings for a range of
different module numbers - comparable with the varia-
tion of the parameters of MSM. This allows us to assess
the results for clusterings corresponding to a range of
module numbers from 8 to 24 in incremental steps of
4. An exception to this procedure is the EV algorithm
that does not offer a simple way to change the number
of modules. Rather, we can only influence this num-
ber indirectly using the ’steps’ parameter, which can only
increase the number of modules until an upper limit is
reached. The resulting MI ratios are visualized in Fig. 4.
In a second type of assessment, we transfered the infor-
mation on module number we derived from our MSM
approach after optimizing for MI ratio to the other
approaches, meaning, we enforced the module number
we found with MSM for the other approaches. The out-
come of this assessment can also be seen in Fig. 4 marked
in red.
Our mehtod returns on average the highest MI ratio

compared to other methods (Fig. 4). It is noteworthy that
the clustering with the number of modules reported by
MSM is often the best clustering and always better or
equal to the default clustering.

Module functional enrichment analysis
GO functional enrichment and pathway analysis from the
KEGG database for the genes contained inside each iden-
tified module was done with the R package GSEABase
[42], in order to transfer functional annotation gained
from the genes to the lncRNAs contained in the same
module. Only enriched terms with adjusted p-values
lower or equal than 0.1 and having more than two genes
from the module annotated with that term are reported
in Additional file 2. Nodes not uniquely assigned to a sin-
gle cluster, but belonging to the transition region defined
above, can be also functionally annotated by transferring
annotation from their direct neighboring genes.

Results
In this section we first focus on the analysis of different
centrality measures for lncRNA nodes and other annota-
tions, as well as “connectors” lncRNAs of high between-
ness. We show that network properties are related to spe-
cific regulatory annotations as well as biological functions.
Next, we exploit the modularity of the K562 ChIA-PET
interaction network to identify network modules includ-
ing potentially functional lncRNA with fuzzy MSM clus-
tering applied to each chromosome’s biggest component,
while still taking into account gene co-expression. Finally,
in the absence of an high-throughput gold standard of val-
idated lncRNA functions, we discuss some lncRNA-gene
target interactions retrieved manually from the literature
and contained in our detected modules, as well as the
potential functional importance of inter-modular nodes,
which is a unique feature of our approach. We also pro-
vide some general means on how to mine the network and
the modules to gain a better clue into unknown lncRNA
functions.

Hierarchical graph analysis of the ChIA-PET interaction
network
When plotting the frequency of interactions at different
genomic distances (Fig. 2, Left panel) one can clearly dis-
tinguish two linear ’regimes’, corresponding to a mixture
distribution of PETs where two different linear functions
can be fitted. The intersection of the two fitted lines
in the log-log plot was chosen as cutoff to differenti-
ate self-ligation, corresponding to short range ChIA-PET
interactions, from inter-ligation, corresponding to long
range interactions. Self-ligation PETs were excluded from
the network analysis as, in most of the cases, they do not
correspond to chromatin interactions between different
genomic segments. Most of the remaining PETs could be
annotated as either genes or lncRNAs or other regula-
tory elements, while about one third of them could not be
assigned to any genomic or regulatory annotation (Fig. 2
right panel). In total, 6500 lncRNAs were expressed above
the threshold (see “Methods”) in K562 cells, but only
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Fig. 4 Comparison of different graph clustering methods. Our MSM clustering approach is compared to other methods from the igraph package (EB
- clustering via edge betweenness; EV-eigenvalue clustering; FG-fast and greedy clustering; RW-random walk clustering). All methods are run with
different ranges of parameters and/or number of modules, and the mutual information (MI) ratio is computed for every scenario as described in
Material and Methods. For each method the distribution of the resulting MI ratio is shown, together with the median value (horizontal line). For each
clustering method the result obtained with the MSM’s optimal number of modules is circled in red and the results obtained with its own
optimization is circled in blue. The red line indicates the best partition for our MSM clustering, i.e. values of α and θ yielding the highest MI ratio

3229 were found to be involved in ChIA-PET interactions.
About 40% of the lncRNA-nodes could be annotated with
more than one lncRNA (mainly one of the sense and the
other on the reverse strand).
To cope with the size and heterogeneous nature of the

chromatin graph we developed an hierarchical analysis
approach that enabled us to add step-wise resolution to
subgraphs of interest guided by the results of the previ-
ous step (Fig. 1). First, we analyzed the chromatin graph
(Table 1) to identify global hubs by computing the degree
centrality of lncRNAs and other genomic elements. An
overview of the general properties of the chromatin graph
is given in Table 1. The chromatin network is very sparse,
with many components representing singleton nodes or
containing very few nodes. When looking at the chro-
matin graph, we notice that only few lncRNAs have
a degree centrality higher than 10, while the majority

of lncRNAs exhibits a degree between one and three
(Additional file 1: Figure S1d). The logarithmic visualiza-
tion of degrees in Additional file 1: Figure S2 middle panel
matches the general observation that in biological net-
works degrees are often distributed according to a power
law, i.e., there exist few hubs and many much less densely
connected nodes [22]. A comparison of degree distribu-
tions for lncRNAs, protein coding genes, enhancers, pro-
moters/transcribed regions and CTCF sites (Additional
file 1: Figure S2) showed that protein-coding genes had the
largest degree, constituting the main network’s hubs, fol-
lowed by lncRNAs (both gene-overlapping and intergenic
ones), enhancers, promoters and lastly CTCF sites. Nodes
with different annotations followed a power law with sim-
ilar exponents, except nodes annotated with CTCF sites,
probably to reflect the different biological role of such
binding sites, as chromatin barriers or insulators [43] with
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Table 1 Properties of the chromatin graph

chr no.cc Min
cc
csize

Mean
cc
csize

Max
cc
csize

Number of
nodes
containing
lncRNA

Nodes
containing
lncRNA involved
in interactions

Node containing
lncRNA with
highest degree

Degree

chr1 1765 1 3.35 503 444 404 RP11-
442N24__B.1,RNU11

26

chr2 1264 1 2.77 64 299 250 ZFP36L2 19

chr3 994 1 2.82 70 213 185 TERC 13

chr4 649 1 2.66 52 160 127 RP11-
539L10.3,AC093323.3

9

chr5 890 1 2.71 43 245 197 ARRDC3 15

chr6 1172 1 3.21 337 208 190 ABT1 14

chr7 1016 1 2.76 88 196 164 LINC01287 14

chr8 619 1 2.87 105 187 159 YWHAZ 20

chr9 505 1 3.1 141 127 118 SNHG7 11

chr10 685 1 2.84 92 144 126 VIM 9

chr11 858 1 3.03 128 216 188 BEST1,FTH1 12

chr12 655 1 3.25 69 224 199 BTG1 22

chr13 280 1 2.45 39 62 51 MIR17HG 21

chr14 357 1 2.98 36 131 115 PRMT5 10

chr15 430 1 3 72 156 132 GABPB1 9

chr16 457 1 3.63 196 182 166 RAB26,TRAF7 17

chr17 517 1 4.3 350 275 267 LINC00910 17

chr18 278 1 2.61 71 61 47 MYL12A 17

chr19 380 1 5.36 158 227 220 SLC1A5 15

chr20 407 1 3.18 90 109 99 CEBPB 26

chr21 207 1 3.02 53 73 62 DYRK1A 7

chr22 279 1 3.24 67 84 78 POLDIP3 20

chrX 358 1 2.75 60 57 49 VSIG4 10

For each chromosome we report: the total number of connected components (no.cc), the minimum number of nodes (min cc csize), the average number of nodes (mean cc
csize) and maximum number of nodes (max cc csize)) of the connected components, the total number of annotated lncRNAs (number of lncRNAs), the total number of
lncRNAs which are involved in at least one interaction (lncRNAs in interactions), the lncRNA gene symbol of the highest degree’s lncRNAs (lncRNAwith highest degree) and the
actual highest degree value for that lncRNA (degree)

respect to other genomic annotations. For future studies,
the top 20 highest-degree lncRNAs from the chromatin
network are listed in Table 2.
Since the chromatin graph decomposes in a natural

way into the graphs representing the single chromosomes,
we compute the lncRNA degree chromosome-wise. Even
nodes that are not among those of highest degree in the
chromatin graph may be distinguished with respect to
their chromosome graph. Second, we focus on the con-
nected components containing lncRNAs of each chromo-
some graph to obtain the next resolution level. Small com-
ponents are then amenable to a full analysis of different
aspects of interest, while for large connected components
we still need indicators that guide our search for impor-
tant lncRNA modules. In (Additional file 1: Tables S2, S3
and S4) we report this analysis for the biggest connected

components of chromosome 1, 17 and 11, respectively.
In addition, we evaluate the betweenness centrality of
each lncRNA node. Among lncRNAs with high between-
ness in their respective connected component we find
MALAT1, SHG16, RNU11 and RP11-400F19.8, known
oncogenes, as well as lncRNAs of unknown function, such
as LINC00910, RP11-442N24 and RP4-798A10.7. Inter-
estingly, PETs annotated as lncRNAs, which overlapped
also a protein coding gene, either on the same or the
anti-sense strand, had on average the highest betwee-
ness compared to other genomic classes, including protein
coding genes (Additional file 1: Figure S2 right panel,
Table S1). This points to the important central role of
these regions with dual genomic annotation (coding/non-
coding) as linkers and communicators between different
regulatory modules in the ChIA-PET network. Finally,
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Table 2 Top 20 lncRNAs with highest degree from the chromatin graph

lncRNA name Degree To-gene
degree

Chormosome Annotation RPKM Conserved Disease

RP11-442N24__B.1,RNU11 26 9 chr1 lnc_transcr_enhancer 227.4193 no yes

RP4-798A10.7 21 5 chr1 lnc_transcr_enhancer 16.0232 no no

MIR17HG 21 1 chr13 lnc_transcr_enhancer 518.9101 no yes

LINC00910 17 5 chr17 lnc_transcr_enhancer 37.0585 no no

RP11-1082L8.4 16 2 chr8 lnc_transcr_enhancer 1.2984 no no

LINC01287 14 0 chr7 lnc_transcr_enhancer 77.8624 no no

TERC 13 3 chr3 lnc_CTCF 111.0789 no yes

AC073283.4 13 3 chr2 lnc_transcr_enhancer 0.156 no no

RP11-495P10.3 12 0 chr1 lnc_promoterFl 1.0816 no no

RP11-301G19.1 12 0 chr6 lnc_transcr_enhancer 914.2072 no no

KB-1732A1.1 12 1 chr8 lnc_transcr_enhancer 1.0105 no no

SNHG7 11 5 chr9 lnc_TSS 112.0253 no no

BZRAP1-AS1 11 0 chr17 lnc_transcr_enhancer 6.9533 no no

RP11-247A12.2 10 3 chr9 lnc_transcr_enhancer 0.3745 no no

CTD-2587H24.5 10 8 chr19 lnc_transcr_enhancer 0.1669 no no

CTD-2587H24.10 10 7 chr19 lnc_transcr_enhancer 17.1446 no no

SNHG16,RP11-666A8.8 9 4 chr17 lnc_promoterFl 73.5648 no yes

SNHG12 9 7 chr1 lnc_TSS 229.3524 no no

RP5-884M6.1 9 2 chr7 lnc_transcr_enhancer 30.2113 no no

RP11-539L10.3,AC093323.3 9 6 chr4 lnc_transcr_enhancer 92.453 no no

For each lncRNA we report its degree centrality (degree), its degree centrality computed only from gene connections (to-gene degree), the chromosome it belongs to
(chromosome), its annotation based on chromatin segmentation (annotation), its expression value (RPKM) in the K562 cell line (expression), whether it is positionally conserved
according to X et al. [31] (conserved), and whether it is known from databases or literature its involvement in diseases(disease)

to identify relevant functional units we conduct a mod-
ule search using the MSM clustering method described
above.

Network analysis and biological properties of lncRNAs
By manually inspecting the functional annotation of the
top 20 expressed lncRNAs with highest degree, we find
several lncRNAs known from previous studies to be
cancer-associated. For example, RNAs from the SNHG
family important in cell proliferation and invasion in dif-
ferent cancer types [44]; RP11-301G19.1, over-expressed
in leukemia [45]; TERC, involved in telomerase activ-
ity and associated to leukemic cells [46], and the inter-
genic lncRNA MIR17HG, host transcript of the MIR-
17-92a-1 cluster, known to be involved in cell survival
and cancer proliferation [47]. However, disease anno-
tation is sparse and limited for lncRNAs compared to
protein-coding genes. The fraction of intergenic long non-
coding RNAs (lincRNAs) from the ChIA-PET network,
that could be annotated with a disease in our analysis (see
“Methods” section for more details) was only 9% (217
out of 2305), therefore it is hard to systematically
access whether high-degree lncRNAs are significantly
associated to diseases. Comparing the degree distribution

of lincRNAs annotated with a disease versus lincRNAs
not linked to a disease we do not observe any significant
associations (p-value = 0.384, Wilcoxon rank sum test).
When we perform the same analysis including also lnc-
RNAs overlapping protein-coding genes, we can assign a
disease up to 42% of the lncRNAs in our network, and
obtain a significant association between degree centrality
and disease annotation (p-value < 1.22 ∗ 10−16, Wilcoxon
rank sum test, Additional file 1: Figure S3).
A recent study from Liu et al. [33] investigates the func-

tional importance of lncRNAs, mainly as trans regulators
of gene expression, by performing CRISPR interference
and targeting thousands of lncRNA loci in seven diverse
cell lines, including K562. We partly used these data to
explore other biological properties of our ChIA-PET net-
work. Liu et al. define functional lncRNAs or ’hits’ those
which showed a significant phenotype, i.e. affecting cell
growth, in a cell-type specific manner. K562 hits were
enriched in the chromatin graph, compared to non-hits
(odd ratio = 2.07, p=0.008, Fisher’s exact test), but did not
have significantly higher degree centrality. K562 lncRNAs
annotated by Liu et al. to be in close genomic proximity
to cancer risk SNPs were also enriched in the chromatin
network compared to lncRNAs far from those SNPs (odd
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ratio = 2.65, p=1.2*10 − 5, Fisher’s exact test) but did not
have significantly higher degree.
LncRNAs annotated as enhancers from chromHMM

were enriched for tissue-specific expression (odd
ratio=2.4, p-value=1.4*10-7, Fisher’s exact test) and
had significantly higher degree centrality compared
to lncRNAs which did not overlap enhancer ele-
ments (p-value=5.4 ∗ 10−62, Wilcoxon rank sum test,
Additional file 1: Figure S3). This still holds when
considering also lncRNAs overlapping protein coding
genes (p-value=1.3 ∗ 10−48, Wilcoxon rank sum test,
Additional file 1: Figure S3). The significant associa-
tions between high degree and enhancer annotation of
lncRNAs in the network holded also for FANTOM5
enhancers (p-value=0.034, Wilcoxon rank sum test) and
enhancers defined by other studies (p-value=2.1 ∗ 10−9,
Wilcoxon rank sum test), as well as super-enhancers
(p-value=4.5 ∗ 10−10, Wilcoxon rank sum test) [32].
This suggests that enhancer-like lncRNAs are hubs in
the Pol II-mediated ChIA-PET network and connect
several regulatory regions to gene loci in an extensive
and combinatorial fashion. In addition, lncRNAs which
overlapped both ’enhancer’ and ’transcribed’ annotations
from chromHMM, which we denote as ’transcribed
enhancers’, had a significantly higher degree compared
to those lncRNAs annotated only as ’enhancer’ but not
’transcribed’ from chromHMM (p-value=1.9 ∗ 10−19,
Wilcoxon rank sum test). All these findings are in line
with the results from Liu et al., where the authors
show that enhancer proximity and chromosomal con-
tacts correlate with lncRNA function [33], and that
the transcription of the lncRNA itself might confer,
in some cases, the regulatory potential to the lncRNA
genomic locus.
Positionally conserved lncRNAs from our network,

defined as lncRNAs located close to genes which are
orthologous between human and mouse [31], had also
a significantly higher degree compared to the non
positionally conserved ones (p-value=0.044, Wilcoxon
rank sum test, Additional file 1: Figure S3). Finally,
also lncRNAs which had a direct orhtologous gene in
mouse [33] had significantly higher degree than the rest
(p-value=0.037, Wilcoxon rank sum test), highlighting the
importance of evolutionary conserved lncRNAs in the
ChIA-PET chromatin network. Positionally-conserved
lncRNAs have also been associated with developmen-
tal or cancer genes, and shown to be in chromatin
loops, which contact enhancer-regulatory sequence. In
our network, we observe that lncRNAs which are also
annotated as positionally conserved, have a significantly
higher degree than not positionally conserved ones
(p-value = 0.044,Wilcoxon rank sum test), indicating their
potential role as functional hubs in the Pol II chromatin
network.

Small network components contain validated
lncRNA-gene functional interactions
Prior to cluster analysis, we first inspected small con-
nected components of the network (sub-graphs of the
order of tens of nodes) to assess whether the spatial
proximity in the Pol II ChIA-PET network recapitulates
some well known lncRNA-gene target interactions from
the literature. The lncRNA transcript overlapping the
longest intron of the AHI1 gene has been shown to sig-
nificantly impact the expression of the BCLAF1 in K562
from a CRISPRi experiment [33]. Here we show that this
regulation is mediated by a direct ChIA-PET interac-
tion in a small connected network module on chromo-
some 6 (Additional file 1: Figure S4a)). In addition, other
ChIA-PET modules contain validated interactions of lnc-
RNAs with their target genes, for example PVT1 with its
known target MYC [33] on a small connected compo-
nent on chromosome 8 (Additional file 1: Figure S4b)).
A small module on chromosome 1 contains the lncRNA
CYP4A22-AS1 (Additional file 1: Figure S4d)), also known
as ncRNA-a3, which has been shown to act as enhancer
for its flanking stem cell leukemia-associated gene TAL1
[13], and we recapitulate the direct interaction between
them. The active enhancer-like lncRNA linc00853, also
known as ncRNA-a4 is also part of the ncRNA-a3 net-
work (Additional file 1: Figure S4d)) and directly regulates
its flanking gene CMPK1, as already previously verified
experimentally [13], suggesting a synergistic action of
these two lncRNAs in coordinating the transcriptional
activity of a group of four genes in this module.
Finally, we looked at the well characterized lncRNA

Xist (Additional file 1: Figure S4e)), known to be involved
in transcriptional gene silencing during X-chromosome
inactivation. From our analysis it is evident, given the lack
of ChIA-PET interactions, that Xist does not associate to
Pol II to regulate its target genes in an enhancer-like fash-
ion, as expected given its suggested silencing function. On
the other hand, we could recover direct Pol II-mediated
interactions between XIST and lncRNA FTX, JPX and
TSIX (Additional file 1: Figure S4e) which are known
regulators of XIST transcription [11].

Analysis of lncRNA-containingmodules
For the biggest components of each chromosome we per-
formed MSM clustering as described in Material and
Methods and inspected the resulting modules for func-
tional annotation. One way to gain functional clues about
uncharacterized lncRNAs is to inspect the functions
of its interacting genes or the genes contained in the
same module via GO/KEGG term enrichment. Many of
the identified clusters in our network were enriched in
cancer-related terms (Additional file 2). The most abun-
dant KEGG pathway from our analysis “Chronic myeloid
leukemia” is found in ten modules, in line with K562
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being a leukemia cell line, though only two modules in
chromosome 17 contained more than one gene in the
pathway. Themore general term “Pathways in cancer” was
enriched in four modules (see Additional file 2, sheet 2).
We found more enriched terms linked to cancer, such as
“mTOR signaling pathway”, “Jak-STAT signaling pathway”,
“hematopoietic stem cell differentiation” and “response to
interleukin-15” (hematopoietic growth factor (Additional
file 2).

Examples of modular structures and putative lncRNA
functions on chromosomes 20, 1, 17 and 11
We detect two modules on the biggest component of
chromosome 20, where cluster 1 contains the validated
functional interaction between TRERNA1 lncRNA and
the SNA1 gene [8], mediated by several enhancer elements
(Additional file 1: Figure S4c). We detect 11 modules
for the biggest component on chromosome 1 obtained
with setting α = 1000 and θ = 0.8 (Fig. 5b). Differ-
ent clusters are recognizable by different colors of their
intra-cluster edges. Cluster 6 in Fig. 5b is the regula-
tory module containing the well-known eRNA FALEC,
which has been shown to harbor enhancer-like functions
and significantly influence the expression of its flank-
ing gene ECM1 [13], also present in the same module.
By inspecting the interactions in this module, we learn
that the interaction between FALEC and the ECM1 locus
is mediated by the ADAMTSL gene. Interestingly, the
Myeloid Cell Leukemia apoptosis regulator MCL1 and
the Hypoxia-Inducible factor 1-Beta ARNT are also in
the same module, indirectly linked to FALEC via other
lncRNAs, protein-coding genes and several transcribed
enhancer elements (colored in green in Fig. 5b). The mod-
ule containing FALEC is enriched in functional terms
related to chromatin silencing and negative regulation of
gene expression, highlighting a role of this lncRNA in
epigenetic-related processes. Other interesting modular
units on chromosome 1 comprise: cluster 3, containing
the lncRNA of unknown function FLJ37453 which is con-
nected via intra-modular interactions to SPEN, known to
associate to lncRNAs (e.g. Xist) and mediate gene repres-
sion [48]; cluster 2, containing, among others, lncRNAs
SNHG12, ubiquitously expressed in several cancers and
two other lncRNAs of high degree, RUN11 and RP11-
442N24, as well as genes interestingly enriched in func-
tions associated with lipid metabolism, transcription ter-
mination and p53-mediated signal transduction; cluster
10, containing the high degree lncRNA RP4-798A10.7 and
genes with enriched functions related to chromatin and
nucleosome assembly, suggesting a role of this lncRNA in
shaping chromatin organization.
Clustering of the biggest component on chromosome

11 (Fig. 5d) resulted in an optimal partition of four dom-
inant modules, obtained with setting α = 1000 and

θ = 0.7 (thus identifying more relaxed modules). Partic-
ularly interesting are the modules in Fig. 5d) marked by
red and light blue connections, namely cluster 1 and 3,
linked by the oncogene lncRNA MALAT1, known to act
as transcriptional regulator for numerous genes involved
in cancer metastasis and cell migration [9]. MALAT1 has
a degree of 8, but exhibits a very high betweenness. This
indicates that MALAT1 is important in the context of the
entire connected components, not only for its first-order
neighbors, but also because it brings different gene clus-
ters in close proximity at the chromatin level. This fits well
with the known role of MALAT1 as global regulator of
cancer genes and orchestrator of a global transcriptional
response [9]. While the physical interaction of lncRNA
MALAT1 with the SIPA1 leukemia oncogene has been
experimentally validated [49] and recapitulated in our net-
work, MALAT1 is linked to other crucial oncogenes in
the two linked modules, and co-expressed with NEAT1,
another well-known lncRNA in the context of cancer [9].
Finally, we briefly discuss the clustering results of

the biggest connected component of chromosome 17,
obtained with α = 700 and θ = 0.7 (Fig. 5c), result-
ing in eleven modules. This component is particularly
interesting because it contains several lncRNAs with very
high degree/betweenness, so potential core players in the
leukemia regulatory network, but of unknown function,
such as LINC00854 and LINC00910. LINC00910 was
already pointed in other studies as a highly connected
lncRNA [50], observed to be linked to an upstream super-
enhancer [50, 51] and hypothesized to be involved in
immune related functions and lymphocyte activation [50].
In our network, it exhibits the highest degree in chromo-
some 17 and very high betweenness, it interacts with sev-
eral transcribed enhancers and with many CTCF binding
sites. It is also found in direct or indirect interactions with
numerous known cancer genes, such as NBR1, BRACA1,
ICT1, SUMO, NUP85 and others. As the genes contained
in this detected module are enriched in the ’calcium sig-
naling pathway’ annotation, which is a key regulator of
B lymphocyte fate in Leukemia [52] we propose a poten-
tial function for LINC00910 in the Leukemia’s ChIA-PET
as regulator of calcium signaling-related genes. However,
experimental approaches so far could not identify genes
which are significantly regulated by LINC00910 in the
K562 cell line, neither in cis or in trans [33], and further
experimental tools are needed to validate this hypothesis.
Of great interest in this component is lncRNA RP11-

400F19.8, a node with high degree and high betweenness,
which was not assigned to any cluster by our method
but belonged to the previously defined ’transition’ region
(Additional file 1: Table S5). Although not assigned to
any module, RP11-400F19.8 is far from being a non-
functional lncRNA, and was already identified in a previ-
ous transcriptome-wide association study as a cancer risk
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a
b

c

d

Fig. 5Module detection. a Node color legend, b chromosome 1 biggest component, c chromosome 17 biggest component and d chromosome
11 biggest component. Nodes are colored according to their overlaid genomic annotation and/or chromatin states (a). Relevant lncRNAs and
connected genes are highlighted as text. Known and validate cancer genes in c) are circled in red with dotted lines. Different modules from the
clustering analysis are represented via different edges’ colors. ’Fuzzy’ nodes, i.e. nodes which could not be confidently assigned to any module, have
connections colored in gray departing from them

locus [53]. In our network RP11-400F19 links two mod-
ules enriched in different immune biological processes
(Fig. 5c) and brings in close spatial proximity known can-
cer genes (denoted with dotted red circles in Fig. 5c)) from
both modules.

Discussion
LncRNAs play key regulatory roles in a wide range of pro-
cesses, and a small number of them has been shown to
operate in the nucleus and influence transcriptional regu-
lation of neighboring or distal genes. To which extent cell-
type specific 3D chromatin organization and other DNA
regulatory elements contribute to lncRNA-mediated gene
regulation has been poorly investigated. In addition, func-
tional annotation for most of the annotated lncRNAs, as
well as their role in gene regulatory networks remains elu-
sive. Based on the fact that transcripts sharing common
expression patterns should largely share similar biological

pathways, a number of different studies have used the
’guilt by association’ approach to functionally annotate
lncRNAs based on expression similarities with protein-
coding genes of known function.
Here we comprehensively map ChIA-PET chromatin

contacts mediated by Pol II in the K562 cell line to lnc-
RNAs, genes and other DNA regulatory elements, and
propose a multi-step approach to analyze lncRNA reg-
ulatory functions using graph analysis techniques. We
first show a significant association between some network
properties of lncRNA-annotated nodes, such as degree or
betweenness, and biological properties, such as enhancer
functions of lncRNAs from multiple datasets. After-
wards, we inspect functional mechanisms of network
modules. The added value of our approach is twofold.
First, lncRNA-mediated transcriptional regulatory mod-
ules are identified by means of fuzzy clustering analysis
directly on the chromatin network, providing a first link
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between transcriptional regulation and lncRNA associa-
tion/functions at chromatin level. Second, although alter-
native choices exist for the module search, we decided
on the MSM clustering since it does not impose an often
artificial full partition of the network into modules, but
outputs a fuzzy clustering which allows more flexible
interpretation of lncRNA regulation. Also, the θ and α

parameters of our clustering method are chosen to max-
imize gene co-expression inside the same module, allow-
ing to incorporate additional information in the module
refinement, beyond network topology. Our approach can
identify direct lncRNA targets, as well as the regula-
tory modules they belong to, as shown here for known
and novel lncRNAs. Although it is not often possible
to discern modules of co-regulated genes/lncRNAs from
causal lncRNA-mediated cis-regulation without experi-
mental validation, and many lncRNAs identified in the
modules might actually function in trans to regulate
gene expression, our approach is promising in detecting
cis-regulatory modules. In fact, a previous study inves-
tigating functional interactions of MALAT1 and NEAT1
with target genes via Capture Hybridization Analysis of
RNA targets (CHART) sequencing in the MCF7 cell line
shows that half of the interacting genes are located up
to three hops of connectivity with their lncRNAs and in
the same inter-connected chromatin cluster [50]. Unfor-
tunately the same CHART data are not available for K562,
but these observations, together with the evidence of val-
idated direct and indirect lncRNA-gene target functional
interactions in the clusters of our network, highlights that
the detected modules are a good starting point to look for
potential lncRNA-mediated cis-regulatory interactions.
Our approach, presented here for the Pol II ChIA-PET
network in K562, is generally straightforward enough to
be applied to other factors, such as CTCF and other cell
lines, and module analysis repeated for other connected
components.
Incorporation in the future of other annotations in the

network, such as Transcription Factor Binding Sites, will
enable a better interpretation of individual modules.
Although the modular lncRNA regulatory code remains

to be tested, investigating the connections between lnc-
RNAs, genes and other regulatory elements are important
steps towards further definition of lncRNA functions on
a system-wide level. The investigation of modules related
to lncRNAs whose functionality is not yet known can sug-
gest new targets and the regulatory components involved
in regulation. Therefore, we propose that our functional
annotation scheme can be applied to thousands of lnc-
RNAs in a tissue-specifc manner.

Conclusion
In this study we demonstrate that the integration of 3D
chromatin interaction and co-expression analysis pro-

vides a powerful network analysis approach for in silico
functional analysis of both known and novel lncRNAs
involved in transcriptional regulation. The results pre-
sented here, in particular the detected regulatory modules
on the ChIA-PET interaction network, are an important
resource for further biological research.

Additional files

Additional file 1: This pdf includes supplementary tables and figures
referred to in the main text. This includes four additional figures, included
one showing several small connected components pointing to lncRNA
whose regulated genes are known from literature, as well as tables with
network properties of lncRNAs in the biggest connected components of
chromosomes 1, 11 and 17. (PDF 421 kb)

Additional file 2: In this excel file we provide the results from clustering
analysis of the biggest connected component of each chromosome, in
order to assist future experimental studies. For each component, we report
the results from those values of α and θ yielding the best partition
according to the MI ratio criteria. We report the clustering parameters, the
resulting MI ratio, the number of obtained modules per component, the
number of lncRNAs, protein-coding gene, as well as the overall number of
nodes for each component. Note when the genomic coordinates of a
gene and a lncRNA overlap, both the gene and the lncRNA name are
reported for the same node. Sheet 2 of this file contains the results of
GO/KEGG enrichment analysis for the modules of each chromosome’s
biggest component. (XLSX 25 kb)
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