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Abstract

With many genomes now sequenced, computational annotation methods to characterize genes
and proteins from their sequence are increasingly important. The BioSapiens Network has
developed tools to address all stages of this process, and here we review progress in the
automated prediction of protein function based on protein sequence and structure.

In the past, a protein’s structure was usually experimentally
determined after its biological role had been thoroughly
elucidated, and the structure was used as a framework to
explain known functional properties. This led to the view
that the reliable prediction of the structure of a protein from
its sequence would almost automatically provide infor-
mation about its function. The good news is that methods for
predicting structure from sequence can now produce good
models for a substantial fraction of the protein space [1]. But
the idea that knowledge of a protein’s structure is sufficient
for functional assignment has needed revision [2]. Many
proteins of known structure are not yet functionally charac-
terized and their number is increasing. The investigation of
sequence-function and structure-function relationships has
therefore become a fundamental necessity. Understanding
these relationships will be crucial for moving from an
inventory of protein parts to a more profound understanding
of the molecular machinery of organisms at a systems level.

This review describes progress in developing both sequence-
and structure-based methods for function prediction. There
are many current methods, which use a variety of different
approaches (Figure 1), and their integration is a major

challenge. One approach to this problem has been employed
by the BioSapiens Network [3] (see Box 1), of which we are
members, through which several new methods have been
developed and predictions integrated using the Distributed
Annotation System (DAS) [4] (see Box 1). DAS allows different
laboratories to ‘combine’ their annotations, produced by both
experimental and computational approaches, to generate a
‘composite’ annotation at all levels. A ‘protein sequence
ontology’ to facilitate comparison of the annotations has also
been developed (G Reeves, personal communication).

We will first focus on methods that attempt to extract
functional information from protein sequences, which
generally exploit the power of alignment and clustering, and
then discuss strategies that use protein structure information.
When an experimental three-dimensional (3D) structure is
not available, such methods can, in principle, be applied to
modeled structures, although the quality of the model will
dictate which methods can be applied (for a review, see [5]).
We will also briefly discuss tools that exploit interactions
between proteins as a means of inferring their function and
survey systematic assessments of the effectiveness of
function-prediction methods.
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Automated strategy for assigning function to proteins. The various approaches to protein function prediction are described in the text. Both protein
sequences and structures can provide information for family classification and functional inference. Sequence-based methods make use of different
strategies for grouping proteins into families (for example, sequence tree construction based on clustering of all against all sequence comparisons) or
they compare the target sequence with pre-compiled databases of families. When a structure is available, the whole structure can be scanned against
precompiled sets of functional sites. Alternatively, fragments of the target protein can be used to identify any structural similarities in the conformation of
proteins of known structure, possibly related to a molecular function. Both sequences and structures, together with protein-protein interaction data, can
be used to infer interactions, which can provide functional clues. Ideally, an independent set should be used to assess the reliability of the various

methods.

Sequence-based classification of proteins

The first hurdle for any functional annotation process is to
define ‘function’. If the protein is an enzyme, then simply using
the EC numbering scheme (see Box 1) can be useful. In general
however, the problem is multi-dimensional: a protein can have
a molecular function, a cellular role, and be part of a functional
complex or pathway (these are the distinctions used in the
Gene Ontology (GO; see Box 1) [6]). Furthermore, certain
aspects of molecular function can be illustrated by multiple
descriptive levels (for example, the coarse ‘enzyme’ category
versus a more specific ‘protease’ assignment). Even the more
detailed definition would not reveal the cellular role of the
protein (apoptosis, metabolism, blood coagulation, and so on).

Most function-prediction methods, both sequence and
structure based, rely on inferring relationships between
proteins that permit the transfer of functional annotations
and binding specificities from one to the other. A notable
challenge here is deciphering the connection between the
detected similarities (structural or in sequence) and the
actual level of functional relatedness. Function is often asso-
ciated with domains, and another problem is the
identification of functional domains from sequence alone.
The accuracy of current methods for predicting domain
boundaries is not yet completely satisfactory. Several
methods provide reliable predictions if a structural template
for the protein is available, but when this is not the case, one

is left with the problem of whether the experimental
annotation used for the inference refers to the same domain
for which the sequence similarity/motif is established [7].

The function of a protein can also be inferred from its
evolutionary relationship with proteins of known function,
provided that the relationship is properly inspected.
Orthologous proteins in different species most often share
function, but paralogy (that is, divergence following duplica-
tion of the original gene) does not guarantee common
function. Distinguishing between orthology and paralogy
can be attempted on the basis of observed sequence-similarity
patterns, by analyzing the specific conservation pattern of
residues responsible for function in the family, or on the basis
of the protein structure (either experimentally determined or
modeled). In all cases, this requires the clustering of proteins
into evolutionary families, which can be achieved using
similarity-detection tools such as BLAST [8] or profiling tools
based on multiple sequence alignments, for example, PSI-
BLAST [9]. Several available resources provide pre-compiled
family assignments for proteins on a genomic scale, based
only on their sequence. Resources can be subdivided into
those that consider full-length sequences and those based on
domains or motifs that map to certain sub-sequences. In
both cases, the degree of granularity of the classification is
important, as this is related to the level of functional features
that a group of proteins is expected to share.
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Box 1. Glossary of terms
Term Explanation

BioSapiens Network

Critical Assessment of

Techniques for Protein

Structure Prediction (CASP)
the results.

Distributed Annotation

Structural genomics

possible from one species.

A Network of Excellence funded by the European Union’s 6th Framework Programme,
and made up of bioinformatics researchers from 26 institutions in 14 countries
throughout Europe. It is a large-scale collaboration to annotate genomic data using both
informatics tools and input from experimentalists.

Community-wide experiments aimed at establishing the current state of the art in
protein-structure prediction by providing predictors with target protein sequences
whose structure is soon to be determined and setting up a system for blindly assessing

Communication protocol used to exchange biological annotations. Data distribution,
performed by DAS servers, is separated from the visualization, which is done by DAS

Numerical classification scheme for enzymes based on the chemical reaction they

Controlled vocabulary describing the function of a gene product in any organism. There
are three independent sets of vocabularies, or ontologies, that describe molecular
function of the gene product, the biological process in which it participates, and the

A statistical model in which the system being modeled is assumed to be a Markov
process with unknown parameters, and the task is to determine the hidden parameters

A gateway to various third-party programs/servers. It is used to collect predictions from

Database that stores the atomic coordinates of all experimentally determined protein

System (DAS)
clients.
EC number
catalyze.
Gene Ontology (GO)
cellular component where it can be found.
Hidden Markov model
from the observable ones.
Metaserver
various tools and present the combined results to the user.
Protein Data Bank (PDB)
structures.
Phyletic profile Pattern of species in which a protein is present or absent.

Projects aimed at determining the 3D structure of selected representatives of the protein
space. Most structural genomics projects aim at determining at least one experimental
structure for every protein sequence family, others explore the variability of specific
protein families, or attempt to determine the 3D structures of as many proteins as

A resource that classifies full-length proteins is PIRSF [10],
in which a set of rules is applied to define primary and
curated clusters that are also based on textual (protein
names, literature) and parent-child relationships. These
clusters (named superfamilies) are further divided into those
with full-length similarity (that is, common domain archi-
tecture) and those sharing an ancestral domain. PIRSF
covers more than two-thirds of the protein sequence space.

Studying proteins at a domain level allows more accurate
functional inference [11] and is useful for predicting the

function of novel domain combinations that possibly give rise
to new protein functions [12]. In this type of resource, a
family of domains is represented as a multiple sequence
alignment, which is embodied in a statistical family signature
profile (for example, CDD [13] and PROSITE [14]) or a
profile-hidden Markov model (for example, Pfam [15] and
SMART [16]), collectively referred to here as profiles. Pfam, a
prototype for such collections, currently contains more than
9,000 family profiles and covers roughly 70-74% of UniProt
sequences, capturing about half of their amino acids [17].
About 40-45% of Pfam families are associated with known
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structures, whereas 20-25% are currently uncharacterized.
Other resources, for example CDD, use externally defined
profiles to provide rapid assignments to sequence queries,
using a BLAST-like engine to speed up searches.

Profile-based methods and resources differ significantly in
their level of automation, their degree of manual curation,
and the level of independence from complementary resources
used in the classification. Combination of these resources
provides a more comprehensive coverage, as reflected by
InterPro [18], a repository of protein families integrating
signatures from more than 10 member resources, currently
covering nearly 75% of UniProt sequences. InterPro also
includes Gene3d [19] and SUPERFAMILY [20], which
provide sequence profiles corresponding to the structural
classification of folds by CATH [21] and SCOP [22],
respectively. A resource exploiting the multiplicity of essen-
tially complete genome sequences is COG (Clusters of Ortho-
logous Groups), an evolutionary classification that uses
comparative genomics principles, such as phyletic profiles
[23] (see Box 1), to identify the presence of orthologs, and
group them accordingly.

A notable shortcoming of the methods described above is
that they require definition of a threshold similarity for
separating families from each other. An alternative approach
to defining clusters is the construction of a tree represen-
tation that can provide a hierarchical view. Resources in this
category include ProtoNet [24], CluSTr [25] and SYSTERS
[26]. They are based on sequence similarities detected by an
all-against-all sequence comparison, so that any level of
evolutionary granularity can be inspected, from closely
related subfamilies to more distant relationships.

Approaches that do not rely solely on supervised annotation
of family profiles include ProDom [27], which collects
putative domain profiles using known sequence domains as
query sequences for iterative PSI-BLAST searches [9].
EVEREST [28] is a fully automatic unsupervised method
that identifies recurrent conserved regions on the basis of
local sequence similarities and iterative profile searches.

The accuracy of sequence-based methods is affected by the
type and amount of information on the specific protein
family but, overall, they seem to be reasonably accurate.
Their success rate has been shown to be greater than 70%
when tested on a limited dataset (all structures solved by the
Midwest Center for Structural Genomics during the first five
years of the Protein Structure Initiative) [29].

Structure-based methods

As homologous proteins evolve, their 3D structure often
remains more conserved than their sequence [30]. Conse-
quently, similarities in protein structure can be more reliable
than sequence similarities for grouping together distant
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homologs, which often retain some aspect of a common
biological function [31]. The two most comprehensive
structure-based family resources, CATH [21] and SCOP [22],
classify domains into evolutionary families and into coarser
structural classes. Although both resources use some
automated protocols, domain assignments are primarily
made by expert manual validation. CATH differs from SCOP
only in its use of structure-comparison algorithms (for
example, CATHEDRAL [32]) and of hidden Markov model-
based approaches to provide guidance to curators during
classification (see Box 1). Creating functional subfamilies
within superfamilies in CATH or SCOP not only permits the
analysis of functional divergence with respect to structure,
but can be used as a basis for structure-based function
prediction. SCOP provides a level below superfamily that
groups together closer homologs, often with more similar
functions, and work is currently under way to offer similar
information in CATH.

The first step in predicting function from structure is often
to use global structure comparison: that is, to compare a
query protein structure to domains in the structure data-
bases. Although not directly coupled to a curated domain-
family resource such as CATH and SCOP, other global
structure-comparison methods (for example, DALI [33],
MSDFold [34], VAST [35], CE [36], STRUCTAL [37] and
FATCAT [38]) can identify structural neighbors in the
Protein Data Bank (PDB) [39] (see Box 1), which may share
functional similarities. Regardless of the algorithm used, care
must be taken when transferring function from one protein to
another, as two proteins may have a similar fold yet different
functions (for example, the TIM-barrel scaffold).

Some algorithms exploit data on structural families to
improve function prediction. The GASP method [40] applies
a genetic algorithm to build templates made up of conserved
residues in a given family of structures, which are evaluated
on their ability to recognize other family members against a
background of SCOP domains, when scanned using SPASM
[41]. The DRESPAT [42] algorithm also identifies patterns
within a family of proteins. The resulting structural motifs
can be used to identify binding sites and to assign function to
new structures.

Global structure-comparison methods are a useful first step
for function assignment, but they do not discriminate
between conservation of the overall fold and of functionally
relevant regions of the protein. Other methods focus on
more localized regions that might be relevant to function,
such as clefts, pockets and surfaces. As the ligand-binding
site or active site is commonly situated in the largest cleft in
the protein [43], the identification and comparison of such
regions can suggest putative functions. SURFNET [44]
detects clefts by fitting spheres of a range of sizes between
the protein’s atoms and this approach has been enhanced by
combining SURFNet with ConSurf [45] to identify only clefts
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that are close to evolutionarily conserved residues, as
defined by the ConSurf-HSSP database [46]. Another surface-
comparison method, pvSOAR [47], identifies similar surface
patterns on the basis of geometrically defined pockets and
voids. This approach and the associated CASTp [48]
database have been used to create the Global Protein Surface
Survey (GPSS). Functionally relevant surfaces (binding
ligands, metals, DNA or peptide) are extracted through
generation of an exclusion contact surface obtained by
measuring the difference in solvent accessibility between a
structure with and without a neighboring molecule.

Other pocket-centric approaches use the physicochemical
properties of the local environments in the pockets and
surfaces to describe protein-ligand interactions and active-
site chemistry. For example, FEATURE [49] represents local
microenvironment using various physical and chemical
properties from atomic or chemical groups, from single
residues up to secondary structure. Similar approaches are
those of SiteEngine [50] and the recently released SURF’S
UP! service [51].

Other methods target specific active-site residues (such as
catalytic clusters and ligand-binding sites). These approaches
utilize a variety of template-based scans to identify active
sites and putative ligand-binding sites, the rationale being
that the 3D arrangement of enzyme active-site residues is
often more conserved than the overall fold. Templates can be
derived manually by mining the literature and assessing
which residues form the active site (for example, the
Catalytic Site Atlas [52]), or can be generated automatically,
as in PDBSiteScan [53,54], which uses the SITE records in
PDB files and protein-protein interaction data to generate its
templates. The Catalytic Site Atlas has been automatically
expanded to include homologs identified by PSI-BLAST [9]
and a new webserver (Catalytic Site Search) allows users to
query the database directly [55].

Conventional template-searching tools scan the structure of
the uncharacterized protein against a database of templates.
This idea has been turned on its head with the ‘reverse
template’ approach (initially developed as part of the
ProFunc server [56]), which fragments a query protein into
many putative templates and scans each of them against the
PDB to identify similarities. A stand-alone version, Tempura,
has recently been released at the European Bioinformatics
Institute [57]. A similar approach is used by the PINTS
(Patterns In Non-homologous Tertiary Structures) server
[58], which detects the largest common 3D arrangement of
residues between any two structures, the assumption being
that similar arrangements of residues might imply related-
ness of function. The latest addition to automatic template
generation uses the Evolutionary Trace (ET) approach [59].
ET uses phylogenetic trees to rank residues in a protein by
their evolutionary importance and maps these onto the
structure, the highest-ranking residues tending to cluster on
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the protein surface in functionally important sites. This
approach has been developed to build an automated
Evolutionary Trace Annotation (ETA) pipeline [60,61] to
identify functional sites, extract representative 3D templates
and search for relevant geometric matches in other
structures. Other template-centric approaches include Fuzzy
Functional Forms (FFFs) [62] and SPASM/RIGOR [41].

Each method has its pros and cons and no single method is
always successful. As a result, metaservers (see Box 1) have
been developed that aim to combine many services to
provide a consensus view that can often help researchers to
identify the most likely functional predictions. The ProFunc
server [56] is one such resource. It utilizes many of the
previously described sequence-based and structure-based
methods to present a summary of the most likely functions,
represented by GO terms, in an intuitive and well linked web
interface. A detailed benchmarking of ProFunc on structural
genomics targets showed that, for the most successful
methods, functional clues could be derived for approxi-
mately 60% of target proteins, of which about 70% were
confidently predicted [29].

Another metaserver, ProKnow [63], also combines infor-
mation from sequence and structural approaches, including
fold similarity (DALI [33]) and templates (RIGOR [41]),
with functional links taken from the DIP database of protein
interactions [64]. The ProKnow authors quantified the level
of the assigned function by the ontology depth (from 1 =
general to 9 = specific) and showed that they can reach 89%
correct assignments at ontology depth 1 and 40% at depth o,
with 93% coverage of 1,507 distinct folded proteins.

Finally, although technically not a structure-based approach,
JAFA (Joined Assembly of Function Annotations) [65], is a
metaserver that queries several function-prediction servers
with a protein sequence to return a summary of predicted
GO terms.

Protein interactions

Protein interactions provide a natural context for describing
how these molecules catalyze metabolic reactions, build
molecular machines and transmit cellular signals. The
availability of high-throughput interaction data has enabled
the ‘guilt by association’ principle to be applied to
elucidating protein function. The exploitation of observed or
predicted physical interactions to assign function is,
however, complicated not only by the generally low quality
of high-throughput data [66] and the sparseness of reliable
interaction datasets derived from literature [67], but also by
the sheer size of the problem. Recent estimates indicate that
around 50,000 interactions may exist in yeast and more
than 300,000 in human [68]. From the available 3D
structures of protein complexes, the existence of around
10,000 distinct interaction types, defined by the particular
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mutual arrangement of their constituent subunits, has been
proposed [69].

The vast variety of molecular interactions can, however, be
reduced to a limited number of recurrent domain-inter-
action types. The domain composition of a protein can thus
give functional clues. The iPfam [70] and 3did [71] databases
provide pre-computed structural information about
interactions for Pfam domains. When no 3D structure is
available, domain interactions can be inferred: by identifying
domain pairs that are significantly overrepresented in inter-
acting proteins [72]; by coevolutionary analysis; by identi-
fying correlated mutations that preserve favorable physico-
chemical properties of putative interaction interfaces [73];
or by detecting correlated phylogenetic distributions due to
coevolution [74]. A correlated whole-genome phylogenetic
distribution of different domains could also indicate that they
interact with each other directly or at least share a functional
role. Two new web resources - DIMA [75] and DOMINE [76]
- integrate predicted and known domain interactions into
comprehensive domain-interaction networks.

Blind evaluations

The well established Critical Assessment of Techniques for
Protein Structure Prediction (CASP) project [1,77] (see Box 1)
has set up an additional function-prediction category. This is
inherently different from the CASP structure-prediction
categories, because at the end of the experiment the function
of the target protein is likely to remain unknown.
Nevertheless, the community concurred that the effort was
justified because of its importance. The results of the first run
were rather disappointing [78]: only a few groups
participated in the challenge; 3D-structure predictions were
rarely used for function prediction; and assessment
procedure was too complex. Notably, however, the function
predictions submitted by the different groups often agreed,
and a ‘consensus prediction’ could be derived. A reassess-
ment of the experiment after more experimental evidence
had accumulated [79] revealed that a consensus prediction
could reach as high as 80% accuracy, although the sample
was too small to substantiate the significance of this finding.

CASP has fostered the development of many other experi-
ments, such as AFP [80], BioCreative [81], GeneFun [82]
and MouseFunc [83], that exploit a range of predictive
methods to make functional annotations. Most computa-
tional methods participating in the AFP experiment to
identify ligand-binding sites relied on the use of sequence
and structural information from related proteins, and fell
into the broad categories described above [80]. Only rarely
did predictors attempt to identify ligand-binding sites de
novo. In the second edition of the AFP experiment, in 2007,
some novel ideas were explored, such as the potential
contribution of protein disorder, and a systems-level
analysis of pathways.
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Regretfully, the lack of independent test sets for testing blind
predictions prevents proper assessment of the strengths and
caveats of individual methods. This general issue should
concern the whole biological community. It will be difficult to
improve function-prediction methods without reliable test sets
and a good way to overcome this problem has yet to be found.

In summary, function prediction remains a challenge. Ab
initio prediction (that is, not based on annotation transfer)
usually provides very limited, if any, clues. Evolutionary
relationships, though complicated by the ortholog/paralog
dichotomy, are by far the strongest predictors and the next
few years will see increasingly sophisticated methods for
deciphering their functional meaning. Molecular biology is
moving to a more holistic view of biological processes and
this requires better integration of different types of data.
Elucidating function needs the combination of information
from genomes, sequences, transcription patterns and genetic
variation, as well as the results of prediction algorithms.
Community approaches will ultimately empower discovery-
oriented biology and, in turn, improve its translation to
medicine and the environment.
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