Vol. 188, No. 6 DOI: 10.1093/aje/kwz028 Advance Access publication: February 19, 2019

Study Design

The Consortium of Metabolomics Studies (COMETS): Metabolomics in 47 Prospective Cohort Studies

Bing Yu, Krista A. Zanetti, Marinella Temprosa, Demetrius Albanes, Nathan Appel, Clara Barrios Barrera, Yoav Ben-Shlomo, Eric Boerwinkle, Juan P. Casas, Clary Clish, Caroline Dale, Abbas Dehghan, Andriy Derkach, A. Heather Eliassen, Paul Elliott, Eoin Fahy, Christian Gieger, Marc J. Gunter, Sei Harada, Tamara Harris, et al.*,‡

Initially submitted September 5, 2018; accepted for publication January 29, 2019.

The Consortium of Metabolomics Studies (COMETS) was established in 2014 to facilitate large-scale collaborative research on the human metabolome and its relationship with disease etiology, diagnosis, and prognosis. COMETS comprises 47 cohorts from Asia, Europe, North America, and South America that together include more than 136,000 participants with blood metabolomics data on samples collected from 1985 to 2017. Metabolomics data were provided by 17 different platforms, with the most frequently used labs being Metabolon, Inc. (14 cohorts), the Broad Institute (15 cohorts), and Nightingale Health (11 cohorts). Participants have been followed for a median of 23 years for health outcomes including death, cancer, cardiovascular disease, diabetes, and others; many of the studies are ongoing. Available exposure-related data include common clinical measurements and behavioral factors, as well as genome-wide genotype data. Two feasibility studies were conducted to evaluate the comparability of metabolomics platforms used by COMETS cohorts. The first study showed that the overlap between any 2 different laboratories ranged from 6 to 121 metabolites at 5 leading laboratories. The second study showed that the median Spearman correlation comparing 111 overlapping metabolites captured by Metabolon and the Broad Institute was 0.79 (interquartile range, 0.56–0.89).

cancer; cohort; diabetes; genetics; heart disease; metabolomics; prospective

Abbreviations: COMETS, Consortium of Metabolomics Studies; EDTA, ethylenediaminetetraacetic acid; HMDB, Human Metabolome Database; MS, mass spectrometry.

Metabolomics is the systematic study of the small molecule constituents of a biological system, typically involving the measurement of hundreds to thousands of metabolites. Metabolomics analyses currently employ a variety of platforms and analytical technologies, none of which measure all metabolites. Recently, metabolomics platforms have improved remarkably in sensitivity and metabolite coverage, leading many researchers, including epidemiologists, to take increased interest in this research area. Metabolomics studies have led to the discovery of new metabolic aspects of complex chronic diseases such as diabetes (1–4), cardiovascular disease (5–7), renal disease (8), and cancer (9–13),

and have yielded new insights into the genome (14–20). Metabolomics studies have also identified biomarkers of blood pressure (21), obesity (22–24), diet and nutrition (25–35), physical activity/sedentary behavior (36), reproductive factors (37, 38), and pharmacological therapies (39).

These studies provided important insights about the human metabolome, but because metabolomics is expensive (\$200–\$300 per sample), they have been small (e.g., <1,000 participants) and with limited demographic and/or socioeconomic diversity. One means to address these issues is to aggregate data sets and resources within a metabolomics consortium. Such a consortium

^{*} Correspondence to Dr. Steven C. Moore, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850 (e-mail: moorest@mail.nih.gov).

[‡]For the complete author list, please see the Acknowledgments.

could rapidly attain large sample sizes and increase demographic and geographical diversity. In addition, a consortium can pool expertise from multiple disciplines—such as metabolomics, chemistry, epidemiology, bioinformatics, computational biology, and biostatistics—to improve the conduct of such research.

We describe herein the development of such a consortium, the Consortium of Metabolomics Studies (COMETS) (40). The objectives of this report are to introduce COMETS to the research community at large and describe its participant characteristics, metabolomics assays, and available questionnaire/clinical data. In addition, we describe 2 feasibility studies: 1) a study that enumerates the metabolites measured by 5 leading platforms and establishes their overlap; and 2) a study that compares blood metabolite levels obtained by 2 leading platforms when tested on split samples.

METHODS

Design of the COMETS consortium

The COMETS consortium was initiated at the "Think Tank on Metabolomics and Prospective Cohorts" (October 28–29, 2014, in Rockville, Maryland), which was supported and convened by the US National Cancer Institute. Invitees were identified by searching the literature (including hand search of citations) for cohort studies with blood metabolomics data (identified metabolites only) and through discussions with invitees to determine whether we missed key cohorts or investigators. In total, 34 investigators representing 23 prospective cohorts and 2 existing research consortia attended and ultimately agreed to initiate the COMETS consortium.

COMETS includes prospective cohort studies that meet 2 criteria: 1) the cohort includes ≥100 participants with metabolites of known chemical identity measured in blood (plasma or serum) using mass spectrometry (MS), nuclear magnetic resonance spectroscopy, or other multianalyte analytical technology (e.g., coularray); and 2) cohort participants are followed after blood collection for outcomes (e.g., mortality, cardiovascular disease, diabetes, and/or cancer).

COMETS has employed a rolling enrollment and, as of April 2018, included 47 prospective cohorts from Asia, Europe, North America, and South America (Figure 1, Web Table 1, available at https://academic.oup.com/aje). Participants in these cohort studies were recruited for varying purposes and from different source populations, as follows: 1) 8 cohorts initiated as randomized clinical trials (41–49); 2) 16 cohorts that were populationbased or representative of a given geographical area (4, 18, 36, 50–65); 3) 3 cohorts consisting of volunteers from defined geographical areas (66–68); 4) 6 cohorts recruited from participants with colorectal cancer (69), cardiovascular disease (70), diabetes (71, 72) or families of persons with these diseases (73, 74); 5) 1 study of participants with human immunodeficiency virus or at high risk of human immunodeficiency virus (75, 76); 6) 4 cohorts recruited from specific occupational groups (77–79); 7) 6 cohorts—including 2 of the randomized clinical trials above—that recruited pregnant mothers and/or their recently born children (42, 46, 80–83); and, 8) 4 cohorts based on other participant factors, namely elderly participants, including 1 of the studies above (54, 84), twins (85), and Mexican-Americans residing in Houston, Texas (86).

COMETS research projects are initiated when interested investigators submit a formal proposal describing the aims, outcomes, exposures, covariates, and analytical approach of

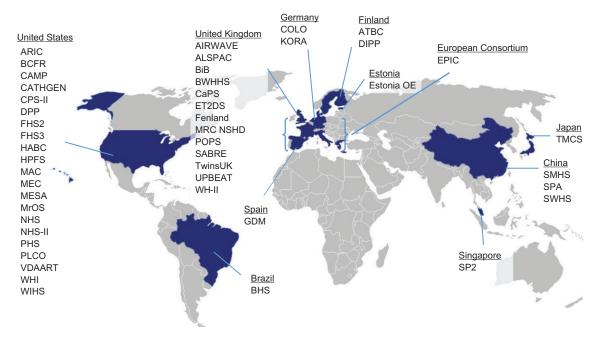


Figure 1. Geographical locations of studies participating in the Consortium of Metabolomics Studies, multiple countries, established in 2014 (abbreviations are defined in Table 1).

Table 1. Participating Studies and the Number of Participants with Metabolomics Data, Consortium of Metabolomics Studies, Multiple Countries, Established in 2014

First Author, Year (Reference No.)	Study Name ^a	Study Abbreviation	Region	Baseline Examination Date ^b	Latest Follow-up Year	No. With Metabolomics Data ^c
Elliott, 2014 (79)	Airwave Health Monitoring Study	AIRWAVE	Europe	2004	Ongoing	4,000
The ATBC cancer prevention study group, 1994 (41)	Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study	ATBC	Europe	1985–1988	Ongoing	950
The ARIC investigators, 1989 (50)	Atherosclerosis Risk in Communities Study	ARIC	North America	1987–1989	Ongoing	4,032
Boyd, 2013 (82)	Avon Longitudinal Study of Parents and Children	ALSPAC	Europe	1990–1993	Ongoing	4,572 mothers 7,176 offspring
de Oliveira, 2008 (74)	Baependi Heart Study	BHS	South America	2010–2013	Ongoing	939
Wright, 2013 (80)	Born in Bradford	BiB	Europe	2007–2011	Ongoing	10,000 mothers
John, 2004 (73)	Breast Cancer Family Registry	BCFR	North America	1995	2017	100
Dale, 2013 (57)	British Women's Heart and Health Study	BWHHS	Europe	1999–2001	Ongoing	3,780
Bainton, 1992 (58)	Caerphilly Prospective Study	CaPS	Europe	1989–1993	Ongoing	1,230
Calle, 2002 (66)	Cancer Prevention Study II	CPS-II	North America	1992–1993	Ongoing	2,266
Kraus, 2015 (70)	Catheterization Genetics	CATHGEN	North America	2001–2010	Ongoing	3,869
Childhood Asthma Management Program Research Group, 1999 (42)	Childhood Asthma Management Program	CAMP	North America	1991	1999	1,041
Liesenfeld, 2015 (69)	ColoCare	COLO	Europe and North America	d 2010–2017	Ongoing	359
Illig, 2010 (18)	Cooperative Health Research in the Region of Augsburg	KORA	Europe	1986	2009	3,000
Oresic, 2008 (48)	Diabetes Prediction and Prevention Birth Cohort	DIPP	Europe	1994–2017	Ongoing	534
Diabetes Prevention Program Research Group, 2015 (43)	Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study	DPP	North America	1996–1999	Ongoing	2,015
Price, 2008 (71)	Edinburgh Type 2 Diabetes Study	ET2DS	Europe	2006–2007	Ongoing	1,060
Leitsalu, 2015 (63)	Estonia Biobank Obesity Extremes	Estonia OE	Europe	2003–2010	Ongoing	298
Riboli, 2002 (67)	European Prospective Investigation into Cancer and Nutrition	EPIC	Europe	1992–2000	Ongoing	15,000
Clifton, 2017 (51)	Fenland Study	Fenland	Europe	2005/2015	Ongoing	10,555
Kannel, 1979, and Tsao, 2015 (64, 65)	Framingham Heart Study, Generation 2	FHS2	North America	1971	Ongoing	2,526
Kannel, 1979, and Tsao, 2015 (64, 65)	Framingham Heart Study, Generation 3	FHS3	North America	2002	Ongoing	998
Barrios, 2018 (72)	GenodiabMar	GDM	Europe	2012–2014	Ongoing	656
Murphy, 2017 (84)	Health, Aging and Body Composition	HABC	North America	1997–1998	Ongoing	319
Wilson, 2011 (77)	Health Professionals Follow-up Study	HPFS	North America	1993–1995	Ongoing	1,059
Chow, 2017 (86)	Mano A Mano, the Mexican American Cohort	MAC	North America	2001–2017	Ongoing	300
Kuh, 2011 (60)	MRC National Survey of Health and Development	MRC NSHD	Europe	2006–2010	Ongoing	1,790
Orwoll, 2005, and Blank, 2005 (54, 104)	Osteoporotic Fractures in Men	MrOS	North America	2000–2002	Ongoing	1,400
Kolonel, 2000 (52)	Multiethnic Cohort	MEC	North America	1993–1996	Ongoing	5,436

Table 1. Continued

First Author, Year (Reference No.)	Study Name ^a	Study Abbreviation	Region	Baseline Examination Date ^b	Latest Follow-up Year	No. With Metabolomics Data ^c
Bild, 2002 (53)	Multi-ethnic Study of Atherosclerosis	MESA	North America	2000–2002	Ongoing	3,831
Colditz, 2005 (78)	Nurses' Health Study	NHS	North America	1989–1990	Ongoing	1,200
Colditz, 2005 (78)	Nurses' Health Study II	NHS-II	North America	1996–1999	Ongoing	693
Gaziano, 2012 (44)	Physicians' Health Study	PHS	North America	1982–1984	Ongoing	224
Pasupathy, 2008 (81)	Pregnancy Outcome Prediction study	POPS	Europe	2008–2012	Ongoing	923
Prorok, 2000 (45)	Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial	PLCO	North America	1993–2001	Ongoing	1,742
Shu, 2015 (55)	Shanghai Men's Health Study	SMHS	Asia	1987–2000	Ongoing	1,006
Xiao, 2016 (36)	Shanghai Physical Activity Study	SPA	Asia	2005–2007	Ongoing	339
Yu, 2016 (4)	Shanghai Women's Health Study	SWHS	Asia	2001-2006	Ongoing	1,990
Nang, 2009 (62)	Singapore Prospective Study Program	SP2	Asia	2004–2007	2016	2,334
Tillin, 2012 (59)	Southall and Brent Revisited	SABRE	Europe	1988-1990	Ongoing	3,304
Harada, 2016 (68)	Tsuruoka Metabolomics Cohort Study	TMCS	Asia	2012–2015	Ongoing	10,957
Moayyeri, 2013 (85)	Twins United Kingdom	TwinsUK	Europe	1992	Ongoing	7,234
Briley, 2014 (49)	UK Pregnancies Better Eating and Activity Trial	UPBEAT	Europe	2009	2012–2013	1,303
Litonjua, 2014 (46)	Vitamin D Antenatal Asthma Reduction Trial	VDAART	North America	2009–2011	Ongoing	651
Marmot, 2005 (61)	Whitehall II	WH-II	Europe	1997–1999	Ongoing	4,762
Cheng, 2015, and Miller, 2013 (47, 105)	Women's Health Initiative	WHI	North America	1993–1998	Ongoing	2,706
Bacon, 2005, and Qi, 2018 (75, 76)	Women's Interagency HIV Study	WIHS	North America	2004–2005	Ongoing	411

^a Studies are listed in alphabetical order by full study name.

a proposed study. If the COMETS Steering Committee approves the proposal, it is forwarded to cohort representatives who can then opt in for analysis. These projects will cover a wide scope of topics and require diverse analytical strategies. Initially, however, we will focus on meta-analyses conducted through aggregate results sharing (i.e., each cohort will evaluate metabolite-outcome associations individually and send results centrally for meta-analysis). In addition to producing meta-analysis effect estimates, we will evaluate heterogeneity by study, platform, and participant characteristics (e.g., gender, race, age), and we will account for participant sampling (e.g., selection of twins or case-control risk sets) through mixed-effects modeling.

Survey

We ascertained cohort data by e-mailing a survey to each cohort's representative asking about participant characteristics, metabolomics measurements, and measurements from questionnaires or clinical assessments. All cohorts completed the survey. Missing results on the survey led to a recontact and/or telephone call until all items were complete. For determining eligibility, follow-up for disease outcomes was confirmed by literature search. Cohort representatives verified cohort details prior to submission.

Feasibility studies

One key challenge in COMETS is that different cohorts used different metabolomics platforms, and these platforms vary in which metabolites they measure. A second key challenge is that platforms might measure metabolites dissimilarly (i.e., the relative concentrations might differ), ultimately leading to heterogeneous study-specific estimates and attenuation of overall meta-analysis estimates. To better understand platform comparability and its implications for future COMETS

^b Baseline for the assessment of metabolomics. This is the time period for which a blood sample was used to generate the metabolomic data but might not have been the first assessment of the cohort.

^c In some studies, metabolomics data are available at multiple time points on the same individuals. For these studies, we report details at the earliest time point for which data are available.

Table 2. Descriptive Characteristics of Participants With Metabolomics Data Available, Consortium of Metabolomics Studies, Multiple Countries, Established in 2014^a

Study	Median Age in Years at Blood Collection (Range)	No. of Women (n = 81,965)	No. of Men (n = 54,905)	No. With European Ancestry (n = 95,966)	No. With African Ancestry (n = 7,898)	No. With Asian Ancestry (n = 24,165)	No. With Othe Ancestry (n = 8,841)
AIRWAVE	42 (19–65)	1,497	2,503	3,835	29	0	136
ATBC	57 (50–69)	0	950	950	0	0	0
ARIC	53 (44–66)	2,420	1,612	1,553	2,479	0	0
ALSPAC (mothers)	48 (45–51)	4,572	0	4,141	31	34	366
ALSPAC (offspring)	14 (8–18)	3,732	3,444	6,315	50	51	760
BHS	45 (18–90)	557	382	0	0	0	939
BiB	27 (15–40)	10,000	0	4,200	220	5,170	410
BCFR	52 (26–80)	100	0	100	0	0	0
BWHHS	69 (67–71)	3,780	0	3,780	0	0	0
CaPS	57 (45–59)	0	1,230	1,230	0	0	0
CPS-II	68 (53–83)	1,710	556	2,225	17	0	24
CATHGEN	60 (21–94)	1,577	2,292	2,755	802	0	312
CAMP	9 (5–13)	420	621	711	138	0	192
COLO	63 (51–75)	143	216	359	0	0	0
KORA	56 (25–74)	1,500	1,500	3,000	0	0	0
DIPP	0 (0–15)	294	240	534	0	0	0
DPP	52 (25–85)	1,336	679	1,158	376	0	481
ET2DS	68 (60–75)	530	530	1,060	0	0	0
Estonia OE	39 (20-64)	149	149	298	0	0	0
EPIC	58 (45-80)	7,000	8,000	15,000	0	0	0
enland	45 (30–60)	4,905	5,650	10,555	0	0	0
FHS2	55 (26-84)	1,320	1,206	2,526	0	0	0
FHS3	41 (19–72)	529	469	998	0	0	0
GDM	66 (44–94)	257	399	656	0	0	0
HABC	74 (70–79)	0	319	0	319	0	0
HPFS	52 (40-75)	0	1,059	1,006	32	0	21
ИAC	38 (20–72)	300	0	0	0	0	300
MRC NSHD	53 (53)	895	895	1,790	0	0	0
MrOS	74 (65–100)	0	1,400	1,321	24	0	55
ИEC	68 (47–86)	3,579	1,857	1,066	915	1,748	1,707
ИESA	63 (44–84)	1,933	1,898	1,482	934	536	879
NHS	56 (43–69)	1,200	0	1,164	30	0	6
NHS-II	43 (32–54)	693	0	658	21	0	14
PHS	54 (40–85)	0	224	224	0	0	0
POPS	30 (16–48)	923	0	923	0	0	0
PLCO	65 (55–74)	1,492	250	1,700	42	0	0
SMHS	56 (40–75)	0	1,006	0	0	1,006	0
SPA	60 (40–74)	200	139	0	0	339	0
SWHS	56 (40–71)	1,990	0	0	0	1,990	0
SP2	47 (24–79)	1,247	1,087	0	0	2,334	0
SABRE	52 (40–70)	467	2,837	1,572	192	0	1,540
rmcs	62 (34–75)	5,844	5,113	0	0	10,957	0
TwinsUK	50 (16–82)	6,531	703	7,065	69	0	100
JPBEAT	31 (31)	1,303	0	820	311	0	172

Table 2. Continued

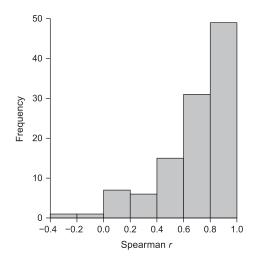
Study	Median Age in Years at Blood Collection (Range)	No. of Women (n = 81,965)	No. of Men (n = 54,905)	No. With European Ancestry (n = 95,966)	No. With African Ancestry (n = 7,898)	No. With Asian Ancestry (n = 24,165)	No. With Other Ancestry (n = 8,841)
VDAART	1 (1)	304	347	211	315	0	125
WH-II	65 (50–79)	1,619	3,143	4,762	0	0	0
WHI	68 (62–72)	2,706	0	2,235	295	0	176
WIHS	42 (38–47)	411	0	28	257	0	126

^a Descriptive data are provided specifically for participants as of the date of blood sample collection. Number of participants in each study and definition of all study abbreviations are shown in Table 1.

projects, we conducted 2 feasibility studies in which we: 1) assessed metabolite overlap for 5 widely used metabolomics platforms; and 2) compared the metabolite values measured by the 2 most widely used metabolomics platforms (Broad Institute, Cambridge, Massachusetts; and Metabolon, Inc., Morrisville, North Carolina) when tested on split samples.

Assessment of metabolite overlap for 5 widely used metabolomics platforms

Currently, no single platform comprehensively assays all metabolites in blood; instead, platforms use customized instrumentation and sample extraction protocols to optimize measurement of broad classes of metabolites. Consequently, different platforms measure different metabolites. The extent of platform overlap, however, has not been systematically evaluated. Most likely, this reflects the difficulty in collating hundreds to thousands of metabolite names in a field that still lacks a standardized nomenclature.


To assess overlap, we collected metabolite names from volunteer COMETS cohorts that used one of 5 metabolomics platforms (Metabolon, Broad Institute, Biocrates (Innsbruck, Austria), the West Coast Metabolomics Center (Davis, California), and Nightingale Health (Helsinki, Finland)). We also collected relevant metadata provided by these labs, especially unique identifiers from online metabolite databases such as the Human Metabolome Database (HMDB) (87), Pubchem (88), or Chemspider (89). We used these identifiers and metabolite names to link metabolite identities from different labs. Metabolites with multiple isomers, such as D- and L-glutamate, were adjudicated using International Chemical Identifier (InChIKey) values, if available, or (as a last resort) original reported names. The final product was a table that cross-references metabolites assessed by each cohort and is easily queried to show metabolite overlap for any given combination of cohorts.

Comparing blood metabolite levels between 2 metabolomics platforms

Few studies have examined the comparability of metabolite measurements across different metabolomics platforms when tested against split samples. To our knowledge, only 2 platforms used by COMETS cohorts (Metabolon and Biocrates) have had their metabolomics measurements compared against one another this way. These 2 platforms had 40 overlapping metabolites and

moderately intercorrelated metabolites values (median correlation of approximately 0.5) (90, 91).

To expand our understanding of platform comparability, we sent split samples from the Health, Aging and Body Composition (HABC) cohort (84) to both Metabolon and the Broad Institute. In brief, each study participant had multiple vials of ethylenediaminetetraacetic acid (EDTA) plasma aliquoted during initial blood collection and stored at -80°C. We sent never-thawed aliquots from 40 African-American men participating in Health, Aging and Body Composition to Metabolon for analysis on its Orbitrap Elite liquid chromatography MS platform (positive and negative ion mode) and gas chromatography MS. We also sent identically prepared aliquots from these men to the Broad Institute for analysis on its MS platforms (C8-positive ultra performance liquid chromatography MS, hydrophilic interaction ultra performance liquid chromatography positive ion mode MS, and hydrophilic interaction ultra performance liquid chromatography negative ion mode MS). From Metabolon, we received data on 610 named metabolites, and from the Broad Institute, we received data on 347 named metabolites. We linked metabolite names across platforms using the HMDB identifiers, which Metabolon provided

Figure 2. Spearman correlations between metabolite values measured at the Broad Institute and Metabolon, Inc., for 111 overlapping metabolites, Consortium of Metabolomics Studies, multiple countries, established in 2014. Each bar represents the number of metabolites within the Spearman correlation interval denoted by the *x*-axis tick marks. The median correlation across the 111 metabolites was 0.79.

Table 3. Blood Samples and Laboratories Used for Metabolomics, Consortium of Metabolomics Studies, Multiple Countries, Established in 2014^a

Study	Type of Blood Specimen	Year of Blood Collection ^b	Fasted Status	Laboratory Used ^c	Analytical Technology
AIRWAVE	Serum + EDTA plasma	Baseline	Nonfasted	Metabolon, Inc., ICL NPC	LC-MS, NMR
ATBC	Serum	Baseline	Fasted	Metabolon, Inc.	GC-MS, LC- MS
ARIC	Serum	Baseline	Fasted	Metabolon, Inc.	GC-MS, LC- MS
ALSPAC	Serum	Baseline	Mostly Fasted (offspring at age 7 years nonfasted)	Nightingale Health	NMR
BHS	Serum	Baseline	Fasted	Agilent COE	GC-MS
BiB	Serum + EDTA plasma	2007–2010	Fasted	Nightingale Health	NMR
BCFR	EDTA plasma	Baseline	Nonfasted	Metabolon, Inc.	LC-MS
BWHHS	Serum	1999-2001	Fasted	Nightingale Health	NMR
CaPS	Serum	1989-1993	Fasted	Nightingale Health	NMR
CPS-II	Serum + EDTA Plasma	1998–2001	Nonfasted	Metabolon, Inc.	LC-MS
CATHGEN	EDTA plasma	Baseline	Fasted	Duke University	GC-MS, LC- MS
CAMP	Serum	Baseline	Nonfasted	Broad Institute	LC-MS
COLO	EDTA plasma	Baseline	Fasted + nonfasted	IARC, WCMC	GC-MS, LC- MS
KORA	Serum	Baseline	Fasted + nonfasted	Metabolon, Inc., Biocrates	GC-MS, LC- MS
DIPP	Serum + EDTA plasma	Baseline	Nonfasted	Örebro University	GC-MS, LC- MS
DPP	EDTA plasma	Baseline	Fasted	Broad Institute, Mass. General	LC-MS
ET2DS	Serum	Baseline	Fasted	Nightingale Health	NMR
Estonia OE	EDTA plasma	Baseline	Fasted + nonfasted	Broad Institute	LC-MS
EPIC	Serum + citrated plasma	Baseline	Fasted + nonfasted	IARC	LC-MS
Fenland	Heparin plasma	Baseline	Fasted	Biocrates	LC-MS
FHS2	EDTA plasma	1991–1995	Fasted	Broad Institute	LC-MS
FHS3	EDTA plasma	2002-2005	Fasted	Broad Institute	LC-MS
GDM	Serum	Baseline	Fasted	Nightingale Health	NMR
HABC	EDTA plasma	1999–2000	Fasted	Broad Institute	LC-MS
HPFS	EDTA plasma	1993–1995	Fasted + nonfasted	Broad Institute	LC-MS
MAC	EDTA plasma	Baseline	Nonfasted	Fred Hutch	LC-MS, NMR
MRC NSHD	Serum	2006–2010	Fasted + nonfasted	Nightingale Health	NMR
MrOS	Serum	Baseline	Fasted	Pacific Northwest National Labs, WCMC	GC-MS, LC- MS
MEC	Heparin plasma	1994–2016	Fasted	Brigham and Women's Hospital	Coularray
MESA	EDTA plasma	Baseline	Fasted	ICL NPC	LC-MS, NMR
NHS	Heparin plasma	1989–1990	Fasted + nonfasted	Broad Institute	LC-MS
NHS-II	Heparin plasma	1996–1999	Fasted + nonfasted	Broad Institute	LC-MS
PHS	EDTA plasma	Baseline	Fasted + nonfasted	Broad Institute	LC-MS
POPS	Serum	Baseline	Nonfasted	Metabolon, Inc.	LC-MS
PLCO	Serum	Baseline	Nonfasted	Metabolon, Inc., Broad Institute, Mass. General	GC-MS, LC- MS

Table 3. Continued

Study	Type of Blood Specimen	Year of Blood Collection ^b	Fasted Status	Laboratory Used ^c	Analytical Technology
SMHS	EDTA plasma	Baseline	Fasted + nonfasted	Metabolon, Inc., Broad Institute, Metabo-Profile R&D Lab	GC-MS, LC- MS
SPA	EDTA plasma	Baseline	Fasted + nonfasted	Metabolon, Inc.	GC-MS, LC- MS
SWHS	EDTA plasma	Baseline	Fasted + nonfasted	Metabolon, Inc., Broad Institute, Metabo-Profile R&D Lab	GC-MS, LC- MS
SP2	EDTA plasma	Baseline	Fasted	Duke-NUS, NUS SLING	GC-MS, LC- MS
SABRE	Serum	1988–1990	Fasted + nonfasted (post OGTT)	Nightingale Health	NMR
TMCS	Serum + EDTA plasma	Baseline	Fasted	Keio University	CE-MS, LC- MS
TwinsUK	Serum + EDTA plasma	1995–2013	Fasted	Metabolon, Inc., Biocrates, Nightingale Health	GC-MS, LC- MS, NMR
UPBEAT	Serum + EDTA plasma	2009–2013	Nonfasted	Nightingale Health	NMR
VDAART	EDTA plasma	Baseline	Nonfasted	Metabolon, Inc.	LC-MS
WH-II	Serum	1997–1999	Fasted + nonfasted	Nightingale Health	NMR
WHI	EDTA plasma	Baseline	Fasted	Broad Institute, Metabolon, Inc.	LC-MS
WIHS	Citrated plasma	Baseline	Fasted	Broad Institute	LC-MS

Abbreviations: CE-MS, capillary electrophoresis—mass spectrometry; EDTA, ethylenediaminetetraacetic acid; GC-MS, gas chromatography—mass spectrometry; LC-MS, liquid chromatography—mass spectrometry; NMR, nuclear magnetic resonance; OGTT, oral glucose tolerance test.

for 385 of its metabolites and the Broad Institute provided for 332 of its metabolites. To ascertain other potential overlapping metabolites, we separately evaluated all pairwise correlations across platforms and flagged metabolite pairs with high correlations (i.e., Spearman correlation \geq 0.7). More complete details on study participants, sample extractions, and instrumentation are provided in Web Appendix 1.

RESULTS

In total, the 47 cohorts included 136,870 participants with blood metabolomics measurements (Table 1), with numbers still likely to grow further. For most cohorts, participant enrollment and blood sample collection occurred during the 1990s, although some cohorts collected samples earlier (e.g., the Nurses' Health Study in 1989) (78). Follow-up for disease outcomes is still ongoing for nearly all studies.

Selected baseline characteristics of participants of each cohort are summarized in Table 2. Of the 136,870 participants with metabolome profiles, 81,965 (59.9%) were women. The distribution of different groups of ethnic ancestry was 70.1% European, 17.6% Asian (13.7% East Asian and 3.9% South Asian), 5.8% African, 1.8% Hispanic, 0.5% Native Hawaiian, and 4.1% other mixed population. Study participants ranged from 0 (newborn) to 100 years of age at the time of blood collection, with a median age of 51 years.

COMETS cohorts use both active and passive follow-up methods to track participants longitudinally for disease outcomes such as diabetes mellitus, heart disease, and cancer (Web Table 2). Forty-six of 47 COMETS cohorts use active follow-up methods, including tracking outcomes through mailed questionnaires, phone calls, or during follow-up visits. For active follow-up methods, each cohort further verifies outcomes through medical record review. Thirty-four of the 47 cohorts also use passive follow-up methods, such as linkages to electronic health records

^a Number of participants in each study and definitions of the study abbreviations are shown in Table 1.

^b For those studies with metabolomics data at multiple time points on the same individuals, we report details at the earliest time point for which data are available.

c Details on metabolomics platforms are as follows: Agilent COE refers to the Agilent Center of Excellence, Brazil (106); Biocrates refers to commercial AbsoluteIDQtm kits sold by Biocrates Life Sciences AG (Innsbruck, Austria) used by various academic laboratories (107); Brigham and Women's Hospital refers to the laboratory of Bruce Kristal (108); Broad Institute refers to the lab of Clary Clish (9); Duke University refers to the Duke Molecular Physiology Institute Metabolomics Core (22); Duke-NUS refers to Duke Metabolomics Core Facility—National University of Singapore; Fred Hutch refers to the laboratory of Daniel Raftery at the Northwest Metabolomics Research Center at the University of Washington (109); IARC refers to the laboratory of Augustin Scalbert at the International Agency for Research on Cancer (110); ICL NPC—Imperial College London National Phenome Centre—refers to the laboratory of Jeremy Nicolson, Elaine Holmes, and colleagues (111); Keio University refers to the laboratory of Tomoyoshi Soga (112); Mass General—Massachusetts General Hospital—refers to the former laboratory of Robert Gerszten (1); Metabolon, Inc., refers to the commercial lab Metabolon, Inc., located in North Carolina (113); Nightingale Health refers to the commercial laboratory formerly known as Brainshake Inc. and is the same as the Biocentre Oulu platform of the Mika Ala-Korpela lab in Finland (114); NUS SLING refers to National University of Singapore Lipidomics Incubator; Örebro University refers to the laboratory and platforms by Matej Oresic and Tuulia Hyötyläinen (previously at VTT, Finland, and Steno Diabetes Center, Denmark); Pacific Northwest Labs refers to the laboratory of Tom Metz; and WCMC—West Coast Metabolomics Center—refers to the laboratory of Oliver Fiehn (115).

Table 4. Measurements Available for Participants With Metabolomics Data Available, Consortium of Metabolomics Studies, Multiple Countries, Established in 2014^a

Study ^b	Smoking Status (n = 46)	Alcohol Intake (n = 44)	BMI (n = 47)	Waist Circumference (n = 37)	LTPA (n = 35)	Diet (FFQ) (n = 36)	Educational Level (n = 44)
AIRWAVE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ATBC	Yes	Yes	Yes	No	Yes	Yes	Yes
ARIC	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ALSPAC	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BHS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
BiB	Yes	Yes	Yes	No	Yes	Yes	Yes
BCFR	Yes	Yes	Yes	No	No	No	Yes
BWHHS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
CaPS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
CPS-II	Yes	Yes	Yes	Yes	Yes	Yes	Yes
CATHGEN	Yes	No	Yes	No	No	No	No
CAMP	Yes	Yes	Yes	Yes	No	No	Yes
COLO	Yes	Yes	Yes	Yes	Yes	Yes	Yes
KORA	Yes	Yes	Yes	Yes	No	No	Yes
DIPP	No	No	Yes	No	No	Yes	No
DPP	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ET2DS	Yes	Yes	Yes	Yes	No	No	Yes
Estonia OE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
EPIC	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fenland	Yes	Yes	Yes	Yes	Yes	Yes	Yes
FHS2	Yes	Yes	Yes	Yes	Yes	Yes	Yes
FHS3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
GDM	Yes	No	Yes	No	No	No	No
HABC	Yes	Yes	Yes	Yes	Yes	Yes	Yes
HPFS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
MAC	Yes	Yes	Yes	Yes	No	No	Yes
MRC NSHD	Yes	Yes	Yes	Yes	Yes	Yes	Yes
MrOS	Yes	Yes	Yes	No	Yes	Yes	Yes
MEC	Yes	Yes	Yes	Yes	Yes	Yes	Yes
MESA	Yes	Yes	Yes	Yes	Yes	Yes	Yes
NHS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
NHS-II	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PHS	Yes	Yes	Yes	Yes	Yes	No	Yes
POPS	Yes	Yes	Yes	No	No	No	Yes
PLCO	Yes	Yes	Yes	No	Yes	Yes	Yes
SMHS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
SPA	Yes	Yes	Yes	Yes	Yes	Yes	Yes
SWHS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
SP2	Yes	Yes	Yes	Yes	Yes	Yes	Yes
SABRE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TMCS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TwinsUK	Yes	Yes	Yes	Yes	Yes	Yes	Yes
UPBEAT	Yes	Yes	Yes	Yes	Yes	Yes	Yes
VDAART	Yes	Yes	Yes	Yes	No	Yes	Yes

Table 4. Continued

Study ^b	Smoking Status (n = 46)	Alcohol Intake (n = 44)	BMI (n = 47)	Waist Circumference (n = 37)	LTPA (n = 35)	Diet (FFQ) (n = 36)	Educational Level (n = 44)
WH-II	Yes	Yes	Yes	Yes	No	No	Yes
WHI	Yes	Yes	Yes	Yes	Yes	Yes	Yes
WIHS	Yes	Yes	Yes	Yes	No	No	Yes

Abbreviations: BMI, body mass index; FFQ, Food Frequency Questionnaire; LTPA, leisure-time physical activity.

from hospitalization or registries for cancer or death (e.g., the National Death Index), which helps to ensure complete and objective follow-up. Our review of passive follow-up methods indicates that US cancer registries for our cohorts are ≥95% complete (92) and that the US National Death Index is 93%–98% complete (93, 94). For European cohorts, cancer registries are ≥90% complete for 90% of registries (self-audited) (95), and vital status is approximately 98% complete, according to European Prospective Investigation Into Cancer and Nutrition (EPIC) data (96). Across the 47 participating cohorts in COMETS, the median follow-up for disease outcomes was 23 years.

Details on the blood samples and metabolomics platforms used for each cohort are presented in Table 3. Blood samples for metabolomics profiling primarily include serum (24 out of 47 cohorts) or plasma (31 out of 47 cohorts). Samples were collected predominantly at study baseline and include fasted-only samples (23 cohorts), nonfasted samples (10 cohorts), or a mix of fasted and nonfasted samples (14 cohorts). Seventeen metabolomics labs were used by COMETS cohorts, with the most heavily used platforms being those of Metabolon (14 cohorts), the Broad Institute (15 cohorts), and Nightingale Health (11 cohorts). After accounting for use of multiple platforms, 34 of the 47 cohorts in total used at least one of these 3 platforms. Other platforms include, but are not limited to, Biocrates, Imperial College London National Phenome Centre, Duke Molecular Physiology Institute, and the West Coast Metabolomics Center.

Each cohort study collected data on demographic and health-related participant characteristics during study visits and/or through questionnaires (Table 4). Overall, 46 cohorts in COM-ETS assessed smoking status, 44 asked about alcohol intake, 47 collected body mass index, 37 assessed waist circumference, 35 inquired about leisure-time physical activity, 36 cohorts ascertained diet, and 44 evaluated educational levels and/or other measures of socioeconomic position. Many cohort studies also included clinical measurements, such as systolic and diastolic blood pressure (n = 41), high-density lipoprotein values (n = 39), C-reactive protein values (n = 38), and fasting glucose values (n = 37) (Table 5). In addition to traditional clinical information, genome-wide single nucleotide polymorphism data are available for about 68% of COMETS participants (93,082 out of 136,870).

In our first feasibility study, there were 1,874 metabolites measured across the 5 platforms tested. Of these, 1,550 had assigned identities, and 1,111 also had unique identifiers from HMDB,

Pubchem, or other online databases that allowed us to match across platforms. A complete listing of metabolites, the platforms each was measured on, and other details is in Web Table 3.

The specific numbers of metabolites by platform (cohort) were as follows: Metabolon (Atherosclerosis Risk in Communities Study), 1,158 (includes 293 unidentified metabolites); Broad Institute (Health, Aging and Body Composition Study), 350; Biocrates (Fenland Study), 187; West Coast Metabolomics Center (ColoCare), 439; and Nightingale Health (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial), 236 (Table 6). The overlap in metabolites between platforms ranged from moderate (e.g., ~100 metabolites) to modest (e.g., approximately 20 metabolites). For example, for Metabolon the overlap in metabolites with other platforms was as follows: Broad Institute, 121; Biocrates, 24; West Coast Metabolomics Center, 92; Nightingale Health, 16. For the 3 platforms used most often by COMETS cohorts—Metabolon, the Broad Institute, and Nightingale Health—14 metabolites were measured in common by all 3.

Only 2 of the 5 metabolomics platforms, Nightingale Health and Biocrates, quantified any metabolites in terms of absolute concentrations. In total, they quantified 31 metabolites: Nightingale Health quantified 25 metabolites, Biocrates quantified 14 metabolites, and 8 of these metabolites were quantified in common on both platforms (as listed in Web Table 3).

In our second feasibility study, 111 metabolites overlapped between Metabolon and the Broad Institute and their values were moderately to strongly correlated. Specifically, over the 111 metabolites, the median Spearman correlation across platforms was 0.79 and the interquartile range was 0.56–0.89 (Figure 2; Web Table 4). Pearson correlations were similar (median, 0.78; interquartile range, 0.65–0.91). Given some minor measurement error and different techniques for each platform, these correlations are high. Beyond the 111 overlapping metabolites, we found another 37 metabolite pairs with strongly correlated values (Web Table 5). These were biologically interrelated metabolites (e.g., lactose and maltose) rather than identical metabolites, suggesting our match on HMDB identifiers was reasonably complete.

DISCUSSION

In this report, we described key details of COMETS, which—with more than 136,000 participants—is the world's largest

^a "Yes" indicates that the measurement is available for all participants; "no" indicates that the measurement is not available for any of the participants.

^b The definitions of all study abbreviations appear in Table 1.

Table 5. Available^a Clinical Measurements of Participants With Metabolomics Data Available,, Consortium of Metabolomics Studies, Multiple Countries, Established in 2014

Study ^b	SBP (n = 41)	DBP (n = 41)	HDL (n = 39)	LDL (n = 38)	TG (n = 37)	TC (n = 38)	CRP (n = 38)	IL-6 (n = 32)	HbA1c (n = 33)	Fasting Glucose (n = 37)	Fasting Insulin (n = 30)	No. With GWAS Data (n = 93,082)
AIRWAVE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Р	Р	4,000
ATBC	Yes	Yes	Yes	No	No	Yes	No	No	No	Р	Р	475
ARIC	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	3,650
ALSPAC	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	7,176
BHS	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	939
BiB	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	10,000
BCFR	No	No	No	No	No	No	No	No	No	No	No	0
BWHHS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	3,800
CaPS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	1,000
CPS-II	No	No	Р	Р	No	Р	Р	No	No	No	No	1,450
CATHGEN	Yes	Yes	Yes	Yes	Yes	Yes	Р	No	Р	Р	No	3,255
CAMP	Yes	Yes	No	No	No	No	No	No	Yes	No	No	1,041
COLO	Р	Р	Р	Р	Р	No	Yes	No	No	No	No	408
KORA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	3,000
DIPP	No	No	No	No	No	No	No	No	Yes	Yes	No	0
DPP	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1,815
ET2DS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	1,060
Estonia OE	Yes	Yes	Р	Р	Р	Р	Р	Р	No	Р	No	298
EPIC	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	5,000
Fenland	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9,851
FHS2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	2,526
FHS3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	998
GDM	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	656
HABC	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	160
HPFS	Yes	Yes	Р	Р	Р	Р	Р	Р	No	No	No	953
MAC	No	No	No	No	No	No	Р	Р	Yes	No	No	0
MRC NSHD	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	0
MrOS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1,391
MEC	Р	Р	Yes	Yes	Yes	Yes	Yes	Р	No	Yes	Yes	4,431
MESA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	3,772
NHS ^c	Р	Р	Р	Р	Р	Р	Р	Р	Р	No	Р	1,000
NHS-II ^c	Р	Р	Р	Р	Р	Р	Р	Р	Р	No	Р	100
PHS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
POPS	Yes	Yes	No	No	No	No	No	No	No	No	No	0
PLCO	No	No	No	No	No	No	No	No	No	No	No	530
SMHS	Yes	Yes	Р	Р	Р	Р	Р	Р	Р	Р	Р	656
SPA	Yes	Yes	No	No	No	No	No	No	No	No	No	295
SWHS	Yes	Yes	Р	Р	Р	Р	Р	Р	Р	Р	No	1,300
SP2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1,705
SABRE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	3,000
TMCS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Р	1,200
TwinsUK	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	6,232
UPBEAT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1,303
VDAART	No	No	No	No	No	No	No	No	No	No	No	651

Table 5. Continued

Study ^b	SBP (n = 41)	DBP (n = 41)	HDL (n = 39)	LDL (n = 38)	TG (n = 37)	TC (n = 38)	CRP (n = 38)	IL-6 (n = 32)	HbA1c (n = 33)	Fasting Glucose (n = 37)	Fasting Insulin (n = 30)	No. With GWAS Data (n = 93,082)
WH-II	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	0
WHI	Yes	Yes	Yes	Р	Р	Yes	Р	Р	Р	Р	Р	1,781
WIHS	Yes	Yes	Yes	Yes	Yes	Yes	Р	Р	Yes	Yes	Yes	0

Abbreviations: CRP, C-reactive protein; DBP, diastolic blood pressure; GWAS, genome-wide association study; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein cholesterol; IL-6, interleukin-6; LDL, low-density lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cholesterol; TG, triglycerides.

metabolomics consortium. Our survey found that COMETS captures a broad range of demographics, with many women (59.9% of participants), younger and older participants (range of 0–100 years), and diverse geography (many participants from each of North America, South America, Europe, and Asia). Key questionnaire data needed for epidemiologic research (e.g., smoking status) were collected by nearly all COMETS cohorts, and many also assessed physical or clinical measures of interest, as well as gathering genome-wide association study data. The breadth of demographic factors and available exposure data provide a strong foundation for the conduct of epidemiologic research.

With respect to the metabolomics assays, 3 labs in particular predominated: Metabolon, the Broad Institute, and Nightingale Health. Each lab was used by 10 or more cohorts, and consequently tens of thousands of COMETS participants have data for the metabolites that each of these platforms measure.

In our comparative assessment, we found that platforms overlapped only modestly in the metabolites measured. For example, of the aggregate 1,421 metabolites measured by Metabolon, the Broad Institute and Nightingale Health, only 126 metabolites were measured by at least 2 platforms, and only 14 metabolites were measured by all 3. For many metabolites, then, metaanalyses will be restricted to participants analyzed on a single specific platform, resulting in lower sample size and statistical power than if all platforms had measured all metabolites. We also found that few metabolites were measured on a fully quantitative basis (i.e., as absolute concentrations)—just 31 across all 5 platforms. This precludes comparing metabolite levels across cohorts, or direct pooling of data, although meta-analyses are still possible.

One challenge we faced in this comparative assessment was that 28% of identified metabolites (439 of 1,550 entries) did not have assigned identifiers in public databases like the HMDB. Lacking this key information, we were unable to match these metabolites to others, possibly resulting in an undercount of platform overlap. Additionally, some platforms make distinctions between biochemically similar metabolites that other platforms do not, which complicates match attempts. For example, Metabolon measures 2 different forms of 3-methylglutarylcarnitine, Biocrates measures 1 generic 3-methylglutarylcarnitine, and all 3 measures link to the same HMDB identifier. Consequently, none of 3 measures "matched," and they are recorded as 3 separate entries in our metabolite table.

Table 6. Number of Identified Metabolites for 5 Different Metabolomics Platforms in 5 Different Participating Studies and the Overlap Across Platforms/Studies, Consortium of Metabolomics Studies, Multiple Countries, Established in 2014

Platform (Study)	Metabolon, Inc. (ARIC)	Broad Institute (HABC)	Biocrates (Fenland)	WCMC (ColoCare)	Nightingale Health ^a (PLCO)
Metabolon, Inc. (ARIC)	1,158				
Broad Institute (HABC)	121	350			
Biocrates (Fenland Study)	24	33	187		
WCMC (ColoCare)	92	82	20	439	
Nightingale Health (PLCO)	16	14	6	12	25 ^b

Abbreviation: ARIC, Atherosclerosis Risk in Communities; HABC, Health, Aging and Body Composition; PLCO, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; WCMC, West Coast Metabolomics Center.

^a "Yes" indicates that the measurement is available for all participants; P indicates that the measurement is available in a portion of participants; and "no" indicates that the measurement is not available for any of the participants.

^b The definitions of all study abbreviations appear in Table 1.

^c SBP and DBP levels are self-reported in NHS and NHSII.

^a Formerly known as Brainshake Inc.

^b Excluding metabolite ratios and sums that are routinely included as part of the platform results.

As metabolomics platforms develop, we anticipate that metabolite linkage will improve and that platform overlap will grow. The establishment of data repositories such as Metabolomics Workbench (97) and MetaboLights (98) has accelerated the rate of data and metadata sharing between labs, fostering greater standardization in metabolomics analyses (99) and improving metabolite coverage. Additionally, as labs move toward newer, higher-sensitivity analytical technologies, such as Q Exactive Mass Spectrometry (Exactive Plus; Thermo Fisher Scientific, Waltham, Massachusetts), more metabolites will be measured, resulting in more overlap.

To mitigate issues arising from lack of full quantitation, COMETS is developing a reference sample set of serum and EDTA plasma samples from each of 40 people (10 Hispanic, 10 Asian, 10 black, and 10 white). We intend to embed 1 aliquot per person among any new large COMETS studies (e.g., $\geq 1,000$ samples), with the resulting metabolomics data to be deposited in a central repository. These common samples should facilitate comparisons of metabolite levels (100) across studies and enable pooled analyses for some metabolites, particularly those measured on a fully quantitative basis.

For 2 metabolomics platforms—Metabolon and the Broad Institute—we compared the values for 111 metabolites obtained in split samples and found them to be highly intercorrelated. This suggests that these platforms should yield comparable results in statistical analyses based on ranked levels of metabolites, such as Spearman correlations or quantile-based analyses. Such high correlations do not guarantee agreement of absolute concentrations, however (101), which might be a prerequisite for performing some kinds of statistical analyses. We could not evaluate agreement directly in this comparison because the units of measurement differ between platforms (neither provides absolute concentrations). In the future, we will continue evaluating comparability of other metabolomics platforms used by COMETS cohorts, such as by using the reference sample set discussed above.

As a consortium, COMETS has several distinctive strengths. First, to our knowledge, it is the world's largest consortium of metabolomics cohort studies. The large sample size will enable well-powered statistical analyses and/or permit rapid replication of study findings, helping to minimize false-positive results in this research area. Second, COMETS is a multiethnic, international consortium that includes populations from Asia, Europe, North America, and South America, as well as both children and adults. The diversity of study populations increases the range of exposures that can be studied within COMETS and makes it possible to assess associations within a wide range of demographic and socioeconomic groups. Additionally, because confounding patterns vary by population, evidence that associations consistently replicate across diverse populations could reassure researchers that results do not simply reflect confounding (102). Third, the large scope of COMETS makes it possible to flag associations that vary by platform and might therefore be influenced by measurement error (e.g., random noise) or more fundamental errors (e.g., misidentified metabolites). Communicating this information to the laboratories could enable them to improve the quality and consistency of their measurements. Last, COMETS brings together expertise from multiple disciplines relevant to conducting successful metabolomics research, which could help to drive forward methodologic advances in this field.

COMETS has limitations as well. The metabolomics platforms used by participating studies vary in their sample preparation, instrumentation, and, consequently, in the metabolites they measure. Additionally, metabolite levels in many COMETS cohorts, and indeed in most high-throughput metabolomics profiling studies, are semiquantitative rather than fully quantitative concentrations. For important associations identified in COMETS, further follow-up work will be needed to establish clinically meaningful concentration thresholds. Also, COMETS is restricted to analyses based on identified metabolites, given that raw nuclear magnetic resonance or MS peak data might not consistently align across platforms or different studies (103). Future efforts will aim to integrate data from unidentified metabolites and/or raw nuclear magnetic resonance or MS peaks. At present, COMETS is restricted to blood metabolomics data. Metabolomics data from urine and other biospecimen types will be added in the future, once initial blood-based analyses are complete. Another limitation is that our comparison of metabolite values is valid only for the 2 platforms tested. Whether other platforms would also provide comparable results has yet to be empirically tested. Finally, COMETS cohorts vary in their depth and breadth of coverage for health-related characteristics, and thus for proposals requiring unusual data, some cohorts might be unable to contribute.

The primary objective of COMETS is to engage researchers in collaborative efforts to advance knowledge of the metabolome and its relationship with disease etiology, diagnosis, treatment and prognosis. In that spirit, we invite cohort studies with metabolomics data to join COMETS, and we welcome data analysis proposals from interested scientific investigators, including those without data of their own. Information about how to join COMETS and how to propose a data analysis can be found at our website (40).

ACKNOWLEDGMENTS

Authors: Bing Yu, Krista A. Zanetti, Marinella Temprosa, Demetrius Albanes, Nathan Appel, Clara Barrios Barrera, Yoav Ben-Shlomo, Eric Boerwinkle, Juan P. Casas, Clary Clish, Caroline Dale, Abbas Dehghan, Andriy Derkach, A. Heather Eliassen, Paul Elliott, Eoin Fahy, Christian Gieger, Marc J. Gunter, Sei Harada, Tamara Harris, Deron R. Herr, David Herrington, Joel N. Hirschhorn, Elise Hoover, Ann W. Hsing, Mattias Johansson, Rachel S. Kelly, Chin Meng Khoo, Mika Kivimäki, Bruce S. Kristal, Claudia Langenberg, Jessica Lasky-Su, Deborah A. Lawlor, Luca A. Lotta, Massimo Mangino, Loïc Le Marchand, Ewy Mathé, Charles E. Matthews, Cristina Menni, Lorelei A. Mucci, Rachel Murphy, Matej Oresic, Eric Orwoll, Jennifer Ose, Alexandre C. Pereira, Mary C. Playdon, Lucilla Poston, Jackie Price, Qibin Qi, Kathryn Rexrode, Adam Risch, Joshua Sampson, Wei Jie Seow, Howard D. Sesso, Svati H. Shah, Xiao-Ou Shu, Gordon C. S. Smith, Ulla Sovio, Victoria L. Stevens, Rachael Stolzenberg-Solomon, Toru Takebayashi, Therese Tillin, Ruth Travis, Ioanna Tzoulaki, Cornelia M. Ulrich, Ramachandran S. Vasan, Mukesh Verma, Ying Wang, Nick J. Wareham, Andrew Wong, Naji Younes, Hua Zhao, Wei Zheng, and Steven C. Moore.

Author affiliations: Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas (Bing Yu, Eric Boerwinkle); Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland (Krista A. Zanetti, Elise Hoover, Mukesh Verma); Department of Epidemiology and Biostatistics Milken Institute School of Public Health, George Washington University, Washington, DC (Marinella Temprosa, Naji Younes); Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland (Demetrius Albanes, Andriy Derkach, Charles E. Matthews, Mary C. Playdon, Joshua Sampson, Rachael Stolzenberg-Solomon, Steven C. Moore); Information Management Services, Inc., Rockville, Maryland (Nathan Appel, Adam Risch); Department of Nephrology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Barcelona, Spain (Clara Barrios Barrera); Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom (Yoav Ben-Shlomo, Deborah A. Lawlor); Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas (Eric Boerwinkle); Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, United Kingdom (Juan P. Casas, Caroline Dale); Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (Clary Clish, Joel N. Hirschhorn); Medical Research Council-Public Health England Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom (Abbas Dehghan, Paul Elliott, Ioanna Tzoulaki); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (A. Heather Eliassen, Lorelei A. Mucci); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston Massachusetts (A. Heather Eliassen, Lorelei A. Mucci, Howard D. Sesso); National Institute for Health Research, Imperial College Biomedical Research Center, London, United Kingdom (Paul Elliott); Health Data Research UK Center at Imperial College London, London, United Kingdom (Paul Elliott); Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, California (Eoin Fahy); Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (Christian Gieger); Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (Christian Gieger); German Center for Diabetes Research (DZD), Neuherberg, Germany (Christian Gieger); Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France (Marc J. Gunter); Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan (Sei Harada, Toru Takebayashi); Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan (Sei Harada, Toru Takebayashi); Laboratory of Epidemiology and Population Science Laboratory (LEPS),

National Institute on Aging, Bethesda, Maryland (Tamara Harris); Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Deron R. Herr); Department of Biology, San Diego State University, San Diego, California (Deron R. Herr); Department of Internal Medicine, Division of Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina (David Herrington); Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts (Joel N. Hirschhorn); Department of Genetics, Harvard Medical School, Boston, Massachusetts (Joel N. Hirschhorn); Stanford Prevention Research Center, Stanford Cancer Institute, Stanford, California (Ann W. Hsing); International Agency for Research on Cancer, Lyon, France (Mattias Johansson); Systems Genetics and Genomics Unit, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Rachel S. Kelly); Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Chin Meng Khoo); Department of Medicine, National University Health System, Singapore (Chin Meng Khoo); Duke–National University of Singapore Graduate Medical School, Singapore (Chin Meng Khoo); Department of Epidemiology and Public Health, University College London, London, United Kingdom (Mika Kivimäki); Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (Bruce S. Kristal); Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, Massachusetts (Bruce S. Kristal); MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom (Claudia Langenberg, Luca A. Lotta, Nick J. Wareham); Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Jessica Lasky-Su); MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom (Deborah A. Lawlor); Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom (Massimo Mangino, Cristina Menni); University of Hawaii Cancer Center, Epidemiology Program, Honolulu, Hawaii (Loïc Le Marchand); Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio (Ewy Mathé); Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (Rachel Murphy); Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland (Matej Oresic); School of Medical Sciences, Örebro University, Örebro, Sweden (Matej Oresic); Department of Medicine, Oregon Health and Science University, Portland, Oregon (Eric Orwoll); Division of Cancer Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah (Jennifer Ose, Mary C. Playdon, Cornelia M. Ulrich); Department of Population Health Sciences, University of Utah, Salt Lake City, Utah (Jennifer Ose); Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil (Alexandre C. Pereira); Department of Nutrition and Integrative

Physiology, University of Utah, Salt Lake City, Utah (Mary C. Playdon); Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, St. Thomas' Hospital, London, United Kingdom (Lucilla Poston); Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom (Jackie Price); Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York (Qibin Qi); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (Kathryn Rexrode, Howard D. Sesso); Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (Kathryn Rexrode); Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore (Wei Jie Seow); Department of Medicine, Duke University School of Medicine, Durham, North Carolina (Svati H. Shah); Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina (Svati H. Shah); Duke Clinical Research Institute, Durham, North Carolina (Svati H. Shah); Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee (Xiao-Ou Shu, Wei Zheng); Department of Obstetrics and Gynaecology, National Institute for Health Research, Cambridge Comprehensive Biomedical Research Center, University of Cambridge, Cambridge, United Kingdom (Gordon C. S. Smith); Center for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (Gordon C. S. Smith); Department of Obstetrics and Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom (Ulla Sovio); Epidemiology Research Program, American Cancer Society, Atlanta, Georgia (Victoria L. Stevens, Ying Wang); Institute of Cardiovascular Sciences, University College London, London, United Kingdom (Therese Tillin); Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom (Ruth Travis); Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts (Ramachandran S. Vasan); Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts (Ramachandran S. Vasan); Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts (Ramachandran S. Vasan); Framingham Heart Study, Framingham, Massachusetts (Ramachandran S. Vasan); MRC Unit for Lifelong Health and Ageing at University College London, London, United Kingdom (Andrew Wong); and Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (Hua Zhao). The Airwave Health Monitoring Study is funded by the UK

The Airwave Health Monitoring Study is funded by the UK Home Office (grant 780-TETRA) with additional support from the National Institute for Health Research, and the

Imperial College Biomedical Research Centre in collaboration with Imperial College National Health Service Healthcare Trust. This work used computing resources of the UK Medical Bioinformatics partnership (UK MED-BIO) supported by the Medical Research Council (grant MR/ L01632X/1). P.E. is supported by the UK Dementia Research Unit, which receives funding from the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research UK, the Medical Research Council, and Public Health England (grant MR/L01341x/1) for the Medical Research Council-Public Health England Centre of Environment and Health, the National Institute for Health Research Health Protection Research Unit in Health Impact of Environmental Hazards (grant hpru-2012-10141), and the Health Data Research UK London Centre, funded by a consortium of funders led by the Medical Research Council. A.D. is supported by the Wellcome Trust (grant 206046/Z/17/Z). The Alpha-Tocolpherol, Beta-Carotene Cancer Prevention study was supported by the National Institutes of Health Intramural Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute. The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by the National Heart, Lung, and Blood Institute (contracts HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, HHSN268201100012C, R01HL087641, R01HL59367, and R01HL086694); the National Human Genome Research Institute (contract U01HG004402); and the National Institutes of Health (contract HHSN268200625226C). B.Y. is supported by the American Heart Association (grant 17SDG33661228). The UK Medical Research Council and the Wellcome Trust (grant 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. The British Heart Foundation (grant SP/07/008/24066), Wellcome Trust (grant WT092830/Z/10/Z), and Joint UK Research Councils, via the Lifelong Health and Wellbeing Programme (grant G1001357), funded follow-up of women (ALSPAC mothers) currently contributing to COMETS, with metabolomic measurements funded by the National Institutes of Health (grant R01 DK10324) and European Research Council under the European Union's Seventh Framework Programme (grant FP7/2007-2013/ERC grant 669545). Born in Bradford receives core infrastructure funding from the Wellcome Trust (grant WT101597MA), a joint grant from the UK Medical Research Council and UK Economic and Social Science Research Council (grant MR/ N024397/1), and the National Institute for Health Research under its Collaboration for Applied Health Research and Care (CLAHRC) for Yorkshire and Humber. Follow-up and metabolomic research are supported by the British Heart Foundation (grant CS/16/4/32482), National Institutes of Health (grant R01 DK10324), and the European Research Council under the European Union's Seventh Framework Programme (grant FP7/2007-2013/ERC grant 669545). The Baependi Heart Study was supported by awards from FAPESP (grants 2007/58150-7, 2010/51010-8, 2011/05804-5, 2013/17368-0), from CNPq (grants 150653/2008-5, 481304/2012-6, and 400791/2015-5), and Fundação Zerbini and Proadi-Hospital Samaritano. The Breast Cancer Family

Registry cohort was supported by the National Cancer Institute (grant 1UM1CA164920). The Breast Cancer Family Registry Metabolomics study was funded by an internal pilot grant from the Stanford Cancer Institute. British Women's Heart and Health Study is supported by funding from the British Heart Foundation and the Department of Health Policy Research Programme (England). Caerphilly Prospective Study was funded by the Medical Research Council and undertaken by the former MRC Epidemiology Unit (South Wales). Caerphilly Prospective Study metabolomics was undertaken as part of the UCL-LSHTM-Edinburgh-Bristol consortium, which is supported by the British Heart Foundation Programme (grant RG/10/12/ 28456). The Caerphilly Prospective Study data archive is maintained by the University of Bristol. The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study-II cohort. S.H.S. (Catheterization Genetics study) is supported by the National Heart, Lung, and Blood Institute (grants 5R01-HL127009, 1R56-HL129880, and 5R01-HL095987) and the American Heart Association (grants 17SFRN33590127 and 16SFRN31800000). The Childhood Asthma Management Program is supported by the National Heart, Lung, and Blood Institute (contracts NO1-HR-16044, 16045, 16046, 16047, 16048, 16049, 16050, 16051, and 16052), and the metabolomic profiling was supported by the National Institutes of Health (grant 1R01HL123915-01 (PI: J.L.-S.)). The COLO study was funded by the Lackas Foundation, the Division of Preventive Oncology (to C.M.U.), and the German Consortium of Translational Cancer Research. C.M.U. received funding from the Huntsman Cancer Foundation; research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health (award U01CA206110). The Cooperative Health Research in the Region of Augsburg (KORA) study is funded by the Federal Ministry of Education and Research (grant BMBF 01KT1512). KORA was initiated and financed by the Helmholtz Zentrum München—German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. The Diabetes Prediction and Prevention Birth Cohort study was supported by the Academy of Finland (Centre of Excellence in Molecular Systems Immunology and Physiology Research award 2012-2017, decision 250114) and Juvenile Diabetes Research Foundation (grant 2-SRA-2014-159-Q-R). The Estonia cohort was supported by European Regional Development Fund, (road-map grant 3.2.0304.11-0312), as a "Center of Excellence in Genomics (EXCEGEN)", and by targeted financing from the Estonian Government (grant IUT24-6, IUT20-60) and Center of Translational Genomics (grant SP1GVARENG), from the Development Fund of the University of Tartu. The metabolomic studies were funded by the National Institute of Diabetes and Digestive and Kidney Diseases (grant R01 DK075787 to J.N.H.). During the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study, the National Institute of Diabetes and Digestive and Kidney

Diseases of the National Institutes of Health provided funding to the clinical centers and the Coordinating Center for the design and conduct of the study and for collection, management, analysis, and interpretation of the data (grant U01 DK048489). The Southwestern American Indian Centers were supported directly by the National Institute of Diabetes and Digestive and Kidney Diseases, including its Intramural Research Program, and the Indian Health Service. The General Clinical Research Center Program, National Center for Research Resources, and the Department of Veterans Affairs supported data collection at many of the clinical centers. Funding was also provided by the *Eunice* Kennedy Shriver National Institute of Child Health and Human Development, the National Institute on Aging, the National Eye Institute, the National Heart Lung and Blood Institute, the National Cancer Institute, the Office of Research on Women's Health, the National Institute on Minority Health and Health Disparities, the Centers for Disease Control and Prevention, and the American Diabetes Association. Bristol-Myers Squibb and Parke-Davis provided additional funding and material support during the Diabetes Prevention Program, Lipha (Merck-Sante) provided medication, and LifeScan Inc. donated materials during the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study. This research was also supported, in part, by the intramural research program of the National Institute of Diabetes and Digestive and Kidney Diseases. LifeScan Inc., Health O Meter, Hoechst Marion Roussel, Inc., Merck-Medco Managed Care, Inc., Merck and Co., Nike Sports Marketing, Slim Fast Foods Co., and Quaker Oats Co. donated materials, equipment, or medicines for concomitant conditions. McKesson BioServices Corp., Matthews Media Group, Inc., and the Henry M. Jackson Foundation provided support services under subcontract with the Coordinating Center. The sponsor for the Edinburgh Type 2 Diabetes Study was the University of Edinburgh; the study was funded by the Medical Research Council (grant G0500877), the Chief Scientist Office of the Scottish Executive (Programme Support Grant CZQ/1/38), Pfizer plc, and Diabetes UK (Clinical Research Fellowship 10/ 0003985); metabolomics was undertaken as part of the UCLEB consortium, which is supported by a British Heart Foundation Programme (grant RG/10/12/28456). The coordination of European Prospective Investigation into Cancer and Nutrition is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer, and the national cohorts are supported by the Danish Cancer Society (Denmark); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF), Deutsche Krebshilfe, Deutsches Krebsforschungszentrum, and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (the Netherlands); Health Research Fund (FIS) (grant PI13/00061 (EPIC-

Granada) and PI13/01162 (EPIC-Murcia)), Regional Governments of Andalucía, Asturias, Basque Country, Murcia, and Navarra, ISCIII Health Research Funds (grant RD12/0036/0018) (cofounded by FEDER funds/European Regional Development Fund ERDF) (Spain); Swedish Cancer Society, Swedish Research Council, and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (grants 14136 to EPIC-Norfolk and C570/ A16491 for EPIC-Oxford), Medical Research Council (grants 1000143 to EPIC-Norfolk and MR/M012190/1 to EPIC-Oxford) (UK). The ongoing metabolomics work in EPIC is funded by Cancer Research UK, World Cancer Research Fund, European Commission, and the French National Cancer Institute. The Fenland study was funded by the United Kingdom's Medical Research Council (grants MC UU 12015/1, MC PC 13046, MC PC 13048, and MR/L00002/1) and Cambridge Lipidomics Biomarker Research Initiative (grant G0800783). N.J.W. is a National Institute for Health Research Senior Investigator. Research and data from the Framingham studies (FHS2, FHS3) were supported by the National Institutes of Health, National Heart, Lung, and Blood Institute (contracts HHSN268201500001 and N01 HC 25195) and the National Institute of Diabetes and Digestive and Kidney Diseases (grant R01 DK081572). The Genodiab-Mar cohort is supported by Instituto de Salud Carlos III (FIS-ISCIII) (grant PI16/00620) and RedinRen (grant RD12/0021/0024). The Health, Aging and Body Composition study was supported by the National Institute on Aging (contracts N01-AG-6-2101, N01-AG-6-2103, and N01-AG-6-2106; and grant R01-AG028050), the National Institute of Nursing Research (grant R01-NR-012459), the Wake Forest University Claude D. Pepper Older Americans for Independence Center (grant 1P30AG21332), and the Pittsburgh Claude D. Pepper Center (grant P30 AG024827). Health, Aging and Body Composition work is also supported in part by the intramural program of the National Institutes of Health. R.M. is supported by the Canadian Cancer Society (grant 704735). The Health Professionals Follow-up Study is funded by the National Cancer Institute (grant U01 CA167552; metabolomics study, grant P50 090381). The Mexican American Cohort receives funds collected pursuant to the Comprehensive Tobacco Settlement of 1998 and appropriated by the 76th legislature to the University of Texas MD Anderson Cancer Center. Work in the Mexican American Cohort was supported in part by Center for Translational and Public Health Genomics, the Dan Duncan Family Institute for Risk Assessment and Cancer Prevention. The MRC National Survey of Health and Development is funded by the UK Medical Research Council (grant MC_UU_12019/1); metabolomics was undertaken as part of the UCLEB consortium, which is supported by a British Heart Foundation Programme (grant RG/10/12/28456). The Multiethnic Cohort was supported by the National Cancer Institute (grants P01 CA168530 and U01 CA164973). The Multi-ethnic Study of Atherosclerosis was supported by the National Institutes of Health (grant R01 HL133932-01). The Nurses' Health Study is funded by the National Cancer Institute (grants CA186107 and CA49449). The Nurses' Health Study II is funded by the National Cancer Institute

(grants CA176726 and CA067262). Metabolomics studies within the Nurses Health Studies and the Health Professionals Study cohorts are funded by the National Institutes of Health (grants NS045893, CA087969, CA050385, DK103720, CA163451, NS089619, CA090381, CA140790, AR049880), the Department of Defense (grant W81XWH-13-1-0493), the American Society of Clinical Oncology Conquer Cancer Foundation, and the Howard Hughes Medical Institute and Promises for Purple. The Osteoporotic Fractures in Men Study is supported by the National Institutes of Health through the National Institute on Aging, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the National Center for Advancing Translational Sciences, and National Institutes of Health Roadmap for Medical Research (grants U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128). The Physicians' Health Study is supported by the National Institutes of Health (grants CA 097193, CA 34944, CA 40360, HL 26490, and HL 34595). The work in the Pregnancy Outcome Prediction Study was supported by the National Institute for Health Research (NIHR) Cambridge Comprehensive Biomedical Research Centre (Women's Health theme) and a project grant from the Medical Research Council (United Kingdom; grant G1100221). The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial was supported by the National Institutes of Health Intramural Research Program of the National Cancer Institute. The Shanghai Men's Health Study, Shanghai Physical Activity Study, and Shanghai Women's Health Study are supported by the National Institutes of Health (grants R37 CA070867, UM1 CA182910, R01 CA082729, UM1 CA173640, R01 HL079123, and R01DK108159) as well as Ingram Professorship Funds from the Vanderbilt-Ingram Cancer Center. With respect to the Singapore Prospective Study Program, W.J.S. is supported by a National University of Singapore Start-Up Grant; D.R.H. is supported by the National University of Singapore (grant NUHSRO/2014/ 085/AF-Partner/01); and C.M.K. is supported by the National Medical Research Council, Clinician Scientist Award, Ministry of Health Alignment Fund, Janssen Pharmaceuticals Inc., and the National Kidney Foundation. Southall and Brent Revisited is funded at baseline by the UK Medical Research Council, Diabetes UK, British Heart Foundation; metabolomics analyses are funded by Diabetes UK (grant 13/0004774); and follow-up is funded by the Wellcome Trust (grant WT082464) and British Heart Foundation (grants SP/07/001/23603 and CS/13/1/30327). The Tsuruoka Metabolomics Cohort study is supported in part by research funds from the Yamagata Prefectural Government and the city of Tsuruoka and by the Grant-in-Aid for Scientific Research (B) (grants JP24390168 and JP15H04778), Grant-in-Aid for Challenging Exploratory Research (grant 25670303), and Grant-in-Aid for Young Scientists (B) (grant JP15K19231) from the Japan Society for the Promotion of Science. TwinsUK was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013). TwinsUK also receives support from the National Institute for Health

Research-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St. Thomas' NHS Foundation Trust in partnership with King's College London. The UK Pregnancies Better Eating and Activity Trial was funded by the National Institute for Health Research (grant RP-0407-104522), Medical Research Council (grant MR/L002477/1), Diabetes UK, CSO (grant CZB/A/680), the Biomedical Research Centre at Guys & St. Thomas NHS Foundation Trust & King's College London, and Tommy's Charity. Vitamin D Antenatal Asthma Reduction Trial (clinical trial registration number: NCT00920621) was supported by the National Heart, Lung, and Blood Institute (grant U01HL091528; metabolomics work, grant 1R01HL123915-01); additional support was provided by the National Centers for Advancing Translational Sciences (from U54TR001012) for participant visits at Boston Medical Center. The Whitehall II study is supported by the National Institute on Aging (grants R56AG056477; R01AG034454; R01AG013196), the National Heart, Lung, and Blood Institute (grant R01HL036310), the UK Medical Research Council (grants MRC, K013351 and R024227), and the British Heart Foundation (grants PG/29605 and RG/13/2/30098); metabolomics was undertaken as part of the UCLEB consortium, which is supported by a British Heart Foundation Programme (grant RG/10/12/28456). M.K. is supported by the UK MRC (grant S011676), NordForsk, and the Academy of Finland (grant 311492). The metabolomic analysis in the Women's Health Initiative was funded by the National Heart, Lung, and Blood Institute (contract HHSN268201300008C). The Women's Health Initiative program is funded by the National Heart, Lung, and Blood Institute (contracts HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C). The Women's Interagency HIV Study is funded primarily by the National Institute of Allergy and Infectious Diseases, with additional cofunding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development), the National Cancer Institute, the National Institute on Drug Abuse, and the National Institute on Mental Health. Targeted supplemental funding for specific projects is also provided by the National Institute of Dental and Craniofacial Research, the National Institute on Alcohol Abuse and Alcoholism, the National Institute on Deafness and other Communication Disorders, and the National Institutes of Health Office of Research on Women's Health. Women's Interagency HIV Study data collection is also supported by the National Center for Advancing Translational Sciences (grants UL1-TR000004 (UCSF CTSA) and UL1-TR000454 (Atlanta CTSA)) and National Institute of Allergy and Infectious Diseases (grant P30-AI-050410 (UNC CFAR)). Women's Interagency HIV Study principal investigators are supported by the National Institute of Allergy and Infectious Diseases (UAB-MS WIHS (Mirjam-Colette Kempf and Deborah Konkle-Parker), U01-AI-103401; Atlanta WIHS (Ighovwerha Ofotokun and Gina Wingood), U01-AI-103408; Bronx WIHS (Kathryn Anastos and Anjali Sharma), U01-AI-035004; Brooklyn WIHS (Howard Minkoff and Deborah Gustafson), U01-AI-031834; Chicago WIHS (Mardge Cohen

and Audrey French), U01-AI-034993; Metropolitan Washington WIHS (Seble Kassaye), U01-AI-034994; Miami WIHS (Margaret Fischl and Lisa Metsch), U01-AI-103397; UNC WIHS (Adaora Adimora), U01-AI-103390; Connie Wofsy Women's HIV Study, Northern California (Ruth Greenblatt, Bradley Aouizerat, and Phyllis Tien), U01-AI-034989; WIHS Data Management and Analysis Center (Stephen Gange and Elizabeth Golub), U01-AI-042590) and, for Southern California WIHS (Joel Milam), *Eunice Kennedy Shriver* National Institute of Child Health and Human Development grant U01-HD-032632 (WIHS I – WIHS IV). WIHS metabolomics was supported by the National Heart, Lung, and Blood Institute (grant K01HL129892 to Q.Q).

We thank the staff and participants of the ARIC study for their important contributions. The ALSPAC investigators are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. Born in Bradford is possible only because of the enthusiasm and commitment of the Children and Parents in BiB. We are grateful to all the participants, practitioners, and researchers who have made Born in Bradford happen. We thank all BWHHS participants, the general practitioners, and their staff who have supported data collection since the study inception. The authors express sincere appreciation to all Cancer Prevention Study II participants and to each member of the study and biospecimen management group. We gratefully acknowledge the contribution of all members of field staff conducting the KORA study. The authors gratefully acknowledge the help of the MRC Epidemiology Unit, Field Teams, Laboratory Team, Data Management Team, and all other Support Teams. The authors are grateful to NSHD study members for their continuing support. We thank the residents of Tsuruoka City for their interest in our study and the members of the Tsuruoka Metabolomic Cohort Study team for their commitment to the project. The NHS, NHSII, and HPFS investigators thank the participants and staff of the studies for their valuable contributions as well as the following state cancer registries for their help: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, Florida, Georgia, Idaho, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Nebraska, New Hampshire, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Virginia, Washington, and Wyoming. The Whitehall II research team thanks all of the participating civil service departments and their welfare, personnel, and establishment officers, study coordinators, nurses, data managers, administrative assistants, and data entry staff, who make the study possible. All of the study name abbreviations are defined in Table 1.

The authors assume full responsibility for analyses and interpretation of these data. The British Heart Foundation had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication. The funders had no

role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

D.A.L. has received support from Roche Diagnostics and Medtronic for research unrelated to this paper. B.S.K. is the inventor of general metabolomics-related intellectual property that has been licensed to Metabolon via Weill Medical College of Cornell University and for which he receives royalty payments via Weill Medical College of Cornell University. He also consults for and has a small equity interest in the company. Metabolon has no rights or proprietary access to the research results presented and/or new intellectual property generated under these grants/ studies. B.S.K.'s interests were reviewed by the Brigham and Women's Hospital and Partners Healthcare in accordance with their institutional policy. Accordingly, upon review, the institution determined that B.S.K.'s financial interest in Metabolon does not create a significant financial conflict of interest with this research. The addition of this statement where appropriate was explicitly requested and approved by Brigham and Women's Hospital.

REFERENCES

- Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. *Nat Med*. 2011;17(4): 448–453.
- Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. *Diabetes*. 2013;62(2): 639–648.
- 3. Menni C, Fauman E, Erte I, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. *Diabetes*. 2013;62(12):4270–4276.
- 4. Yu D, Moore SC, Matthews CE, et al. Plasma metabolomic profiles in association with type 2 diabetes risk and prevalence in Chinese adults. *Metabolomics*. 2016;12. (doi: 10.1007/s11306-015-0890-8).
- Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–1584.
- Shah SH, Bain JR, Muehlbauer MJ, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. *Circ Cardiovasc Genet*. 2010;3(2):207–214.
- 7. Kraus WE, Muoio DM, Stevens R, et al. Metabolomic Quantitative Trait Loci (mQTL) mapping implicates the ubiquitin proteasome system in cardiovascular disease pathogenesis. *PLoS Genet*. 2015;11(11):e1005553.
- Sekula P, Goek ON, Quaye L, et al. A metabolome-wide association study of kidney function and disease in the general population. *J Am Soc Nephrol*. 2016;27(4): 1175–1188.
- Mayers JR, Wu C, Clish CB, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. *Nat Med*. 2014; 20(10):1193–1198.
- Mondul AM, Moore SC, Weinstein SJ, et al. Metabolomic analysis of prostate cancer risk in a prospective cohort: the Alpha-Tocolpherol, Beta-Carotene Cancer Prevention (ATBC) study. *Int J Cancer*. 2015;137(9):2124–2132.

- Kuhn T, Floegel A, Sookthai D, et al. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. *BMC Med.* 2016;14:13.
- 12. Huang J, Weinstein SJ, Kitahara CM, et al. A prospective study of serum metabolites and glioma risk. *Oncotarget*. 2017;8(41):70366–70377.
- Moore SC, Playdon MC, Sampson JN, et al. A metabolomics analysis of body mass index and postmenopausal breast cancer risk. J Natl Cancer Inst. 2018;110(6):588–597.
- Shin SY, Fauman EB, Petersen AK, et al. An atlas of genetic influences on human blood metabolites. *Nat Genet*. 2014; 46(6):543–550.
- 15. Rhee EP, Ho JE, Chen MH, et al. A genome-wide association study of the human metabolome in a community-based cohort. *Cell Metab*. 2013;18(1):130–143.
- 16. Long T, Hicks M, Yu HC, et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. *Nat Genet*. 2017;49(4):568–578.
- 17. Yu B, Zheng Y, Alexander D, et al. Genetic determinants influencing human serum metabolome among African Americans. *PLoS Genet*. 2014;10(3):e1004212.
- Illig T, Gieger C, Zhai G, et al. A genome-wide perspective of genetic variation in human metabolism. *Nat Genet*. 2010; 42(2):137–141.
- Yu B, Li AH, Metcalf GA, et al. Loss-of-function variants influence the human serum metabolome. *Sci Adv.* 2016;2(8): e1600800.
- Yu B, de Vries PS, Metcalf GA, et al. Whole genome sequence analysis of serum amino acid levels. *Genome Biol*. 2016;17:237.
- Menni C, Graham D, Kastenmuller G, et al. Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. *Hypertension*. 2015;66(2):422–429.
- 22. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. *Cell Metab*. 2009;9(4):311–326.
- 23. Cheng S, Rhee EP, Larson MG, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. *Circulation*. 2012;125(18):2222–2231.
- 24. Moore SC, Matthews CE, Sampson JN, et al. Human metabolic correlates of body mass index. *Metabolomics*. 2014;10(2):259–269.
- Scalbert A, Brennan L, Manach C, et al. The food metabolome: a window over dietary exposure. Am J Clin Nutr. 2014;99(6):1286–1308.
- Guertin KA, Moore SC, Sampson JN, et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover dietdisease relations in populations. *Am J Clin Nutr*. 2014;100(1): 208–217.
- Zheng Y, Yu B, Alexander D, et al. Human metabolome associates with dietary intake habits among African Americans in the Atherosclerosis Risk in Communities study. Am J Epidemiol. 2014;179(12):1424–1433.
- 28. Playdon MC, Ziegler RG, Sampson JN, et al. Nutritional metabolomics and breast cancer risk in a prospective study. *Am J Clin Nutr*. 2017;106(2):637–649.
- Schmidt JA, Rinaldi S, Ferrari P, et al. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort. *Am J Clin Nutr*. 2015;102(6): 1518–1526.
- Pallister T, Jennings A, Mohney RP, et al. Characterizing blood metabolomics profiles associated with self-reported

- food intakes in female twins. *PLoS One*. 2016;11(6): e0158568.
- Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meateaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. *Eur J Clin Nutr*. 2016; 70(3):306–312.
- 32. Mondul AM, Sampson JN, Moore SC, et al. Metabolomic profile of response to supplementation with beta-carotene in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. *Am J Clin Nutr.* 2013;98(2):488–493.
- 33. Playdon MC, Sampson JN, Cross AJ, et al. Comparing metabolite profiles of habitual diet in serum and urine. *Am J Clin Nutr.* 2016;104(3):776–789.
- Akbaraly T, Wurtz P, Singh-Manoux A, et al. Association of circulating metabolites with healthy diet and risk of cardiovascular disease: analysis of two cohort studies. *Sci Rep.* 2018;8:8620.
- Nelson SM, Panagiotou OA, Anic GM, et al. Metabolomics analysis of serum 25-hydroxy-vitamin D in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Int J Epidemiol. 2016;45(5):1458–1468.
- Xiao Q, Moore SC, Keadle SK, et al. Objectively measured physical activity and plasma metabolomics in the Shanghai Physical Activity Study. *Int J Epidemiol*. 2016;45(5): 1433–1444.
- Wang Q, Würtz P, Auro K, et al. Metabolic profiling of pregnancy: cross-sectional and longitudinal evidence. BMC Med. 2016;14:205.
- Wang Q, Würtz P, Auro K, et al. Effects of hormonal contraception on systemic metabolism: cross-sectional and longitudinal evidence. *Int J Epidemiol*. 2016;45(5):1445–1457.
- 39. Würtz P, Wang Q, Soininen P, et al. Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase. *J Am Coll Cardiol*. 2016;67(10):1200–1210.
- Division of Cancer Control and Population Sciences, National Cancer Institute. Consortium of Metabolomics Studies. https://epi.grants.cancer.gov/comets/. Accessed January 28, 2019
- 41. The ATBC Cancer Prevention Study Group. The Alpha-Tocopherol, Beta-Carotene Lung Cancer Prevention study: Design, methods, participant characteristics, and compliance. *Ann Epidemiol.* 1994;4(1):1–10.
- 42. Childhood Asthma Management Program Research Group. The Childhood Asthma Management Program (CAMP): design, rationale, and methods. *Control Clin Trials*. 1999; 20(1):91–120.
- 43. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. *Lancet Diabetes Endocrinol*. 2015;3(11):866–875.
- Gaziano JM, Sesso HD, Christen WG, et al. Multivitamins in the prevention of cancer in men: the Physicians' Health Study II randomized controlled trial. *JAMA*. 2012;308(18): 1871–1880.
- Prorok PC, Andriole GL, Bresalier RS, et al. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial. *Control Clin Trials*. 2000;21(6 suppl): 273S–309S.
- 46. Litonjua AA, Lange NE, Carey VJ, et al. The Vitamin D Antenatal Asthma Reduction Trial (VDAART): rationale, design, and methods of a randomized, controlled trial of vitamin D supplementation in pregnancy for the primary prevention of asthma and allergies in children. *Contemp Clin Trials*. 2014;38(1):37–50.

- Cheng TY, Makar KW, Neuhouser ML, et al. Folate-mediated one-carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women's Health Initiative Observational Study. *Cancer*. 2015;121(20):3684–3691.
- 48. Oresic M, Simell S, Sysi-Aho M, et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. *J Exp Med*. 2008;205(13):2975–2984.
- Briley AL, Barr S, Badger S, et al. A complex intervention to improve pregnancy outcome in obese women; the UPBEAT randomised controlled trial. BMC Pregnancy Childbirth. 2014;14:74.
- The ARIC investigators. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. Am J Epidemiol. 1989;129(4):687–702.
- 51. Clifton EA, Day FR, De Lucia Rolfe E, et al. Associations between body mass index-related genetic variants and adult body composition: the Fenland cohort study. *Int J Obes* (*Lond*). 2017;41(4):613–619.
- 52. Kolonel LN, Henderson BE, Hankin JH, et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. *Am J Epidemiol*. 2000;151(4):346–357.
- 53. Bild DE, Bluemke DA, Burke GL, et al. Multi-Ethnic Study of Atherosclerosis: ojectives and design. *Am J Epidemiol*. 2002;156(9):871–881.
- 54. Orwoll E, Blank JB, Barrett-Connor E, et al. Design and baseline characteristics of the Osteoporotic Fractures in Men (MrOS) study—a large observational study of the determinants of fracture in older men. *Contemp Clin Trials*. 2005;26(5):569–585.
- 55. Shu XO, Li H, Yang G, et al. Cohort profile: the Shanghai Men's Health Study. *Int J Epidemiol*. 2015;44(3):810–818.
- Shah SH, Newgard CB. Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. *Circ Cardiovasc Genet*. 2015;8(2):410–419.
- 57. Dale CE, Bowling A, Adamson J, et al. Predictors of patterns of change in health-related quality of life in older women over 7 years: evidence from a prospective cohort study. *Age Ageing*. 2013;42(3):312–318.
- 58. Bainton D, Miller NE, Bolton CH, et al. Plasma triglyceride and high density lipoprotein cholesterol as predictors of ischaemic heart disease in British men. The Caerphilly and Speedwell Collaborative Heart Disease Studies. *Br Heart J*. 1992;68(1):60–66.
- 59. Tillin T, Forouhi NG, McKeigue PM, et al. Southall And Brent REvisited: cohort profile of SABRE, a UK populationbased comparison of cardiovascular disease and diabetes in people of European, Indian Asian and African Caribbean origins. *Int J Epidemiol*. 2012;41(1):33–42.
- 60. Kuh D, Pierce M, Adams J, et al. Cohort profile: updating the cohort profile for the MRC National Survey of Health and Development: a new clinic-based data collection for ageing research. *Int J Epidemiol*. 2011;40(1):e1–e9.
- 61. Marmot M, Brunner E. Cohort profile: the Whitehall II study. *Int J Epidemiol*. 2005;34(2):251–256.
- 62. Nang EE, Khoo CM, Tai ES, et al. Is there a clear threshold for fasting plasma glucose that differentiates between those with and without neuropathy and chronic kidney disease?: the Singapore Prospective Study Program. *Am J Epidemiol*. 2009;169(12):1454–1462.
- 63. Leitsalu L, Haller T, Esko T, et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. *Int J Epidemiol*. 2015;44(4):1137–1147.
- 64. Kannel WB, Feinleib M, McNamara PM, et al. An investigation of coronary heart disease in families. The Framingham offspring study. *Am J Epidemiol*. 1979;110(3):281–290.

- 65. Tsao CW, Vasan RS. The Framingham Heart Study: past, present and future. Int J Epidemiol. 2015;44(6):1763–1766.
- 66. Calle EE, Rodriguez C, Jacobs EJ, et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer. 2002;94(2):500-511.
- 67. Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002; 5(6B):1113-1124.
- 68. Harada S, Takebayashi T, Kurihara A, et al. Metabolomic profiling reveals novel biomarkers of alcohol intake and alcohol-induced liver injury in community-dwelling men. Environ Health Prev Med. 2016;21:18-26.
- 69. Liesenfeld DB, Grapov D, Fahrmann JF, et al. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study. Am J Clin Nutr. 2015;102(2): 433–443.
- 70. Kraus WE, Granger CB, Sketch MH, Jr., et al. A guide for a cardiovascular genomics biorepository: the CATHGEN experience. J Cardiovasc Transl Res. 2015;8(8):449-457.
- 71. Price JF, Reynolds RM, Mitchell RJ, et al. The Edinburgh Type 2 Diabetes Study: study protocol. BMC Endocr Disord. 2008:8:18.
- 72. Barrios C, Zierer J, Wurtz P, et al. Circulating metabolic biomarkers of renal function in diabetic and non-diabetic populations. Sci Rep. 2018;8:15249.
- 73. John EM, Hopper JL, Beck JC, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375-R389.
- 74. de Oliveira CM, Pereira AC, de Andrade M, et al. Heritability of cardiovascular risk factors in a Brazilian population: Baependi Heart Study. BMC Med Genet. 2008;9:32.
- 75. Bacon MC, von Wyl V, Alden C, et al. The Women's Interagency HIV Study: an observational cohort brings clinical sciences to the bench. Clin Diagn Lab Immunol. 2005;12(9):1013-1019.
- 76. Qi Q, Hua S, Clish CB, et al. Plasma tryptophan-kynurenine metabolites are altered in human immunodeficiency virus infection and associated with progression of carotid artery atherosclerosis. Clin Infect Dis. 2018;67(2):235-242.
- 77. Wilson KM, Kasperzyk JL, Rider JR, et al. Coffee consumption and prostate cancer risk and progression in the Health Professionals Follow-up Study. J Natl Cancer Inst. 2011;103(11):876-884.
- 78. Colditz GA, Hankinson SE. The Nurses' Health Study: lifestyle and health among women. Nat Rev Cancer. 2005; 5(5):388-396.
- 79. Elliott P, Vergnaud AC, Singh D, et al. The Airwave Health Monitoring Study of police officers and staff in Great Britain: rationale, design and methods. Environ Res. 2014;134: 280-285.
- 80. Wright J, Small N, Raynor P, et al. Cohort profile: the Born in Bradford multi-ethnic family cohort study. Int J Epidemiol. 2013;42(4):978-991.
- 81. Pasupathy D, Dacey A, Cook E, et al. Study protocol. A prospective cohort study of unselected primiparous women: the pregnancy outcome prediction study. BMC Pregnancy Childbirth. 2008;8:51.
- 82. Boyd A, Golding J, Macleod J, et al. Cohort profile: the "children of the 90s"—the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013;42(1):111-127.

- 83. Näntö-Salonen K, Kupila A, Simell S, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a doubleblind, randomised controlled trial. *Lancet*. 2008;372(9651): 1746-1755.
- 84. Murphy RA, Moore SC, Playdon M, et al. Metabolites associated with lean mass and adiposity in older black men. J Gerontol A Biol Sci Med Sci. 2017;72(10):1352-1359.
- 85. Moayyeri A, Hammond CJ, Valdes AM, et al. Cohort profile: TwinsUK and Healthy Ageing Twin Study. Int J Epidemiol. 2013;42(1):76-85.
- 86. Chow WH, Chrisman M, Daniel CR, et al. Cohort profile: the Mexican American Mano a Mano Cohort. Int J Epidemiol. 2017;46(2):e3.
- 87. Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the Human Metabolome Database for 2018. Nucleic Acids Res. 2018;46(D1):D608-D617.
- 88. Kim S, Chen J, Cheng T, et al. Pubchem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019; 47(D1):D1102-D1109.
- 89. Pence HE, Williams A. ChemSpider: an online chemical information resource. *J Chem Educ*. 2010;87(11):1123–1124.
- 90. Yet I, Menni C, Shin SY, et al. Genetic influences on metabolite levels: a comparison across metabolomic platforms. PLoS One. 2016;11(4):e0153672.
- 91. Suhre K, Meisinger C, Doring A, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010;5(11):e13953.
- 92. North American Association of Central Cancer Registries. https://www.naaccr.org/certified-registries/. Published July 7, 2017. Accessed November 1, 2018.
- 93. Rich-Edwards JW, Corsano KA, Stampfer MJ. Test of the National Death Index and Equifax Nationwide Death Search. Am J Epidemiol. 1994;140(11):1016-1019.
- 94. Calle EE, Terrell DD. Utility of the National Death Index for ascertainment of mortality among Cancer Prevention Study II participants. Am J Epidemiol. 1993;137(2):235-241.
- 95. Zanetti R, Schmidtmann I, Sacchetto L, et al. Completeness and timeliness: cancer registries could/should improve their performance. Eur J Cancer. 2015;51(9):1091-1098.
- 96. Rohrmann S, Overvad K, Bueno-de-Mesquita HB, et al. Meat consumption and mortality—results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013;11:63.
- 97. Sud M, Fahy E, Cotter D, et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016;44(D1):D463-D470.
- 98. Haug K, Salek RM, Conesa P, et al. MetaboLights—an openaccess general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013; 41(Database issue):D781-D786.
- 99. Sansone SA, Rocca-Serra P, Field D, et al. Toward interoperable bioscience data. Nat Genet. 2012;44(2):121-126.
- 100. Siskos AP, Jain P, Romisch-Margl W, et al. Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma. Anal Chem. 2017; 89(1):656-665.
- 101. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-310.
- 102. Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological epidemiology. Int J Epidemiol. 2016;45(6): 1866-1886.
- 103. Tzoulaki I, Ebbels TM, Valdes A, et al. Design and analysis of metabolomics studies in epidemiologic research: a primer

- on -omic technologies. *Am J Epidemiol*. 2014;180(2): 129–139.
- 104. Blank JB, Cawthon PM, Carrion-Petersen ML, et al. Overview of recruitment for the Osteoporotic Fractures in Men study (MrOS). Contemp Clin Trials. 2005;26(5):557–568.
- 105. Miller JW, Beresford SA, Neuhouser ML, et al. Homocysteine, cysteine, and risk of incident colorectal cancer in the Women's Health Initiative observational cohort. Am J Clin Nutr. 2013;97(4):827–834.
- 106. Padilha K, Venturini G, de Farias Pires T, et al. Serum metabolomics profile of type 2 diabetes mellitus in a Brazilian rural population. *Metabolomics*. 2016;12(10):156.
- Menni C, Zhai G, Macgregor A, et al. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. *Metabolomics*. 2013;9(2):506–514.
- 108. Gathungu RM, Bird SS, Sheldon DP, et al. Identification of metabolites from liquid chromatography-coulometric array detection profiling: gas chromatography-mass spectrometry and refractionation provide essential information orthogonal to LC-MS/microNMR. *Anal Biochem.* 2014;454:23–32.
- Zhu J, Djukovic D, Deng L, et al. Colorectal cancer detection using targeted serum metabolic profiling. *J Proteome Res*. 2014;13(9):4120–4130.

- 110. Edmands WM, Ferrari P, Rothwell JA, et al. Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. *Am J Clin Nutr.* 2015;102(4):905–913.
- 111. Chan Q, Loo RL, Ebbels TM, et al. Metabolic phenotyping for discovery of urinary biomarkers of diet, xenobiotics and blood pressure in the INTERMAP Study: an overview. *Hypertens Res.* 2017;40(4):336–345.
- 112. Soga T, Igarashi K, Ito C, et al. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. *Anal Chem.* 2009;81(15):6165–6174.
- 113. Evans AM, Bridgewater BR, Liu Q, et al. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. *Metabolomics*. 2014;4(2):132.
- Soininen P, Kangas AJ, Wurtz P, et al. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. *Circ Cardiovasc Genet*. 2015; 8(1):192–206.
- 115. Wikoff WR, Hanash S, DeFelice B, et al. Diacetylspermine is a novel prediagnostic serum biomarker for non-small-cell lung cancer and has additive performance with pro-surfactant protein B. *J Clin Oncol*. 2015;33(33):3880–3886.