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The Consortium of Metabolomics Studies (COMETS) was established in 2014 to facilitate large-scale collabora-
tive research on the human metabolome and its relationship with disease etiology, diagnosis, and prognosis.
COMETS comprises 47 cohorts from Asia, Europe, North America, and South America that together include more
than 136,000 participants with blood metabolomics data on samples collected from 1985 to 2017. Metabolomics
data were provided by 17 different platforms, with the most frequently used labs being Metabolon, Inc. (14 cohorts),
the Broad Institute (15 cohorts), and Nightingale Health (11 cohorts). Participants have been followed for a median
of 23 years for health outcomes including death, cancer, cardiovascular disease, diabetes, and others; many of the
studies are ongoing. Available exposure-related data include common clinical measurements and behavioral fac-
tors, as well as genome-wide genotype data. Two feasibility studies were conducted to evaluate the comparability
of metabolomics platforms used by COMETS cohorts. The first study showed that the overlap between any 2 differ-
ent laboratories ranged from 6 to 121 metabolites at 5 leading laboratories. The second study showed that the
median Spearman correlation comparing 111 overlapping metabolites captured by Metabolon and the Broad Insti-
tute was 0.79 (interquartile range, 0.56–0.89).

cancer; cohort; diabetes; genetics; heart disease; metabolomics; prospective

Abbreviations: COMETS, Consortium of Metabolomics Studies; EDTA, ethylenediaminetetraacetic acid; HMDB, Human
Metabolome Database; MS, mass spectrometry.

Metabolomics is the systematic study of the small molecule
constituents of a biological system, typically involving the mea-
surement of hundreds to thousands of metabolites. Metabolomics
analyses currently employ a variety of platforms and analytical
technologies, none of which measure all metabolites. Recently,
metabolomics platforms have improved remarkably in sensitivity
andmetabolite coverage, leadingmany researchers, including epi-
demiologists, to take increased interest in this research area.Meta-
bolomics studies have led to the discovery of new metabolic
aspects of complex chronic diseases such as diabetes (1–4),
cardiovascular disease (5–7), renal disease (8), and cancer (9–13),

and have yielded new insights into the genome (14–20). Metabo-
lomics studies have also identified biomarkers of blood pressure
(21), obesity (22–24), diet and nutrition (25–35), physical activity/
sedentary behavior (36), reproductive factors (37, 38), and phar-
macological therapies (39).

These studies provided important insights about the humanme-
tabolome, but because metabolomics is expensive ($200–$300
per sample), they have been small (e.g., <1,000 participants)
and with limited demographic and/or socioeconomic diversity.
One means to address these issues is to aggregate data sets and
resources within ametabolomics consortium. Such a consortium
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could rapidly attain large sample sizes and increase demo-
graphic and geographical diversity. In addition, a consortium can
pool expertise frommultiple disciplines—such as metabolomics,
chemistry, epidemiology, bioinformatics, computational biol-
ogy, and biostatistics—to improve the conduct of such research.

We describe herein the development of such a consortium, the
Consortium of Metabolomics Studies (COMETS) (40). The ob-
jectives of this report are to introduce COMETS to the research
community at large and describe its participant characteristics,
metabolomics assays, and available questionnaire/clinical data.
In addition, we describe 2 feasibility studies: 1) a study that enu-
merates the metabolites measured by 5 leading platforms and
establishes their overlap; and 2) a study that compares blood
metabolite levels obtained by 2 leading platforms when tested
on split samples.

METHODS

Design of the COMETS consortium

The COMETS consortium was initiated at the “Think Tank
on Metabolomics and Prospective Cohorts” (October 28–29,
2014, in Rockville, Maryland), which was supported and con-
vened by the US National Cancer Institute. Invitees were iden-
tified by searching the literature (including hand search of citations)
for cohort studies with blood metabolomics data (identified meta-
bolites only) and through discussions with invitees to determine
whetherwemissed key cohorts or investigators. In total, 34 investi-
gators representing 23 prospective cohorts and 2 existing research
consortia attended and ultimately agreed to initiate the COMETS
consortium.

COMETS includes prospective cohort studies that meet
2 criteria: 1) the cohort includes ≥100 participants with meta-
bolites of known chemical identity measured in blood (plasma
or serum) using mass spectrometry (MS), nuclear magnetic res-
onance spectroscopy, or other multianalyte analytical technol-
ogy (e.g., coularray); and 2) cohort participants are followed
after blood collection for outcomes (e.g., mortality, cardiovas-
cular disease, diabetes, and/or cancer).

COMETS has employed a rolling enrollment and, as of April
2018, included 47 prospective cohorts fromAsia, Europe, North
America, and South America (Figure 1, Web Table 1, available
at https://academic.oup.com/aje). Participants in these cohort
studies were recruited for varying purposes and from different
source populations, as follows: 1) 8 cohorts initiated as random-
ized clinical trials (41–49); 2) 16 cohorts that were population-
based or representative of a given geographical area (4, 18, 36,
50–65); 3) 3 cohorts consisting of volunteers from defined geo-
graphical areas (66–68); 4) 6 cohorts recruited from participants
with colorectal cancer (69), cardiovascular disease (70), diabetes
(71, 72) or families of persons with these diseases (73, 74); 5)
1 study of participants with human immunodeficiency virus
or at high risk of human immunodeficiency virus (75, 76); 6)
4 cohorts recruited from specific occupational groups (77–79);
7) 6 cohorts—including 2 of the randomized clinical trials
above—that recruited pregnant mothers and/or their recently
born children (42, 46, 80–83); and, 8) 4 cohorts based on other
participant factors, namely elderly participants, including 1 of
the studies above (54, 84), twins (85), andMexican-Americans
residing in Houston, Texas (86).

COMETS research projects are initiated when interested
investigators submit a formal proposal describing the aims,
outcomes, exposures, covariates, and analytical approach of
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Figure 1. Geographical locations of studies participating in the Consortium of Metabolomics Studies, multiple countries, established in 2014 (ab-
breviations are defined in Table 1).
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Table 1. Participating Studies and the Number of Participants with Metabolomics Data, Consortium of Metabolomics Studies, Multiple Countries,
Established in 2014

First Author, Year
(Reference No.) Study Namea Study

Abbreviation Region
Baseline

Examination
Dateb

Latest
Follow-up

Year

No. With
Metabolomics

Datac

Elliott, 2014 (79) Airwave Health Monitoring Study AIRWAVE Europe 2004 Ongoing 4,000

The ATBC cancer prevention
study group, 1994 (41)

Alpha-Tocopherol, Beta-Carotene
Cancer Prevention Study

ATBC Europe 1985–1988 Ongoing 950

The ARIC investigators, 1989 (50) Atherosclerosis Risk in
Communities Study

ARIC North
America

1987–1989 Ongoing 4,032

Boyd, 2013 (82) Avon Longitudinal Study of Parents
and Children

ALSPAC Europe 1990–1993 Ongoing 4,572
mothers
7,176

offspring

deOliveira, 2008 (74) Baependi Heart Study BHS South
America

2010–2013 Ongoing 939

Wright, 2013 (80) Born in Bradford BiB Europe 2007–2011 Ongoing 10,000
mothers

John, 2004 (73) Breast Cancer Family Registry BCFR North
America

1995 2017 100

Dale, 2013 (57) BritishWomen’s Heart and Health
Study

BWHHS Europe 1999–2001 Ongoing 3,780

Bainton, 1992 (58) Caerphilly Prospective Study CaPS Europe 1989–1993 Ongoing 1,230

Calle, 2002 (66) Cancer Prevention Study II CPS-II North
America

1992–1993 Ongoing 2,266

Kraus, 2015 (70) Catheterization Genetics CATHGEN North
America

2001–2010 Ongoing 3,869

Childhood AsthmaManagement
ProgramResearchGroup,
1999 (42)

Childhood AsthmaManagement
Program

CAMP North
America

1991 1999 1,041

Liesenfeld, 2015 (69) ColoCare COLO Europe and
North

America

2010–2017 Ongoing 359

Illig, 2010 (18) Cooperative Health Research in the
Region of Augsburg

KORA Europe 1986 2009 3,000

Oresic, 2008 (48) Diabetes Prediction and Prevention
Birth Cohort

DIPP Europe 1994–2017 Ongoing 534

Diabetes Prevention Program
Research Group, 2015 (43)

Diabetes Prevention Program and
Diabetes Prevention Program
Outcomes Study

DPP North
America

1996–1999 Ongoing 2,015

Price, 2008 (71) Edinburgh Type 2 Diabetes Study ET2DS Europe 2006–2007 Ongoing 1,060

Leitsalu, 2015 (63) Estonia BiobankObesity Extremes Estonia OE Europe 2003–2010 Ongoing 298

Riboli, 2002 (67) European Prospective Investigation
into Cancer and Nutrition

EPIC Europe 1992–2000 Ongoing 15,000

Clifton, 2017 (51) Fenland Study Fenland Europe 2005/2015 Ongoing 10,555

Kannel, 1979, and Tsao, 2015
(64, 65)

FraminghamHeart Study,
Generation 2

FHS2 North
America

1971 Ongoing 2,526

Kannel, 1979, and Tsao, 2015
(64, 65)

FraminghamHeart Study,
Generation 3

FHS3 North
America

2002 Ongoing 998

Barrios, 2018 (72) GenodiabMar GDM Europe 2012–2014 Ongoing 656

Murphy, 2017 (84) Health, Aging and Body
Composition

HABC North
America

1997–1998 Ongoing 319

Wilson, 2011 (77) Health Professionals Follow-up
Study

HPFS North
America

1993–1995 Ongoing 1,059

Chow, 2017 (86) Mano AMano, the Mexican
American Cohort

MAC North
America

2001–2017 Ongoing 300

Kuh, 2011 (60) MRCNational Survey of Health and
Development

MRCNSHD Europe 2006–2010 Ongoing 1,790

Orwoll, 2005, and Blank, 2005
(54, 104)

Osteoporotic Fractures in Men MrOS North
America

2000–2002 Ongoing 1,400

Kolonel, 2000 (52) Multiethnic Cohort MEC North
America

1993–1996 Ongoing 5,436
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a proposed study. If the COMETS Steering Committee ap-
proves the proposal, it is forwarded to cohort representatives
who can then opt in for analysis. These projects will cover a
wide scope of topics and require diverse analytical strategies.
Initially, however, we will focus on meta-analyses conducted
through aggregate results sharing (i.e., each cohort will eval-
uate metabolite-outcome associations individually and send
results centrally for meta-analysis). In addition to producing
meta-analysis effect estimates, we will evaluate heterogeneity
by study, platform, and participant characteristics (e.g., gender,
race, age), and we will account for participant sampling (e.g.,
selection of twins or case-control risk sets) through mixed-effects
modeling.

Survey

We ascertained cohort data by e-mailing a survey to each co-
hort’s representative asking about participant characteristics,

metabolomics measurements, and measurements from ques-
tionnaires or clinical assessments. All cohorts completed the
survey. Missing results on the survey led to a recontact and/
or telephone call until all items were complete. For determin-
ing eligibility, follow-up for disease outcomes was confirmed
by literature search. Cohort representatives verified cohort de-
tails prior to submission.

Feasibility studies

One key challenge in COMETS is that different cohorts
used different metabolomics platforms, and these platforms
vary in which metabolites they measure. A second key chal-
lenge is that platforms might measure metabolites dissimilarly
(i.e., the relative concentrations might differ), ultimately lead-
ing to heterogeneous study-specific estimates and attenuation
of overall meta-analysis estimates. To better understand plat-
form comparability and its implications for future COMETS

Table 1. Continued

First Author, Year
(Reference No.) Study Namea Study

Abbreviation Region
Baseline

Examination
Dateb

Latest
Follow-up

Year

No. With
Metabolomics

Datac

Bild, 2002 (53) Multi-ethnic Study of
Atherosclerosis

MESA North
America

2000–2002 Ongoing 3,831

Colditz, 2005 (78) Nurses’Health Study NHS North
America

1989–1990 Ongoing 1,200

Colditz, 2005 (78) Nurses’Health Study II NHS-II North
America

1996–1999 Ongoing 693

Gaziano, 2012 (44) Physicians’Health Study PHS North
America

1982–1984 Ongoing 224

Pasupathy, 2008 (81) PregnancyOutcomePrediction
study

POPS Europe 2008–2012 Ongoing 923

Prorok, 2000 (45) Prostate, Lung, Colorectal, and
Ovarian Cancer Screening Trial

PLCO North
America

1993–2001 Ongoing 1,742

Shu, 2015 (55) Shanghai Men’s Health Study SMHS Asia 1987–2000 Ongoing 1,006

Xiao, 2016 (36) Shanghai Physical Activity Study SPA Asia 2005–2007 Ongoing 339

Yu, 2016 (4) ShanghaiWomen’s Health Study SWHS Asia 2001–2006 Ongoing 1,990

Nang, 2009 (62) Singapore Prospective Study
Program

SP2 Asia 2004–2007 2016 2,334

Tillin, 2012 (59) Southall and Brent Revisited SABRE Europe 1988–1990 Ongoing 3,304

Harada, 2016 (68) TsuruokaMetabolomics Cohort
Study

TMCS Asia 2012–2015 Ongoing 10,957

Moayyeri, 2013 (85) Twins United Kingdom TwinsUK Europe 1992 Ongoing 7,234

Briley, 2014 (49) UK Pregnancies Better Eating and
Activity Trial

UPBEAT Europe 2009 2012–2013 1,303

Litonjua, 2014 (46) Vitamin D Antenatal Asthma
Reduction Trial

VDAART North
America

2009–2011 Ongoing 651

Marmot, 2005 (61) Whitehall II WH-II Europe 1997–1999 Ongoing 4,762

Cheng, 2015, andMiller, 2013
(47, 105)

Women’s Health Initiative WHI North
America

1993–1998 Ongoing 2,706

Bacon, 2005, andQi, 2018 (75,
76)

Women’s Interagency HIV Study WIHS North
America

2004–2005 Ongoing 411

a Studies are listed in alphabetical order by full study name.
b Baseline for the assessment of metabolomics. This is the time period for which a blood sample was used to generate the metabolomic data but

might not have been the first assessment of the cohort.
c In some studies, metabolomics data are available at multiple time points on the same individuals. For these studies, we report details at the ear-

liest time point for which data are available.
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Table 2. Descriptive Characteristics of ParticipantsWith Metabolomics Data Available, Consortium of Metabolomics Studies, Multiple Countries,
Established in 2014a

Study
Median Age in Years at

Blood Collection
(Range)

No. ofWomen
(n = 81,965)

No. of Men
(n = 54,905)

No.With European
Ancestry

(n = 95,966)

No.With African
Ancestry
(n = 7,898)

No. With Asian
Ancestry

(n = 24,165)

No. With Other
Ancestry
(n = 8,841)

AIRWAVE 42 (19–65) 1,497 2,503 3,835 29 0 136

ATBC 57 (50–69) 0 950 950 0 0 0

ARIC 53 (44–66) 2,420 1,612 1,553 2,479 0 0

ALSPAC
(mothers)

48 (45–51) 4,572 0 4,141 31 34 366

ALSPAC
(offspring)

14 (8–18) 3,732 3,444 6,315 50 51 760

BHS 45 (18–90) 557 382 0 0 0 939

BiB 27 (15–40) 10,000 0 4,200 220 5,170 410

BCFR 52 (26–80) 100 0 100 0 0 0

BWHHS 69 (67–71) 3,780 0 3,780 0 0 0

CaPS 57 (45–59) 0 1,230 1,230 0 0 0

CPS-II 68 (53–83) 1,710 556 2,225 17 0 24

CATHGEN 60 (21–94) 1,577 2,292 2,755 802 0 312

CAMP 9 (5–13) 420 621 711 138 0 192

COLO 63 (51–75) 143 216 359 0 0 0

KORA 56 (25–74) 1,500 1,500 3,000 0 0 0

DIPP 0 (0–15) 294 240 534 0 0 0

DPP 52 (25–85) 1,336 679 1,158 376 0 481

ET2DS 68 (60–75) 530 530 1,060 0 0 0

Estonia OE 39 (20–64) 149 149 298 0 0 0

EPIC 58 (45–80) 7,000 8,000 15,000 0 0 0

Fenland 45 (30–60) 4,905 5,650 10,555 0 0 0

FHS2 55 (26–84) 1,320 1,206 2,526 0 0 0

FHS3 41 (19–72) 529 469 998 0 0 0

GDM 66 (44–94) 257 399 656 0 0 0

HABC 74 (70–79) 0 319 0 319 0 0

HPFS 52 (40–75) 0 1,059 1,006 32 0 21

MAC 38 (20–72) 300 0 0 0 0 300

MRCNSHD 53 (53) 895 895 1,790 0 0 0

MrOS 74 (65–100) 0 1,400 1,321 24 0 55

MEC 68 (47–86) 3,579 1,857 1,066 915 1,748 1,707

MESA 63 (44–84) 1,933 1,898 1,482 934 536 879

NHS 56 (43–69) 1,200 0 1,164 30 0 6

NHS-II 43 (32–54) 693 0 658 21 0 14

PHS 54 (40–85) 0 224 224 0 0 0

POPS 30 (16–48) 923 0 923 0 0 0

PLCO 65 (55–74) 1,492 250 1,700 42 0 0

SMHS 56 (40–75) 0 1,006 0 0 1,006 0

SPA 60 (40–74) 200 139 0 0 339 0

SWHS 56 (40–71) 1,990 0 0 0 1,990 0

SP2 47 (24–79) 1,247 1,087 0 0 2,334 0

SABRE 52 (40–70) 467 2,837 1,572 192 0 1,540

TMCS 62 (34–75) 5,844 5,113 0 0 10,957 0

TwinsUK 50 (16–82) 6,531 703 7,065 69 0 100

UPBEAT 31 (31) 1,303 0 820 311 0 172

Table continues
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projects, we conducted 2 feasibility studies in which we: 1) as-
sessed metabolite overlap for 5 widely used metabolomics plat-
forms; and 2) compared the metabolite values measured by the
2 most widely used metabolomics platforms (Broad Institute,
Cambridge, Massachusetts; and Metabolon, Inc., Morrisville,
North Carolina) when tested on split samples.

Assessment of metabolite overlap for 5 widely used
metabolomics platforms

Currently, no single platform comprehensively assays all me-
tabolites in blood; instead, platforms use customized instrumen-
tation and sample extraction protocols to optimize measurement
of broad classes of metabolites. Consequently, different plat-
forms measure different metabolites. The extent of platform
overlap, however, has not been systematically evaluated. Most
likely, this reflects the difficulty in collating hundreds to thou-
sands of metabolite names in a field that still lacks a standard-
ized nomenclature.

To assess overlap, we collected metabolite names from vol-
unteer COMETS cohorts that used one of 5 metabolomics
platforms (Metabolon, Broad Institute, Biocrates (Innsbruck,
Austria), the West Coast Metabolomics Center (Davis, Cali-
fornia), and Nightingale Health (Helsinki, Finland)). We also
collected relevant metadata provided by these labs, especially
unique identifiers from online metabolite databases such as the
HumanMetabolome Database (HMDB) (87), Pubchem (88),
or Chemspider (89). We used these identifiers and metabolite
names to link metabolite identities from different labs. Metab-
olites with multiple isomers, such as D- and L-glutamate, were
adjudicated using International Chemical Identifier (InChIKey)
values, if available, or (as a last resort) original reported names.
The final product was a table that cross-references metabolites
assessed by each cohort and is easily queried to showmetabolite
overlap for any given combination of cohorts.

Comparing bloodmetabolite levels between 2
metabolomics platforms

Few studies have examined the comparability of metabolite
measurements across different metabolomics platforms when
tested against split samples. To our knowledge, only 2 platforms
used by COMETS cohorts (Metabolon and Biocrates) have had
their metabolomicsmeasurements compared against one another
this way. These 2 platforms had 40 overlapping metabolites and

moderately intercorrelated metabolites values (median correla-
tion of approximately 0.5) (90, 91).

To expand our understanding of platform comparability, we
sent split samples from the Health, Aging and Body Composi-
tion (HABC) cohort (84) to bothMetabolon and the Broad Insti-
tute. In brief, each study participant had multiple vials of
ethylenediaminetetraacetic acid (EDTA) plasma aliquoted dur-
ing initial blood collection and stored at −80°C. We sent
never-thawed aliquots from 40 African-American men partici-
pating in Health, Aging and Body Composition to Metabolon
for analysis on its Orbitrap Elite liquid chromatography MS
platform (positive and negative ion mode) and gas chromatog-
raphy MS. We also sent identically prepared aliquots from
these men to the Broad Institute for analysis on its MS plat-
forms (C8-positive ultra performance liquid chromatography
MS, hydrophilic interaction ultra performance liquid chroma-
tography positive ion mode MS, and hydrophilic interaction
ultra performance liquid chromatography negative ion mode
MS). FromMetabolon, we received data on 610 named meta-
bolites, and from the Broad Institute, we received data on 347
named metabolites. We linked metabolite names across plat-
forms using the HMDB identifiers, whichMetabolon provided

Table 2. Continued

Study
Median Age in Years at

Blood Collection
(Range)

No. ofWomen
(n = 81,965)

No. of Men
(n = 54,905)

No.With European
Ancestry

(n = 95,966)

No.With African
Ancestry
(n = 7,898)

No. With Asian
Ancestry

(n = 24,165)

No. With Other
Ancestry
(n = 8,841)

VDAART 1 (1) 304 347 211 315 0 125

WH-II 65 (50–79) 1,619 3,143 4,762 0 0 0

WHI 68 (62–72) 2,706 0 2,235 295 0 176

WIHS 42 (38–47) 411 0 28 257 0 126

a Descriptive data are provided specifically for participants as of the date of blood sample collection. Number of participants in each study and
definition of all study abbreviations are shown in Table 1.

Figure 2. Spearman correlations between metabolite values mea-
sured at the Broad Institute and Metabolon, Inc., for 111 overlapping
metabolites, Consortium of Metabolomics Studies, multiple countries,
established in 2014. Each bar represents the number of metabolites
within the Spearman correlation interval denoted by the x-axis tick
marks. Themedian correlation across the 111metabolites was 0.79.
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Table 3. Blood Samples and Laboratories Used for Metabolomics, Consortium of Metabolomics Studies, Multiple Countries, Established in
2014a

Study Type of Blood
Specimen

Year of Blood
Collectionb Fasted Status Laboratory Usedc Analytical

Technology

AIRWAVE Serum + EDTA
plasma

Baseline Nonfasted Metabolon, Inc., ICL NPC LC-MS, NMR

ATBC Serum Baseline Fasted Metabolon, Inc. GC-MS, LC-
MS

ARIC Serum Baseline Fasted Metabolon, Inc. GC-MS, LC-
MS

ALSPAC Serum Baseline Mostly Fasted (offspring at age 7
years nonfasted)

Nightingale Health NMR

BHS Serum Baseline Fasted Agilent COE GC-MS

BiB Serum + EDTA
plasma

2007–2010 Fasted Nightingale Health NMR

BCFR EDTA plasma Baseline Nonfasted Metabolon, Inc. LC-MS

BWHHS Serum 1999–2001 Fasted Nightingale Health NMR

CaPS Serum 1989–1993 Fasted Nightingale Health NMR

CPS-II Serum + EDTA
Plasma

1998–2001 Nonfasted Metabolon, Inc. LC-MS

CATHGEN EDTA plasma Baseline Fasted Duke University GC-MS, LC-
MS

CAMP Serum Baseline Nonfasted Broad Institute LC-MS

COLO EDTA plasma Baseline Fasted + nonfasted IARC,WCMC GC-MS, LC-
MS

KORA Serum Baseline Fasted + nonfasted Metabolon, Inc., Biocrates GC-MS, LC-
MS

DIPP Serum + EDTA
plasma

Baseline Nonfasted Örebro University GC-MS, LC-
MS

DPP EDTA plasma Baseline Fasted Broad Institute, Mass. General LC-MS

ET2DS Serum Baseline Fasted Nightingale Health NMR

Estonia
OE

EDTA plasma Baseline Fasted + nonfasted Broad Institute LC-MS

EPIC Serum +
citrated
plasma

Baseline Fasted + nonfasted IARC LC-MS

Fenland Heparin plasma Baseline Fasted Biocrates LC-MS

FHS2 EDTA plasma 1991–1995 Fasted Broad Institute LC-MS

FHS3 EDTA plasma 2002–2005 Fasted Broad Institute LC-MS

GDM Serum Baseline Fasted Nightingale Health NMR

HABC EDTA plasma 1999–2000 Fasted Broad Institute LC-MS

HPFS EDTA plasma 1993–1995 Fasted + nonfasted Broad Institute LC-MS

MAC EDTA plasma Baseline Nonfasted Fred Hutch LC-MS, NMR

MRC
NSHD

Serum 2006–2010 Fasted + nonfasted Nightingale Health NMR

MrOS Serum Baseline Fasted Pacific Northwest National Labs,
WCMC

GC-MS, LC-
MS

MEC Heparin plasma 1994–2016 Fasted Brigham andWomen’s Hospital Coularray

MESA EDTA plasma Baseline Fasted ICL NPC LC-MS, NMR

NHS Heparin plasma 1989–1990 Fasted + nonfasted Broad Institute LC-MS

NHS-II Heparin plasma 1996–1999 Fasted + nonfasted Broad Institute LC-MS

PHS EDTA plasma Baseline Fasted + nonfasted Broad Institute LC-MS

POPS Serum Baseline Nonfasted Metabolon, Inc. LC-MS

PLCO Serum Baseline Nonfasted Metabolon, Inc., Broad Institute, Mass.
General

GC-MS, LC-
MS

Table continues
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for 385 of its metabolites and the Broad Institute provided for
332 of its metabolites. To ascertain other potential overlapping
metabolites, we separately evaluated all pairwise correlations
across platforms and flagged metabolite pairs with high corre-
lations (i.e., Spearman correlation≥ 0.7). More complete details
on study participants, sample extractions, and instrumentation
are provided inWeb Appendix 1.

RESULTS

In total, the 47 cohorts included 136,870 participants with
bloodmetabolomicsmeasurements (Table 1), with numbers still
likely to grow further. For most cohorts, participant enrollment
and blood sample collection occurred during the 1990s, although
some cohorts collected samples earlier (e.g., the Nurses’ Health
Study in 1989) (78). Follow-up for disease outcomes is still ongo-
ing for nearly all studies.

Selected baseline characteristics of participants of each cohort
are summarized in Table 2. Of the 136,870 participants with me-
tabolome profiles, 81,965 (59.9%) were women. The distribution
of different groups of ethnic ancestry was 70.1% European,
17.6% Asian (13.7% East Asian and 3.9% South Asian), 5.8%
African, 1.8% Hispanic, 0.5% Native Hawaiian, and 4.1% other
mixed population. Study participants ranged from 0 (newborn) to
100 years of age at the time of blood collection, with a median
age of 51 years.

COMETS cohorts use both active and passive follow-up
methods to track participants longitudinally for disease outcomes
such as diabetesmellitus, heart disease, and cancer (WebTable 2).
Forty-six of 47 COMETS cohorts use active follow-up methods,
including tracking outcomes through mailed questionnaires,
phone calls, or during follow-up visits. For active follow-up
methods, each cohort further verifies outcomes through medi-
cal record review. Thirty-four of the 47 cohorts also use passive
follow-up methods, such as linkages to electronic health records

Table 3. Continued

Study Type of Blood
Specimen

Year of Blood
Collectionb Fasted Status Laboratory Usedc Analytical

Technology

SMHS EDTA plasma Baseline Fasted + nonfasted Metabolon, Inc., Broad Institute,
Metabo-Profile R&D Lab

GC-MS, LC-
MS

SPA EDTA plasma Baseline Fasted + nonfasted Metabolon, Inc. GC-MS, LC-
MS

SWHS EDTA plasma Baseline Fasted + nonfasted Metabolon, Inc., Broad Institute,
Metabo-Profile R&D Lab

GC-MS, LC-
MS

SP2 EDTA plasma Baseline Fasted Duke-NUS, NUSSLING GC-MS, LC-
MS

SABRE Serum 1988–1990 Fasted + nonfasted (post OGTT) Nightingale Health NMR

TMCS Serum + EDTA
plasma

Baseline Fasted Keio University CE-MS, LC-
MS

TwinsUK Serum + EDTA
plasma

1995–2013 Fasted Metabolon, Inc., Biocrates, Nightingale
Health

GC-MS, LC-
MS, NMR

UPBEAT Serum + EDTA
plasma

2009–2013 Nonfasted Nightingale Health NMR

VDAART EDTA plasma Baseline Nonfasted Metabolon, Inc. LC-MS

WH-II Serum 1997–1999 Fasted + nonfasted Nightingale Health NMR

WHI EDTA plasma Baseline Fasted Broad Institute, Metabolon, Inc. LC-MS

WIHS Citrated plasma Baseline Fasted Broad Institute LC-MS

Abbreviations: CE-MS, capillary electrophoresis–mass spectrometry; EDTA, ethylenediaminetetraacetic acid; GC-MS, gas chromatography–
mass spectrometry; LC-MS, liquid chromatography–mass spectrometry; NMR, nuclear magnetic resonance; OGTT, oral glucose tolerance test.

a Number of participants in each study and definitions of the study abbreviations are shown in Table 1.
b For those studies with metabolomics data at multiple time points on the same individuals, we report details at the earliest time point for which

data are available.
c Details on metabolomics platforms are as follows: Agilent COE refers to the Agilent Center of Excellence, Brazil (106); Biocrates refers to com-

mercial AbsoluteIDQtm kits sold by Biocrates Life Sciences AG (Innsbruck, Austria) used by various academic laboratories (107); Brigham and
Women’s Hospital refers to the laboratory of Bruce Kristal (108); Broad Institute refers to the lab of Clary Clish (9); Duke University refers to the
Duke Molecular Physiology Institute Metabolomics Core (22); Duke-NUS refers to DukeMetabolomics Core Facility—National University of Singa-
pore; Fred Hutch refers to the laboratory of Daniel Raftery at the Northwest Metabolomics Research Center at the University of Washington (109);
IARC refers to the laboratory of Augustin Scalbert at the International Agency for Research on Cancer (110); ICL NPC—Imperial College London
National Phenome Centre—refers to the laboratory of Jeremy Nicolson, Elaine Holmes, and colleagues (111); Keio University refers to the labora-
tory of Tomoyoshi Soga (112); Mass General—Massachusetts General Hospital—refers to the former laboratory of Robert Gerszten (1); Metabo-
lon, Inc., refers to the commercial lab Metabolon, Inc., located in North Carolina (113); Nightingale Health refers to the commercial laboratory
formerly known as Brainshake Inc. and is the same as the Biocentre Oulu platform of the Mika Ala-Korpela lab in Finland (114); NUS SLING refers
to National University of Singapore Lipidomics Incubator; Örebro University refers to the laboratory and platforms byMatej Oresic and Tuulia Hyöty-
läinen (previously at VTT, Finland, and Steno Diabetes Center, Denmark); Pacific Northwest Labs refers to the laboratory of TomMetz; andWCMC
—West Coast Metabolomics Center—refers to the laboratory of Oliver Fiehn (115).
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Table 4. Measurements Available for ParticipantsWith Metabolomics Data Available, Consortium of Metabolomics
Studies, Multiple Countries, Established in 2014a

Studyb Smoking Status
(n = 46)

Alcohol Intake
(n = 44)

BMI
(n = 47)

Waist
Circumference

(n = 37)

LTPA
(n = 35)

Diet (FFQ)
(n = 36)

Educational
Level

(n = 44)

AIRWAVE Yes Yes Yes Yes Yes Yes Yes

ATBC Yes Yes Yes No Yes Yes Yes

ARIC Yes Yes Yes Yes Yes Yes Yes

ALSPAC Yes Yes Yes Yes Yes Yes Yes

BHS Yes Yes Yes Yes Yes Yes Yes

BiB Yes Yes Yes No Yes Yes Yes

BCFR Yes Yes Yes No No No Yes

BWHHS Yes Yes Yes Yes Yes Yes Yes

CaPS Yes Yes Yes Yes Yes Yes Yes

CPS-II Yes Yes Yes Yes Yes Yes Yes

CATHGEN Yes No Yes No No No No

CAMP Yes Yes Yes Yes No No Yes

COLO Yes Yes Yes Yes Yes Yes Yes

KORA Yes Yes Yes Yes No No Yes

DIPP No No Yes No No Yes No

DPP Yes Yes Yes Yes Yes Yes Yes

ET2DS Yes Yes Yes Yes No No Yes

Estonia OE Yes Yes Yes Yes Yes Yes Yes

EPIC Yes Yes Yes Yes Yes Yes Yes

Fenland Yes Yes Yes Yes Yes Yes Yes

FHS2 Yes Yes Yes Yes Yes Yes Yes

FHS3 Yes Yes Yes Yes Yes Yes Yes

GDM Yes No Yes No No No No

HABC Yes Yes Yes Yes Yes Yes Yes

HPFS Yes Yes Yes Yes Yes Yes Yes

MAC Yes Yes Yes Yes No No Yes

MRCNSHD Yes Yes Yes Yes Yes Yes Yes

MrOS Yes Yes Yes No Yes Yes Yes

MEC Yes Yes Yes Yes Yes Yes Yes

MESA Yes Yes Yes Yes Yes Yes Yes

NHS Yes Yes Yes Yes Yes Yes Yes

NHS-II Yes Yes Yes Yes Yes Yes Yes

PHS Yes Yes Yes Yes Yes No Yes

POPS Yes Yes Yes No No No Yes

PLCO Yes Yes Yes No Yes Yes Yes

SMHS Yes Yes Yes Yes Yes Yes Yes

SPA Yes Yes Yes Yes Yes Yes Yes

SWHS Yes Yes Yes Yes Yes Yes Yes

SP2 Yes Yes Yes Yes Yes Yes Yes

SABRE Yes Yes Yes Yes Yes Yes Yes

TMCS Yes Yes Yes Yes Yes Yes Yes

TwinsUK Yes Yes Yes Yes Yes Yes Yes

UPBEAT Yes Yes Yes Yes Yes Yes Yes

VDAART Yes Yes Yes Yes No Yes Yes

Table continues
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from hospitalization or registries for cancer or death (e.g., the
National Death Index), which helps to ensure complete and
objective follow-up. Our review of passive follow-up methods
indicates that US cancer registries for our cohorts are ≥95%
complete (92) and that the US National Death Index is 93%–

98% complete (93, 94). For European cohorts, cancer regis-
tries are ≥90% complete for 90% of registries (self-audited)
(95), and vital status is approximately 98% complete, accord-
ing to European Prospective Investigation Into Cancer and
Nutrition (EPIC) data (96). Across the 47 participating cohorts in
COMETS, the median follow-up for disease outcomes was 23
years.

Details on the blood samples and metabolomics platforms
used for each cohort are presented in Table 3. Blood samples
for metabolomics profiling primarily include serum (24 out of
47 cohorts) or plasma (31 out of 47 cohorts). Samples were
collected predominantly at study baseline and include fasted-
only samples (23 cohorts), nonfasted samples (10 cohorts), or
a mix of fasted and nonfasted samples (14 cohorts). Seventeen
metabolomics labs were used by COMETS cohorts, with the
most heavily used platforms being those of Metabolon (14 co-
horts), the Broad Institute (15 cohorts), and Nightingale Health
(11 cohorts). After accounting for use of multiple platforms, 34
of the 47 cohorts in total used at least one of these 3 platforms.
Other platforms include, but are not limited to, Biocrates, Impe-
rial College London National Phenome Centre, Duke Molecular
Physiology Institute, and theWest CoastMetabolomics Center.

Each cohort study collected data on demographic and health-
related participant characteristics during study visits and/or
through questionnaires (Table 4). Overall, 46 cohorts in COM-
ETS assessed smoking status, 44 asked about alcohol intake,
47 collected body mass index, 37 assessed waist circumfer-
ence, 35 inquired about leisure-time physical activity, 36 cohorts
ascertained diet, and 44 evaluated educational levels and/or other
measures of socioeconomic position. Many cohort studies also
included clinical measurements, such as systolic and diastolic
blood pressure (n= 41), high-density lipoprotein values (n = 39),
C-reactive protein values (n = 38), and fasting glucose values
(n = 37) (Table 5). In addition to traditional clinical informa-
tion, genome-wide single nucleotide polymorphism data are
available for about 68% of COMETS participants (93,082
out of 136,870).

In ourfirst feasibility study, therewere 1,874metabolitesmea-
sured across the 5 platforms tested. Of these, 1,550 had assigned
identities, and 1,111 also had unique identifiers from HMDB,

Pubchem, or other online databases that allowed us to match
across platforms. A complete listing ofmetabolites, the platforms
eachwasmeasured on, and other details is inWeb Table 3.

The specific numbers of metabolites by platform (cohort) were
as follows: Metabolon (Atherosclerosis Risk in Communi-
ties Study), 1,158 (includes 293 unidentified metabolites);
Broad Institute (Health, Aging and Body Composition Study),
350; Biocrates (Fenland Study), 187; West Coast Metabolo-
mics Center (ColoCare), 439; and Nightingale Health (Prostate,
Lung, Colorectal, and Ovarian Cancer Screening Trial), 236
(Table 6). The overlap in metabolites between platforms ranged
frommoderate (e.g., ~100metabolites) to modest (e.g., approx-
imately 20 metabolites). For example, for Metabolon the over-
lap in metabolites with other platforms was as follows: Broad
Institute, 121; Biocrates, 24; West Coast Metabolomics Center,
92; Nightingale Health, 16. For the 3 platforms used most often
by COMETS cohorts—Metabolon, the Broad Institute, and
Nightingale Health—14 metabolites were measured in common
by all 3.

Only 2 of the 5 metabolomics platforms, Nightingale Health
and Biocrates, quantified any metabolites in terms of absolute
concentrations. In total, they quantified 31 metabolites: Night-
ingale Health quantified 25 metabolites, Biocrates quantified
14 metabolites, and 8 of these metabolites were quantified in
common on both platforms (as listed inWeb Table 3).

In our second feasibility study, 111 metabolites overlapped
between Metabolon and the Broad Institute and their values
were moderately to strongly correlated. Specifically, over the 111
metabolites, the median Spearman correlation across platforms
was 0.79 and the interquartile range was 0.56–0.89 (Figure 2;
Web Table 4). Pearson correlations were similar (median, 0.78;
interquartile range, 0.65–0.91). Given some minor measure-
ment error and different techniques for each platform, these cor-
relations are high. Beyond the 111 overlapping metabolites, we
found another 37 metabolite pairs with strongly correlated val-
ues (Web Table 5). These were biologically interrelated meta-
bolites (e.g., lactose andmaltose) rather than identical metabolites,
suggesting our match on HMDB identifiers was reasonably
complete.

DISCUSSION

In this report, we described key details of COMETS, which—
with more than 136,000 participants—is the world’s largest

Table 4. Continued

Studyb Smoking Status
(n = 46)

Alcohol Intake
(n = 44)

BMI
(n = 47)

Waist
Circumference

(n = 37)

LTPA
(n = 35)

Diet (FFQ)
(n = 36)

Educational
Level

(n = 44)

WH-II Yes Yes Yes Yes No No Yes

WHI Yes Yes Yes Yes Yes Yes Yes

WIHS Yes Yes Yes Yes No No Yes

Abbreviations: BMI, bodymass index; FFQ, Food FrequencyQuestionnaire; LTPA, leisure-time physical activity.
a
“Yes” indicates that the measurement is available for all participants; “no” indicates that the measurement is not

available for any of the participants.
b The definitions of all study abbreviations appear in Table 1.
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Table 5. Availablea Clinical Measurements of ParticipantsWith Metabolomics Data Available,, Consortium of Metabolomics Studies, Multiple
Countries, Established in 2014

Studyb SBP
(n = 41)

DBP
(n = 41)

HDL
(n = 39)

LDL
(n = 38)

TG
(n = 37)

TC
(n = 38)

CRP
(n = 38)

IL-6
(n = 32)

HbA1c
(n = 33)

Fasting
Glucose
(n = 37)

Fasting
Insulin
(n = 30)

No. With
GWASData
(n = 93,082)

AIRWAVE Yes Yes Yes Yes Yes Yes Yes No Yes P P 4,000

ATBC Yes Yes Yes No No Yes No No No P P 475

ARIC Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 3,650

ALSPAC Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 7,176

BHS Yes Yes Yes Yes Yes Yes No No Yes Yes No 939

BiB Yes Yes Yes Yes Yes Yes Yes No No Yes Yes 10,000

BCFR No No No No No No No No No No No 0

BWHHS Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 3,800

CaPS Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes 1,000

CPS-II No No P P No P P No No No No 1,450

CATHGEN Yes Yes Yes Yes Yes Yes P No P P No 3,255

CAMP Yes Yes No No No No No No Yes No No 1,041

COLO P P P P P No Yes No No No No 408

KORA Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 3,000

DIPP No No No No No No No No Yes Yes No 0

DPP Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 1,815

ET2DS Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 1,060

Estonia OE Yes Yes P P P P P P No P No 298

EPIC P P P P P P P P P P P 5,000

Fenland Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 9,851

FHS2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 2,526

FHS3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 998

GDM Yes Yes Yes Yes Yes Yes No No Yes Yes No 656

HABC Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 160

HPFS Yes Yes P P P P P P No No No 953

MAC No No No No No No P P Yes No No 0

MRC
NSHD

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0

MrOS Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 1,391

MEC P P Yes Yes Yes Yes Yes P No Yes Yes 4,431

MESA Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 3,772

NHSc P P P P P P P P P No P 1,000

NHS-IIc P P P P P P P P P No P 100

PHS Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 224

POPS Yes Yes No No No No No No No No No 0

PLCO No No No No No No No No No No No 530

SMHS Yes Yes P P P P P P P P P 656

SPA Yes Yes No No No No No No No No No 295

SWHS Yes Yes P P P P P P P P No 1,300

SP2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 1,705

SABRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 3,000

TMCS Yes Yes Yes Yes Yes Yes Yes No Yes Yes P 1,200

TwinsUK Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes 6,232

UPBEAT Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 1,303

VDAART No No No No No No No No No No No 651

Table continues
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metabolomics consortium. Our survey found that COMETS cap-
tures a broad range of demographics, with many women (59.9%
of participants), younger and older participants (range of 0–100
years), and diverse geography (many participants from each
of North America, South America, Europe, andAsia). Key ques-
tionnaire data needed for epidemiologic research (e.g., smoking
status) were collected by nearly all COMETS cohorts, and many
also assessed physical or clinical measures of interest, as well as
gathering genome-wide association study data. The breadth of
demographic factors and available exposure data provide a strong
foundation for the conduct of epidemiologic research.

With respect to the metabolomics assays, 3 labs in particu-
lar predominated: Metabolon, the Broad Institute, and Night-
ingale Health. Each lab was used by 10 or more cohorts, and
consequently tens of thousands of COMETS participants have
data for the metabolites that each of these platforms measure.

In our comparative assessment, we found that platforms over-
lapped only modestly in the metabolites measured. For example,
of the aggregate 1,421 metabolites measured by Metabolon, the
Broad Institute and Nightingale Health, only 126 metabolites
were measured by at least 2 platforms, and only 14 metabolites

were measured by all 3. For many metabolites, then, meta-
analyses will be restricted to participants analyzed on a single
specific platform, resulting in lower sample size and statistical
power than if all platforms hadmeasured all metabolites.We also
found that few metabolites were measured on a fully quantitative
basis (i.e., as absolute concentrations)—just 31 across all 5 plat-
forms. This precludes comparingmetabolite levels across cohorts,
or direct pooling of data, althoughmeta-analyses are still possible.

One challenge we faced in this comparative assessment
was that 28% of identified metabolites (439 of 1,550 entries)
did not have assigned identifiers in public databases like the
HMDB. Lacking this key information, we were unable to match
these metabolites to others, possibly resulting in an undercount
of platformoverlap.Additionally, someplatformsmake distinctions
between biochemically similar metabolites that other platforms do
not, which complicates match attempts. For example, Metabolon
measures 2 different forms of 3-methylglutarylcarnitine, Biocrates
measures 1 generic 3-methylglutarylcarnitine, and all 3 mea-
sures link to the same HMDB identifier. Consequently, none of
3 measures “matched,” and they are recorded as 3 separate en-
tries in our metabolite table.

Table 5. Continued

Studyb SBP
(n = 41)

DBP
(n = 41)

HDL
(n = 39)

LDL
(n = 38)

TG
(n = 37)

TC
(n = 38)

CRP
(n = 38)

IL-6
(n = 32)

HbA1c
(n = 33)

Fasting
Glucose
(n = 37)

Fasting
Insulin
(n = 30)

No. With
GWASData
(n = 93,082)

WH-II Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0

WHI Yes Yes Yes P P Yes P P P P P 1,781

WIHS Yes Yes Yes Yes Yes Yes P P Yes Yes Yes 0

Abbreviations: CRP, C-reactive protein; DBP, diastolic blood pressure; GWAS, genome-wide association study; HbA1c, glycated hemoglobin;
HDL, high-density lipoprotein cholesterol; IL-6, interleukin-6; LDL, low-density lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cho-
lesterol; TG, triglycerides.

a
“Yes” indicates that the measurement is available for all participants; P indicates that the measurement is available in a portion of participants;

and “no” indicates that the measurement is not available for any of the participants.
b The definitions of all study abbreviations appear in Table 1.
c SBP and DBP levels are self-reported in NHS and NHSII.

Table 6. Number of IdentifiedMetabolites for 5 Different Metabolomics Platforms in 5 Different Participating Studies
and theOverlap Across Platforms/Studies, Consortium of Metabolomics Studies, Multiple Countries, Established in
2014

Platform (Study) Metabolon, Inc.
(ARIC)

Broad Institute
(HABC)

Biocrates
(Fenland)

WCMC
(ColoCare)

Nightingale Healtha

(PLCO)

Metabolon, Inc.
(ARIC)

1,158

Broad Institute
(HABC)

121 350

Biocrates (Fenland
Study)

24 33 187

WCMC (ColoCare) 92 82 20 439

Nightingale Health
(PLCO)

16 14 6 12 25b

Abbreviation: ARIC, Atherosclerosis Risk in Communities; HABC, Health, Aging and Body Composition; PLCO,
Prostate, Lung, Colorectal andOvarian Cancer Screening Trial; WCMC,West Coast Metabolomics Center.

a Formerly known as Brainshake Inc.
b Excludingmetabolite ratios and sums that are routinely included as part of the platform results.
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Asmetabolomics platforms develop, we anticipate that metab-
olite linkage will improve and that platform overlap will grow.
The establishment of data repositories such as Metabolomics
Workbench (97) and MetaboLights (98) has accelerated the
rate of data and metadata sharing between labs, fostering greater
standardization in metabolomics analyses (99) and improving
metabolite coverage. Additionally, as labs move toward newer,
higher-sensitivity analytical technologies, such as Q Exactive
Mass Spectrometry (Exactive Plus; Thermo Fisher Scientific,
Waltham,Massachusetts), moremetabolites will bemeasured,
resulting in more overlap.

Tomitigate issues arising from lackof full quantitation,COMETS
is developing a reference sample set of serum andEDTAplasma
samples from each of 40 people (10Hispanic, 10Asian, 10 black,
and 10 white). We intend to embed 1 aliquot per person among
any new large COMETS studies (e.g.,≥1,000 samples), with
the resulting metabolomics data to be deposited in a central
repository. These common samples should facilitate compar-
isons of metabolite levels (100) across studies and enable pooled
analyses for some metabolites, particularly those measured on
a fully quantitative basis.

For 2 metabolomics platforms—Metabolon and the Broad
Institute—we compared the values for 111 metabolites ob-
tained in split samples and found them to be highly intercorre-
lated. This suggests that these platforms should yield comparable
results in statistical analyses based on ranked levels of metabo-
lites, such as Spearman correlations or quantile-based analyses.
Such high correlations do not guarantee agreement of absolute
concentrations, however (101), which might be a prerequisite
for performing some kinds of statistical analyses. We could not
evaluate agreement directly in this comparison because the units
of measurement differ between platforms (neither provides abso-
lute concentrations). In the future, we will continue evaluating
comparability of other metabolomics platforms used by
COMETS cohorts, such as by using the reference sample set
discussed above.

As a consortium, COMETS has several distinctive strengths.
First, to our knowledge, it is the world’s largest consortium of
metabolomics cohort studies. The large sample size will enable
well-powered statistical analyses and/or permit rapid replica-
tion of study findings, helping tominimize false-positive results
in this research area. Second, COMETS is amultiethnic, interna-
tional consortium that includes populations from Asia, Europe,
North America, and South America, as well as both children and
adults. The diversity of study populations increases the range of
exposures that can be studied within COMETS and makes it
possible to assess associations within a wide range of demo-
graphic and socioeconomic groups. Additionally, because con-
founding patterns vary by population, evidence that associations
consistently replicate across diverse populations could reassure
researchers that results do not simply reflect confounding (102).
Third, the large scope of COMETS makes it possible to flag
associations that vary by platform and might therefore be influ-
enced bymeasurement error (e.g., random noise) or more funda-
mental errors (e.g., misidentified metabolites). Communicating
this information to the laboratories could enable them to improve
the quality and consistency of their measurements. Last, COMETS
brings together expertise from multiple disciplines relevant to
conducting successful metabolomics research, which could help
to drive forwardmethodologic advances in this field.

COMETS has limitations as well. The metabolomics plat-
forms used by participating studies vary in their sample prepa-
ration, instrumentation, and, consequently, in the metabolites
theymeasure. Additionally,metabolite levels inmanyCOMETS
cohorts, and indeed in most high-throughput metabolomics pro-
filing studies, are semiquantitative rather than fully quantitative
concentrations. For important associations identified inCOMETS,
further follow-up work will be needed to establish clinically
meaningful concentration thresholds. Also, COMETS is restricted
to analyses based on identified metabolites, given that raw nuclear
magnetic resonance or MS peak data might not consistently align
across platforms or different studies (103). Future efforts will aim
to integrate data from unidentified metabolites and/or raw nuclear
magnetic resonance or MS peaks. At present, COMETS is
restricted to blood metabolomics data. Metabolomics data from
urine and other biospecimen types will be added in the future,
once initial blood-based analyses are complete. Another limita-
tion is that our comparison of metabolite values is valid only
for the 2 platforms tested. Whether other platforms would also
provide comparable results has yet to be empirically tested.
Finally, COMETS cohorts vary in their depth and breadth of
coverage for health-related characteristics, and thus for pro-
posals requiring unusual data, some cohorts might be unable
to contribute.

The primary objective of COMETS is to engage research-
ers in collaborative efforts to advance knowledge of the me-
tabolome and its relationship with disease etiology, diagnosis,
treatment and prognosis. In that spirit, we invite cohort studies
with metabolomics data to join COMETS, and we welcome
data analysis proposals from interested scientific investigators,
including those without data of their own. Information about
how to join COMETS and how to propose a data analysis can
be found at our website (40).
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Imperial College Biomedical Research Centre in
collaboration with Imperial College National Health Service
Healthcare Trust. This work used computing resources of the
UKMedical Bioinformatics partnership (UKMED-BIO)
supported by theMedical Research Council (grantMR/
L01632X/1). P.E. is supported by the UKDementia Research
Unit, which receives funding from the UKMedical Research
Council, Alzheimer’s Society and Alzheimer’s Research UK,
theMedical Research Council, and Public Health England
(grant MR/L01341x/1) for theMedical Research Council-
Public Health England Centre of Environment and Health, the
National Institute for Health Research Health Protection
Research Unit in Health Impact of Environmental Hazards
(grant hpru-2012-10141), and the Health Data Research UK
London Centre, funded by a consortium of funders led by the
Medical Research Council. A.D. is supported by the
Wellcome Trust (grant 206046/Z/17/Z). The Alpha-
Tocolpherol, Beta-Carotene Cancer Prevention study was
supported by the National Institutes of Health Intramural
Research Program, Division of Cancer Epidemiology and
Genetics, National Cancer Institute. The Atherosclerosis Risk
in Communities Study is carried out as a collaborative study
supported by the National Heart, Lung, and Blood Institute
(contracts HHSN268201100005C, HHSN268201100006C,
HHSN268201100007C, HHSN268201100008C,
HHSN268201100009C, HHSN268201100010C,
HHSN268201100011C, HHSN268201100012C,
R01HL087641, R01HL59367, and R01HL086694); the
National Human Genome Research Institute (contract
U01HG004402); and the National Institutes of Health
(contract HHSN268200625226C). B.Y. is supported by the
American Heart Association (grant 17SDG33661228). The
UKMedical Research Council and theWellcome Trust (grant
102215/2/13/2) and the University of Bristol provide core
support for ALSPAC. The British Heart Foundation (grant
SP/07/008/24066),Wellcome Trust (grantWT092830/Z/10/ Z),
and Joint UKResearch Councils, via the LifelongHealth and
Wellbeing Programme (grant G1001357), funded follow-up of
women (ALSPACmothers) currently contributing to COMETS,
withmetabolomicmeasurements funded by theNational
Institutes of Health (grant R01DK10324) and European
Research Council under the EuropeanUnion’s Seventh
Framework Programme (grant FP7/2007-2013/ERC grant
669545). Born in Bradford receives core infrastructure
funding from theWellcome Trust (grantWT101597MA), a
joint grant from the UKMedical Research Council and UK
Economic and Social Science Research Council (grant MR/
N024397/1), and the National Institute for Health Research
under its Collaboration for Applied Health Research and
Care (CLAHRC) for Yorkshire and Humber. Follow-up and
metabolomic research are supported by the British Heart
Foundation (grant CS/16/4/32482), National Institutes of
Health (grant R01 DK10324), and the European Research
Council under the European Union’s Seventh Framework
Programme (grant FP7/2007-2013/ERC grant 669545). The
Baependi Heart Study was supported by awards from
FAPESP (grants 2007/58150-7, 2010/51010-8, 2011/05804-
5, 2013/17368-0), from CNPq (grants 150653/2008-5,
481304/2012-6, and 400791/2015-5), and Fundação Zerbini
and Proadi–Hospital Samaritano. The Breast Cancer Family
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Registry cohort was supported by the National Cancer
Institute (grant 1UM1CA164920). The Breast Cancer Family
Registry Metabolomics study was funded by an internal pilot
grant from the Stanford Cancer Institute. BritishWomen’s
Heart and Health Study is supported by funding from the
British Heart Foundation and the Department of Health
Policy Research Programme (England). Caerphilly
Prospective Study was funded by theMedical Research
Council and undertaken by the former MRC Epidemiology
Unit (SouthWales). Caerphilly Prospective Study
metabolomics was undertaken as part of the UCL-LSHTM-
Edinburgh-Bristol consortium, which is supported by the
British Heart Foundation Programme (grant RG/10/12/
28456). The Caerphilly Prospective Study data archive is
maintained by the University of Bristol. The American
Cancer Society funds the creation, maintenance, and
updating of the Cancer Prevention Study-II cohort. S.H.S.
(Catheterization Genetics study) is supported by the National
Heart, Lung, and Blood Institute (grants 5R01-HL127009,
1R56-HL129880, and 5R01-HL095987) and the American
Heart Association (grants 17SFRN33590127 and
16SFRN31800000). The Childhood AsthmaManagement
Program is supported by the National Heart, Lung, and
Blood Institute (contracts NO1-HR-16044, 16045, 16046,
16047, 16048, 16049, 16050, 16051, and 16052), and the
metabolomic profiling was supported by the National
Institutes of Health (grant 1R01HL123915-01 (PI: J.L.-S.)).
The COLO study was funded by the Lackas Foundation, the
Division of Preventive Oncology (to C.M.U.), and the
German Consortium of Translational Cancer Research. C.M.U.
received funding from the Huntsman Cancer Foundation;
research reported in this publication was supported by the
National Cancer Institute of the National Institutes of Health
(award U01CA206110). The Cooperative Health Research
in the Region of Augsburg (KORA) study is funded by the
Federal Ministry of Education and Research (grant BMBF
01KT1512). KORAwas initiated and financed by the
Helmholtz ZentrumMünchen—German Research Center for
Environmental Health, which is funded by the German
Federal Ministry of Education and Research and by the State
of Bavaria. Furthermore, KORA research was supported
within theMunich Center of Health Sciences (MC-Health),
Ludwig-Maximilians-Universität, as part of LMUinnovativ.
The Diabetes Prediction and Prevention Birth Cohort study
was supported by the Academy of Finland (Centre of
Excellence inMolecular Systems Immunology and
Physiology Research award 2012-2017, decision 250114)
and Juvenile Diabetes Research Foundation (grant 2-SRA-
2014-159-Q-R). The Estonia cohort was supported by
European Regional Development Fund, (road-map grant
3.2.0304.11-0312), as a “Center of Excellence in Genomics
(EXCEGEN)”, and by targeted financing from the Estonian
Government (grant IUT24-6, IUT20-60) and Center of
Translational Genomics (grant SP1GVARENG), from the
Development Fund of the University of Tartu. The
metabolomic studies were funded by the National Institute of
Diabetes and Digestive and Kidney Diseases (grant R01
DK075787 to J.N.H.). During the Diabetes Prevention
Program and Diabetes Prevention Program Outcomes Study,
the National Institute of Diabetes and Digestive and Kidney

Diseases of the National Institutes of Health provided
funding to the clinical centers and the Coordinating Center
for the design and conduct of the study and for collection,
management, analysis, and interpretation of the data (grant
U01 DK048489). The Southwestern American Indian
Centers were supported directly by the National Institute of
Diabetes and Digestive and Kidney Diseases, including its
Intramural Research Program, and the Indian Health Service.
The General Clinical Research Center Program, National
Center for Research Resources, and the Department of
Veterans Affairs supported data collection at many of the
clinical centers. Funding was also provided by the Eunice
Kennedy ShriverNational Institute of Child Health and
Human Development, the National Institute on Aging, the
National Eye Institute, the National Heart Lung and Blood
Institute, the National Cancer Institute, the Office of
Research onWomen’s Health, the National Institute on
Minority Health and Health Disparities, the Centers for
Disease Control and Prevention, and the American Diabetes
Association. Bristol-Myers Squibb and Parke-Davis
provided additional funding and material support during the
Diabetes Prevention Program, Lipha (Merck-Sante) provided
medication, and LifeScan Inc. donated materials during the
Diabetes Prevention Program and Diabetes Prevention
ProgramOutcomes Study. This research was also supported,
in part, by the intramural research program of the National
Institute of Diabetes and Digestive and Kidney Diseases.
LifeScan Inc., Health OMeter, Hoechst Marion Roussel,
Inc., Merck-MedcoManaged Care, Inc., Merck and Co.,
Nike Sports Marketing, Slim Fast Foods Co., and Quaker
Oats Co. donated materials, equipment, or medicines for
concomitant conditions. McKesson BioServices Corp.,
MatthewsMedia Group, Inc., and the HenryM. Jackson
Foundation provided support services under subcontract with
the Coordinating Center. The sponsor for the Edinburgh
Type 2 Diabetes Study was the University of Edinburgh; the
study was funded by theMedical Research Council (grant
G0500877), the Chief Scientist Office of the Scottish
Executive (Programme Support Grant CZQ/1/38), Pfizer plc,
and DiabetesUK (Clinical Research Fellowship 10/
0003985); metabolomics was undertaken as part of the
UCLEB consortium, which is supported by a British Heart
Foundation Programme (grant RG/10/12/28456). The
coordination of European Prospective Investigation into
Cancer and Nutrition is financially supported by the
European Commission (DG-SANCO) and the International
Agency for Research on Cancer, and the national cohorts are
supported by the Danish Cancer Society (Denmark); German
Cancer Aid, German Cancer Research Center (DKFZ),
Federal Ministry of Education and Research (BMBF),
Deutsche Krebshilfe, Deutsches Krebsforschungszentrum,
and Federal Ministry of Education and Research (Germany);
the Hellenic Health Foundation (Greece); Associazione
Italiana per la Ricerca sul Cancro-AIRC-Italy and National
Research Council (Italy); DutchMinistry of Public Health,
Welfare and Sports (VWS), Netherlands Cancer Registry
(NKR), LK Research Funds, Dutch Prevention Funds, Dutch
ZON (Zorg Onderzoek Nederland), World Cancer Research
Fund (WCRF), Statistics Netherlands (the Netherlands);
Health Research Fund (FIS) (grant PI13/00061 (EPIC-
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Granada) and PI13/01162 (EPIC-Murcia)), Regional
Governments of Andalucía, Asturias, Basque Country,
Murcia, and Navarra, ISCIII Health Research Funds (grant
RD12/0036/0018) (cofounded by FEDER funds/European
Regional Development Fund ERDF) (Spain); Swedish
Cancer Society, Swedish Research Council, and County
Councils of Skåne and Västerbotten (Sweden); Cancer
Research UK (grants 14136 to EPIC-Norfolk and C570/
A16491 for EPIC-Oxford), Medical Research Council
(grants 1000143 to EPIC-Norfolk andMR/M012190/1 to
EPIC-Oxford) (UK). The ongoing metabolomics work in
EPIC is funded by Cancer Research UK,World Cancer
Research Fund, European Commission, and the French
National Cancer Institute. The Fenland study was funded by
the United Kingdom’s Medical Research Council (grants
MC_UU_12015/1, MC_PC_13046,MC_PC_13048, and
MR/L00002/1) and Cambridge Lipidomics Biomarker
Research Initiative (grant G0800783). N.J.W. is a National
Institute for Health Research Senior Investigator. Research
and data from the Framingham studies (FHS2, FHS3) were
supported by the National Institutes of Health, National
Heart, Lung, and Blood Institute (contracts
HHSN268201500001 and N01 HC 25195) and the National
Institute of Diabetes and Digestive and Kidney Diseases
(grant R01 DK081572). The Genodiab-Mar cohort is
supported by Instituto de Salud Carlos III (FIS-ISCIII) (grant
PI16/00620) and RedinRen (grant RD12/0021/0024). The
Health, Aging and Body Composition study was supported
by the National Institute on Aging (contracts N01-
AG-6–2101, N01-AG-6–2103, and N01-AG-6–2106; and
grant R01-AG028050), the National Institute of Nursing
Research (grant R01-NR-012459), theWake Forest
University Claude D. Pepper Older Americans for
Independence Center (grant 1P30AG21332), and the
Pittsburgh Claude D. Pepper Center (grant P30 AG024827).
Health, Aging and Body Composition work is also supported
in part by the intramural program of the National Institutes of
Health. R.M. is supported by the Canadian Cancer Society
(grant 704735). The Health Professionals Follow-up Study is
funded by the National Cancer Institute (grant U01
CA167552; metabolomics study, grant P50 090381). The
Mexican American Cohort receives funds collected pursuant
to the Comprehensive Tobacco Settlement of 1998 and
appropriated by the 76th legislature to the University of
TexasMDAnderson Cancer Center. Work in theMexican
American Cohort was supported in part by Center for
Translational and Public Health Genomics, the Dan Duncan
Family Institute for Risk Assessment and Cancer Prevention.
TheMRCNational Survey of Health and Development is
funded by the UKMedical Research Council (grant
MC_UU_12019/1); metabolomics was undertaken as part of
the UCLEB consortium, which is supported by a British
Heart Foundation Programme (grant RG/10/12/28456). The
Multiethnic Cohort was supported by the National Cancer
Institute (grants P01 CA168530 and U01 CA164973). The
Multi-ethnic Study of Atherosclerosis was supported by the
National Institutes of Health (grant R01 HL133932-01). The
Nurses’Health Study is funded by the National Cancer
Institute (grants CA186107 and CA49449). The Nurses’
Health Study II is funded by the National Cancer Institute

(grants CA176726 and CA067262). Metabolomics studies
within the Nurses Health Studies and the Health
Professionals Study cohorts are funded by the National
Institutes of Health (grants NS045893, CA087969,
CA050385, DK103720, CA163451, NS089619, CA090381,
CA140790, AR049880), the Department of Defense (grant
W81XWH-13-1-0493), the American Society of Clinical
Oncology Conquer Cancer Foundation, and the Howard
HughesMedical Institute and Promises for Purple. The
Osteoporotic Fractures in Men Study is supported by the
National Institutes of Health through the National Institute on
Aging, the National Institute of Arthritis and
Musculoskeletal and Skin Diseases, the National Center for
Advancing Translational Sciences, and National Institutes of
Health Roadmap for Medical Research (grants U01
AG027810, U01 AG042124, U01 AG042139, U01
AG042140, U01 AG042143, U01 AG042145, U01
AG042168, U01 AR066160, and UL1 TR000128). The
Physicians’Health Study is supported by the National
Institutes of Health (grants CA 097193, CA 34944, CA
40360, HL 26490, and HL 34595). The work in the
Pregnancy Outcome Prediction Study was supported by the
National Institute for Health Research (NIHR) Cambridge
Comprehensive Biomedical Research Centre (Women’s
Health theme) and a project grant from theMedical Research
Council (United Kingdom; grant G1100221). The Prostate,
Lung, Colorectal, and Ovarian Cancer Screening Trial was
supported by the National Institutes of Health Intramural
Research Program of the National Cancer Institute. The
Shanghai Men’s Health Study, Shanghai Physical Activity
Study, and ShanghaiWomen’s Health Study are supported
by the National Institutes of Health (grants R37 CA070867,
UM1 CA182910, R01 CA082729, UM1 CA173640, R01
HL079123, and R01DK108159) as well as Ingram
Professorship Funds from the Vanderbilt-Ingram Cancer
Center.With respect to the Singapore Prospective Study
Program,W.J.S. is supported by a National University of
Singapore Start-Up Grant; D.R.H. is supported by the
National University of Singapore (grant NUHSRO/2014/
085/AF-Partner/01); and C.M.K. is supported by the
National Medical Research Council, Clinician Scientist
Award, Ministry of Health Alignment Fund, Janssen
Pharmaceuticals Inc., and the National Kidney Foundation.
Southall and Brent Revisited is funded at baseline by the UK
Medical Research Council, Diabetes UK, British Heart
Foundation; metabolomics analyses are funded by Diabetes
UK (grant 13/0004774); and follow-up is funded by the
Wellcome Trust (grant WT082464) and British Heart
Foundation (grants SP/07/001/23603 and CS/13/1/30327).
The TsuruokaMetabolomics Cohort study is supported in
part by research funds from the Yamagata Prefectural
Government and the city of Tsuruoka and by the Grant-in-
Aid for Scientific Research (B) (grants JP24390168 and
JP15H04778), Grant-in-Aid for Challenging Exploratory
Research (grant 25670303), and Grant-in-Aid for Young
Scientists (B) (grant JP15K19231) from the Japan Society for
the Promotion of Science. TwinsUKwas funded by the
Wellcome Trust; European Community’s Seventh
Framework Programme (FP7/2007-2013). TwinsUK also
receives support from the National Institute for Health
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Research–funded BioResource, Clinical Research Facility
and Biomedical Research Centre based at Guy’s and St.
Thomas’NHS Foundation Trust in partnership with King’s
College London. The UK Pregnancies Better Eating and
Activity Trial was funded by the National Institute for Health
Research (grant RP-0407-104522), Medical Research
Council (grant MR/L002477/1), Diabetes UK, CSO (grant
CZB/A/680), the Biomedical Research Centre at Guys & St.
Thomas NHS Foundation Trust & King’s College London,
and Tommy’s Charity. Vitamin D Antenatal Asthma
Reduction Trial (clinical trial registration number:
NCT00920621) was supported by the National Heart, Lung,
and Blood Institute (grant U01HL091528; metabolomics
work, grant 1R01HL123915-01); additional support was
provided by the National Centers for Advancing
Translational Sciences (from U54TR001012) for participant
visits at BostonMedical Center. TheWhitehall II study is
supported by the National Institute on Aging (grants
R56AG056477; R01AG034454; R01AG013196), the
National Heart, Lung, and Blood Institute (grant
R01HL036310), the UKMedical Research Council (grants
MRC, K013351 and R024227), and the British Heart
Foundation (grants PG/29605 and RG/13/2/30098);
metabolomics was undertaken as part of the UCLEB
consortium, which is supported by a British Heart
Foundation Programme (grant RG/10/12/28456). M.K. is
supported by the UKMRC (grant S011676), NordForsk, and
the Academy of Finland (grant 311492). The metabolomic
analysis in theWomen’s Health Initiative was funded by the
National Heart, Lung, and Blood Institute (contract
HHSN268201300008C). TheWomen’s Health Initiative
program is funded by the National Heart, Lung, and Blood
Institute (contracts HHSN268201600018C,
HHSN268201600001C, HHSN268201600002C,
HHSN268201600003C, and HHSN268201600004C). The
Women’s Interagency HIV Study is funded primarily by the
National Institute of Allergy and Infectious Diseases, with
additional cofunding from the Eunice Kennedy Shriver
National Institute of Child Health and Human Development),
the National Cancer Institute, the National Institute on Drug
Abuse, and the National Institute onMental Health. Targeted
supplemental funding for specific projects is also provided
by the National Institute of Dental and Craniofacial
Research, the National Institute on Alcohol Abuse and
Alcoholism, the National Institute on Deafness and other
Communication Disorders, and the National Institutes of
Health Office of Research onWomen’s Health. Women’s
Interagency HIV Study data collection is also supported by
the National Center for Advancing Translational Sciences
(grants UL1-TR000004 (UCSF CTSA) and UL1-TR000454
(Atlanta CTSA)) and National Institute of Allergy and
Infectious Diseases (grant P30-AI-050410 (UNCCFAR)).
Women’s Interagency HIV Study principal investigators are
supported by the National Institute of Allergy and Infectious
Diseases (UAB-MSWIHS (Mirjam-Colette Kempf and
Deborah Konkle-Parker), U01-AI-103401; AtlantaWIHS
(Ighovwerha Ofotokun and GinaWingood), U01-AI-103408;
BronxWIHS (Kathryn Anastos and Anjali Sharma), U01-AI-
035004; BrooklynWIHS (HowardMinkoff and Deborah
Gustafson), U01-AI-031834; ChicagoWIHS (Mardge Cohen

and Audrey French), U01-AI-034993;Metropolitan
WashingtonWIHS (Seble Kassaye), U01-AI-034994;Miami
WIHS (Margaret Fischl and LisaMetsch), U01-AI-103397;
UNCWIHS (Adaora Adimora), U01-AI-103390; Connie
WofsyWomen’s HIV Study, Northern California (Ruth
Greenblatt, Bradley Aouizerat, and Phyllis Tien), U01-AI-
034989;WIHSDataManagement and Analysis Center
(Stephen Gange and Elizabeth Golub), U01-AI-042590) and,
for Southern CaliforniaWIHS (Joel Milam), Eunice Kennedy
ShriverNational Institute of Child Health and Human
Development grant U01-HD-032632 (WIHS I –WIHS IV).
WIHSmetabolomics was supported by the National Heart,
Lung, and Blood Institute (grant K01HL129892 to Q.Q).

We thank the staff and participants of the ARIC study for
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