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Abstract

Glycosylation is a common post-translational modification of proteins. Glycosylation is associated with a number of human
diseases. Defining genetic factors altering glycosylation may provide a basis for novel approaches to diagnostic and
pharmaceutical applications. Here we report a genome-wide association study of the human blood plasma N-glycome
composition in up to 3811 people measured by Ultra Performance Liquid Chromatography (UPLC) technology. Starting with
the 36 original traits measured by UPLC, we computed an additional 77 derived traits leading to a total of 113 glycan traits.
We studied associations between these traits and genetic polymorphisms located on human autosomes. We discovered and
replicated 12 loci. This allowed us to demonstrate an overlap in genetic control between total plasma protein and IgG
glycosylation. The majority of revealed loci contained genes that encode enzymes directly involved in glycosylation
(FUT3/FUT6, FUT8, B3GAT1, ST6GAL1, B4GALT1, ST3GAL4, MGAT3 and MGAT5) and a known regulator of plasma protein
fucosylation (HNF1A). However, we also found loci that could possibly reflect other more complex aspects of glycosylation
process. Functional genomic annotation suggested the role of several genes including DERL3, CHCHD10, TMEM121, IGH and
IKZF1. The hypotheses we generated may serve as a starting point for further functional studies in this research area.

Introduction
Glycosylation—addition of carbohydrates to a substrate—is a
common and structurally diverse cotranslational and posttrans-
lational modification of proteins that can affect their physical
properties (solubility, conformation, folding, stability, trafficking
etc.) (1–4) as well as biological functions, including protein–
protein, cell–cell, cell–matrix and host–pathogen interactions
(2,3,5,6). Carbohydrate units can be attached to the protein by
N- or O-glycosidic bonds with the rare exceptions of C-glycosidic
attachment (7). N-glycosylation is the most abundant type of
glycosylation (8,9) and, unlike other types, is specific to a con-
sensus asparagine-containing sequence in the primary structure
of the protein. Glycoproteins comprise various enzymes, hor-
mones, cytokines, receptors, immunoglobulins, structural, adhe-
sion and other protein molecules, and altered glycosylation is
increasingly recognized to be implicated in human pathologies.
In particular, association with changes in total plasma protein N-
glycome composition or immunoglobulin G (IgG) glycosylation
has been found for Parkinson’s disease (10), low back pain (11),
rheumatoid arthritis (12), ulcerative colitis, Crohn’s disease (13)
and type 2 diabetes (14). Beyond that, aberrant glycosylation is
involved in key pathological steps of tumor development and is
even considered a new hallmark of cancer (15–17). Glycans are
considered as potential therapeutic targets (18) and biomarkers
for early diagnosis and disease prognosis (19–22), which makes
glycobiology a promising field for future clinical applications. An
example of glycoprotein biomarker is AFP-L3—the fucosylated
fraction of alpha-fetoprotein—that was approved by the U.S.
Food and Drug Administration as a diagnostic marker of primary
hepatocellular carcinoma (21).

Protein glycosylation is an extremely complex process
depending on the interplay of multiple enzymes catalyzing
glycan transfer, glycosidic linkage hydrolysis as well as glycan

biosynthesis. Abundance of specific protein glycoforms can
be influenced by a variety of parameters including activity
of enzymes and availability of substrates, accessibility of
a glycosylation site, protein synthesis and degradation. No
surprise that, overall, protein glycosylation is a complex process
that is controlled by genetic, epigenetic and environmental
factors (23–25). Mechanisms of regulation of this process
are only started to be understood. Genome-wide association
studies (GWASs) can expand our knowledge on this topic by a
hypothesis-free search of candidate genes involved in regulation
of glycosylation. Their role can be clarified in subsequent
functional follow-up studies.

Previous GWAS of total plasma protein N-glycome mea-
sured with high-performance liquid chromatography (HPLC)
discovered six loci associated with protein glycosylation (26,27).
Four of these loci contained genes that have well-characterized
roles in glycosylation—the fucosyltransferases FUT6 and FUT8,
glucuronyltransferase B3GAT1 and glucosaminyltransferase
MGAT5. Other two loci—near the SLC9A9 gene on chromosomes
3 and near the HNF1A gene on chromosome 12—did not contain
any genes known to be involved in glycosylation processes. A
functional in vitro follow-up study in HepG2 cells showed that the
HNF1A gene product acts as a co-regulator of expression of most
fucosyltransferase genes (FUT3, FUT5, FUT6, FUT8, FUT10 and
FUT11) (26). In addition, it co-regulates the expression of genes
encoding key enzymes required for the synthesis of GDP-fucose,
the substrate of these fucosyltransferases. It is noteworthy
that identification of HNF1A as one of the master regulators
of protein fucosylation enabled to propose a new diagnostic tool
for discrimination between HNF1A-MODY monogenic diabetes
and type 1 and type 2 diabetes based on the ratio of fucosylated
to nonfucosylated triantennary glycans (19). The locus on
chromosome 3 contains SLC9A9 gene, which encodes a proton
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Table 1. Replication of six previously reported loci [Huffman et al.(27)]

Results of Huffman et al. (27) (N = 3,533) This study, TwinsUK (N = 2,763)

SNP CHR:POS Gene Eff/Ref EAF N Trait BETA (SE) P-value EAF Trait BETA(SE) P-value
rs1257220 2:135015347 MGAT5 A/G 0.26 3263 Tetra-antennary 0.19 (0.03) 1.80E-10 0.25 FA3G3S[3,3,3]3 0.16 (0.032) 3.98E-07

glycans
rs4839604 3:142960273 SLC9A9 C/T 0.77 3320 Tetrasialylated −0.22 (0.03) 3.50E-13 0.83 FBS2/(FS2 + FBS2) −0.11 (0.038) 2.50E-03
rs7928758 11:134265967 B3GAT1 T/G 0.88 3233 A4F2G4 (DG13) 0.23 (0.04) 1.66E-08 0.84 A3G3S[3,6]2 0.24 (0.038) 6.07E-10
rs735396 12:121438844 HNF1A T/C 0.61 3236 A2F1G2 (DG7) 0.18 (0.03) 7.81E-12 0.65 G4S3/G4S4 0.18 (0.031) 6.06E-09
rs11621121 14:65822493 FUT8 C/T 0.43 3234 A2 (DG1) 0.27 (0.03) 1.69E-23 0.40 A2[6]BG1n 0.21 (0.029) 1.60E-12
rs3760776 19:5839746 FUT6 G/A 0.87 3262 A3F1G3 (DG9) 0.44 (0.04) 3.18E-29 0.91 A4G4S[3,3,3]3 0.56 (0.050) 3.71E-28

Replicated loci are in bold. CHR:POS—chromosome and position of SNP according to GRCh37 human genome build; Eff/Ref—effective and reference alleles; gene—
candidate gene for the locus reported in Huffman et al. (27); EAF—effective allele frequency; N—sample size; Trait—glycan trait with statistically strongest association
with the SNP; DG (desialylated peak)—HPLC peak after sialidase treatment; BETA (SE)—effect (in SD units) and standard error of effect; P-value—P-value of association.

pump affecting pH in the endosomal compartment, reminiscent
of recent findings that changes in Golgi pH can impair protein
sialylation (27).

Since 2011, when the latest GWAS of plasma N-glycome
was published, new technologies for glycome profiling have
been developed (28). Ultra-performance liquid chromatography
(UPLC) became a widely used technology for accurate analysis of
plasma N-glycosylation due to its superior sensitivity, resolution,
speed and capability to provide branch-specific information of
glycan structures (29). Moreover, new imputation panels [such
as 1000 Genomes (30) and HRC (31)] became available, increasing
the resolution and power of genetic mapping.

In this work, we aimed to advance our understanding of
the genetic control of the human plasma N-glycome and to
establish a public resource that will facilitate future studies
linking glycosylation and complex human diseases. For that,
we performed and reported results of GWAS on 113 plasma
glycome traits measured by UPLC and genotypes imputed to the
1000 Genomes reference panel in 2763 participants of TwinsUK.
Further, we replicated our findings in 1048 samples from three
independent and genetically diverse cohorts—PainOR, SOCCS
and Qatar Metabolomics Study on Diabetes (QMDiab).

Results
Replication of previously reported loci

We started with replication of six loci that were reported pre-
viously. Huffman and colleagues (27) analyzed four indepen-
dent cohorts with total sample size of 3533, using plasma N-
glycome measured with HPLC. Because of technological differ-
ences, there is no one-to-one correspondence between HPLC
and UPLC traits and exact replication is not possible. Therefore,
we analyzed association of single-nucleotide polymorphisms
(SNPs) reported by (27) with all 113 UPLC traits measured in
this study and considered a locus replicated if we observed
P < 0.05/(6 × 30) = 2.78 × 10−4 (where 30 is a number of principal
components, explaining 99% of the variation of the 113 studied
traits) in the TwinsUK cohort (N = 2763). Using this procedure, we
replicated five of the six previously reported SNPs (Table 1, Fig. 1).
For more details, see Supplementary Material, Table 1.

These results not only confirm previous and establish five
plasma glycome loci as replicated but also demonstrate that our
study is well powered (among replicated loci, all P-values were
less than 4 × 10−7).

Discovery and replication of new loci

In the next step, we searched for new loci via genome-wide
association scan with subsequent replication of the revealed
association signals.

The discovery cohort comprised 2763 participants of
the TwinsUK study with genotypes available for 8 557 543
SNPs. The genomic control inflation factor varied from
0.99 to 1.02, suggesting that influences of residual popu-
lation stratification on the test statistics were small (see
Supplementary Material, Table 2; QQ-plots in Supplementary
Fig. 1). In total, 906 SNPs located in 14 loci were significantly
associated (P < 5 × 10−8/30 = 1.66 × 10−9, where 30 is a number
of principal components, explaining 99% of the variation of the
113 studied traits) with at least one of 113 glycan traits (in total
5052 SNP–trait associations, see Fig. 2, Table 1). Out of 113 traits,
68 were significantly associated with at least one of the 14 loci.
For more details, see Supplementary Material, Table 3.

Among 14 loci, four were previously reported as associated
with the plasma N-glycome (Fig. 1). Three loci—on chromosome
12 at 121 Mb (leading SNP: rs1169303, intronic variant of the
HNF1A gene), on chromosome 14 at 105 Mb (leading SNP:
rs7147636 located in the intron of the FUT8 gene) and on chromo-
some 19 at 58 Mb (leading SNP: rs7255720, upstream variant of
the FUT6 gene)—were reported to be associated with the plasma
N-glycome in two previous GWAS (26,27), while association of
the locus on chromosome 11 at 126 Mb (leading SNP: rs1866767
located in the intron of B3GAT1 gene) was reported only in the
latest GWAS meta-analysis of plasma N-glycome (27).

Ten further loci that have not been reported before were
found here. In order to replicate our findings, we have per-
formed association analysis of these 10 SNPs in three inde-
pendent cohorts—PainOR, SOCCS and QMDiab (total N = 1048)—
and then meta-analyzed the results. Seven of ten novel loci
were replicated at threshold P < 0.05/10 = 0.005 (see Table 2). The
direction of association was concordant between discovery and
replication for all 10 loci. The effects of loci between the repli-
cation cohorts were homogeneous (P-value of Cochran’s Q-test
varied from 0.07 to 0.96, see Supplementary Material, Table 3).

Given seven replicated novel loci found in this study and five
loci found previously and replicated in this study, we now have
12 replicated loci in total (Fig. 1).

Functional annotation in silico

For 12 replicated loci, we performed an in silico functional
annotation in order to prioritize potentially causal genes.
Prioritization used multiple lines of evidence, such as presence
of predicted damaging variants in a gene, pleiotropic effects of
glycan-associated SNPs on gene expression and the results of a
DEPICT (Data-driven Expression Prioritized Integration for Com-
plex Traits) analysis, which employs predicted gene functions
and reconstituted gene sets (32). Although most of the observed
loci contain genes encoding proteins with a known role in glyco-
sylation (FUT3/FUT6, FUT8, B3GAT1, ST6GAL1, B4GALT1, ST3GAL4,
MGAT3, MGAT5 and HNF1A), we still included them in the
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Figure 1. Schematic overview of the novel and known loci associated with plasma protein N-glycosylation. Chr—chromosome. Genes, prioritized in this study, represent

corresponding loci. ∗The role of MAN1C1 (mannosidase alpha class 1C member 1) gene in glycosylation is known, but the association of MAN1C1 locus was not replicated

in the present study.

Figure 2. Manhattan plot of discovery GWAS (after correction for genomic control). Horizontal line corresponds to the genome-wide significance threshold of 1.7 × 10−9.

For each SNP the lowest P-value among 113 traits is shown. Only SNPs with P < 1 × 10−5 are shown. Points with −log10(P) > 20 are depicted at −log10 (P-value) = 20. Gene

labels mark loci that were found in previous GWAS (27); underlined gene labels mark novel loci; ∗loci replicated either in the TwinsUK cohort (for previously reported

loci) or in the replication meta-analysis of three cohorts PainOR, QMDiab and SOCCS (novel loci identified in the present study).
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Table 2. Fourteen loci genome-wide significantly associated with at least one of the 113 traits in this study

Discovery Replication

SNP CHR:POS Gene Eff/Ref EAF BETA (SE) P-value Top trait N traits EAF BETA (SE) P N

Novel loci

rs186127900 1:25318225 AL445471.2 (MAN1C1) G/T 0.99 −1.26 (0.119) 4.04E-24 FBG1n/G1n 26 0.99 −0.35 (0.224) 1.22E-01 1093
rs59111563 3:186722848 ST6GAL1 D/I 0.74 0.34 (0.031) 1.09E-26 FG1S1/(FG1+FG1S1) 3 0.73 0.32 (0.048) 9.50E-12 1088
rs3115663 6:31601843 PRRC2A T/C 0.80 0.26 (0.040) 7.65E-11 M9 1 0.83 0.06 (0.059) 3.01E-01 1093
rs6421315 7:50355207 IKZF1 G/C 0.59 0.19 (0.029) 7.57E-11 A2[6]BG1n 2 0.60 0.27 (0.043) 5.67E-10 1077
rs13297246 9:33128617 B4GALT1 G/A 0.83 −0.26 (0.038) 4.11E-12 FA2G2n 2 0.83 −0.26 (0.059) 8.66E-06 1093
rs3967200 11:126232385 ST3GAL4 C/T 0.88 −0.49 (0.043) 1.51E-27 A2G2S[3,6+3]2 7 0.86 −0.53 (0.062) 6.85E-18 1093
rs35590487 14:105989599 IGH / TMEM121 C/T 0.77 −0.24 (0.034) 7.98E-12 FA2[3]G1n 2 0.78 −0.17 (0.058) 3.67E-03 1093
rs9624334 22:24166256 DERL3 / CHCHD10 G/C 0.85 0.28 (0.040) 8.38E-12 FA2[6]BG1n 2 0.86 0.42 (0.062) 2.09E-11 1086
rs140053014 22:29550678 KREMEN1 I/D 0.98 −0.67 (0.106) 4.05E-10 G3S2/G3S3 1 0.98 −0.24 (0.165) 1.50E-01 1079
rs909674 22:39859169 MGAT3 C/A 0.27 0.22 (0.033) 7.72E-11 FBS2/FS2 3 0.25 0.18 (0.053) 5.70E-04 1045

Previously implicated loci

rs1866767 11:134274763 B3GAT1 C/T 0.87 0.28 (0.043) 5.95E-11 A4G4S[3,3,3,3]4 3 —
rs1169303 12:121436376 HNF1A A/C 0.51 0.19 (0.029) 2.23E-10 A4G4S[3,3,3]3 2
rs7147636 14:66011184 FUT8 T/C 0.33 −0.39 (0.030) 6.63E-37 FA2G2S[3+6,6+3]2 17
rs7255720 19:5828064 FUT6 G/C 0.96 1.14 (0.068) 2.53E-55 G4S3/G4S4 18

Ten loci in the upper part of the table are novel for N-glycome traits, and four loci in the lower part of the table have been found previously. Replicated novel loci are
in bold. CHR:POS—chromosome and position of SNP according to GRCh37 human genome build; Gene—suggested candidate genes for replicated loci (see Table 3) or
the nearest gene for non-replicated loci. For the locus on chromosome 1 we additionally report MAN1C1 gene as its product has known role in glycosylation processes;
Eff/Ref—effective and reference allele; EAF—effective allele frequency; BETA (SE)—effect (in SD units) and standard error of effect; P-value—P-value after GC correction;
Top trait—glycan trait with the strongest association (the lowest P-value); N traits—total number of traits significantly associated with given locus; N—sample size of
replication. Description of glycan traits is provided in Supplementary Material, Table 10.

analysis. Beside this, we explored gene set/tissue/cell type
enrichment and investigated potential pleiotropic effects of
these loci on other complex human traits.

Analysis of possible effects of genetic variants

Within each of replicated loci, we identified a set of SNPs that are
in high LD (r2 > 0.6) with 12 lead variants. In total, we identified
619 SNPs that were further subjected to variant effect prediction
analysis using VEP (33), FATHMM-XF (34), and FATHMM-INDEL
(35). Full results of variant effect prediction annotation of 619
SNPs are presented in Supplementary Material, Table 4A and B.
We detected four potentially pathogenic variants in four genes—
coding variant rs17855739 (p.E247K, substitution of negatively
charged Glu with positively charged Lys) in the FUT6 gene, inser-
tion/deletion variant rs149306472 (p.G204Lfs∗35, deletion of Gly)
in the SYNGR1 gene, non-coding variant rs7423 in the SYNGR1
gene and coding variant rs3177243 (p.F149 L, substitution of
Phe with Leu) in the DERL3 gene. However, it should be men-
tioned that recent study (36) highlighted the danger, at least for
common variants, of pinpointing coding variants as likely to be
causal.

Gene-set and tissue/cell enrichment analysis

For prioritizing genes in associated regions (based on their
predicted function) and gene set and tissue/cell type enrich-
ment analyses we used DEPICT software (32). When running
DEPICT analyses on the 14 genome-wide significant loci (from
Table 1), we identified tissue/cell type enrichment (with false
discovery rate (FDR) < 0.05) for six tissue/cell types: plasma
cells, plasma, parotid gland, salivary glands, antibody producing
cells and B-lymphocytes (see Supplementary Material, Table 5C).
We did not identify any significant enrichment for gene-
sets (all FDR > 0.2, Supplementary Material, Table 5B). DEPICT
suggestively prioritized three genes—FUT3, DERL3 and FUT8—
for three loci (on chromosome 19 at 58 Mb, on chromosome 22
at 24 Mb and on chromosome 14 at 65/66 Mb) with FDR < 0.20
(see Supplementary Material, Table 5A). We have also analyzed
93 loci with P < 1 × 10−5/30 (Supplementary Material, Table 6);
however, all results had FDR > 0.2.

Next, we performed gene ontology (GO) gene-set enrichment
analysis using Multi-marker Analysis of GenoMic Annota-
tion (MAGMA) approach (37) for the loci with P < 1 × 10−5

(Supplementary Material, Table 7A). We observed strong enrich-
ment of genes involved in the glycan synthesis pathways—such
as ‘oligosaccharide metabolic process’ (P-value of enrichment
after correction for multiple testing, 1.56 × 10−29), ‘protein
N-linked glycosylation’ (P-value, 4.45 × 10−22) and ‘N-glycan
biosynthesis’ (P-value, 1.69 × 10−20). After exclusion of 14
genome-wide significant loci, the significance of enrichment
of glycome-related pathways has reduced (corresponding P-
values without correction for multiple testing were 0.57, 0.097
and 0.0063; see Supplementary Material, Table 7B).

Pleiotropy with expression quantitative trait loci

We next attempted to identify genes whose expression level
could potentially mediate the association between SNPs and
plasma N-glycome. To do this, we performed a summary data-
based Mendelian randomization (SMR) analysis followed by
heterogeneity in dependent instruments (HEIDI) test (38) using
a collection of eQTL (expression quantitative trait loci) data for
blood (39), 44 tissues provided in the GTEx database version
6p (40) and six blood cell types collected in the CEDAR study
[see Supplementary Material, Note 3 and (41)]—five immune
cell populations (CD4+, CD8+, CD19+, CD14+ and CD15+) and
platelets. In short, SMR tests the association between gene
expression in a particular tissue/cell type and a trait using the
top associated SNP as a genetic instrument. Significant SMR
test may indicate that the same functional variant influences
both expression and the trait of interest (causality or pleiotropy)
but may also indicate that functional variants underlying
gene expression are in linkage disequilibrium with those
controlling the traits. Inferences whether functional variant
may be shared between plasma glycan trait and expression
were made based on HEIDI test: PHEIDI > 0.05 (likely shared),
0.05 > PHEIDI > 0.001 (possibly shared) and PHEIDI < 0.001 (sharing is
unlikely).

We applied SMR/HEIDI analyses for replicated loci that
demonstrated genome-significant association in our dis-
covery data (11 loci). In total, we included in the analysis
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expression levels of 20 448 transcripts (probes). For 15 probes
located in 7 loci associated with plasma glycosylation, we
observed significant (PSMR < 0.05/20 448 = 2.445 × 10−6) associ-
ation with the top SNPs associated with plasma N-glycome
(see Supplementary Material, Table 8). Subsequent HEIDI test
showed that the hypothesis of shared functional variant
between plasma glycan traits and expression was most likely
(PHEIDI > 0.05) for four probes: ST6GAL1 in whole blood [from
Westra et al. (39)], TMEM121 in whole blood [GTEx (40)], MGAT3
in CD19+ cells [CEDAR (41)] and CHCHD10 in whole blood
[from Westra et al. (39)]. For other five probes, we conclude that
the functional variant is possibly shared (0.001 < PHEIDI < 0.05)
between glycan traits and expression of ST3GAL4 [in two
different tissues: muscle skeletal and pancreas; GTEx (40)],
B3GAT1 [in two tissues: whole blood from Westra et al. (39) and
lung tissue from GTEx (40)] and SYNGR1 [in tibial nerve tissue
from GTEx (40)].

Overlap with complex traits

We next investigated the potential pleiotropic effects of our loci
on other complex human traits and diseases using PhenoScan-
ner v1.1 database (42). For 12 replicated SNPs (Tables 1 and 2),
we looked up traits that were genome-wide significantly
(P < 5 × 10−8) associated with the same SNP or SNP in a strong
(r2 > 0.7) linkage disequilibrium. The results are summarized
in Supplementary Material, Table 9. For 8 out of 12 loci, we
observed associations with a number of complex traits. Four
loci (near IKZF1, FUT8, MGAT3 and DERL3) were associated with
levels of glycosylation of IgG (43). Two loci (on chromosome 12 at
121 Mb and on chromosome 11 at 126 Mb, containing HNF1a
and ST3GAL4 genes, respectively) were associated with LDL
and total cholesterol levels (44,45). The locus-containing HNF1a
was additionally associated with the level of plasma C reactive
protein (46,47) and gamma glutamyl transferase (48). Locus on
chromosome 22 at 39 Mb (containing MGAT3) was associated
with adult height (49). Locus on chromosome 14 at 65/66 Mb (near
FUT8) was associated with age at menarche (50). Note, however,
that PhenoScanner analysis does not allow distinguishing
between pleiotropy of a variant shared between the traits and
linkage disequilibrium between different functional variants
affecting separate traits.

Summary of in-silico follow-up

We compared the genes suggested by our in silico functional
investigation with the candidate genes suggested previously for
five known loci (see Table 3). For three out of five loci (B3GAT1,
FUT8 and FUT6/FUT3), we selected the same genes as suggested
by the authors of the previous study (27). All three genes are
known to be involved in the glycan synthesis pathways. B3GAT1
gene encodes beta-1,3-glucuronyltransferase 1. According to
SMR/HEIDI analysis, the same functional variant possibly
mediates the association of B3GAT1-containing locus on chro-
mosome 11 with glycan trait as well as with the level of B3GAT1
expression in whole blood and lung tissue. The FUT8 locus was
associated mostly with core-fucosylated biantennary glycans,
which are known to be linked to the immunoglobulins (51).
Since the FUT8 gene encodes fucosyltransferase 8, an enzyme
responsible for the addition of core fucose to glycans, this gene
is the most biologically plausible in this locus. Evidence for prio-
ritization of this gene in our study was also provided by DEPICT.

FUT3 and FUT6 encode fucosyltransferases 3 and 6 that cat-
alyze the transfer of fucose from GDP-beta-fucose to alpha-2,3
sialylated substrates. The FUT3/FUT6 locus was associated with
antennary fucosylation of tri- and tetra-antennary sialylated
glycans, and therefore we consider these genes as good can-
didates. Moreover, in the FUT6 gene (chromosome 19, 58 Mb),
we found the missense variant rs17855739 (substitution G > A)
that leads to the amino acid change from negatively charged
glutamic acid to positively charged lysine. FATHMM-XF predicted
this variant as pathogenic for transcripts of FUT6 gene. Thus, we
can consider this SNP as a potentially causal functional variant.
DEPICT prioritized the FUT3 gene.

For two other loci (on chromosome 2 at 135 Mb and on
chromosome 12 at 121 Mb), we were not able to prioritize genes
by the DEPICT and eQTL analyses. However, the first locus
contained the MGAT5 gene encoding mannosyl-glycoprotein-
N-acetyl glucosaminyl-transferase that is involved in the glycan
synthesis pathways. The second locus contained several genes
including HNF1A, which was previously shown to co-regulate the
expression of most fucosyltransferase (FUT3, FUT5, FUT6, FUT8,
FUT10 and FUT11) genes in a human liver cancer cell line (HepG2
cells) as well as to co-regulate expression genes encoding key
enzymes needed for synthesis of GDP-fucose, the substrate for
fucosyltransferases, thereby regulating multiple stages in the
fucosylation process (26). Thus, we considered HNF1A as the
candidate gene for this locus.

Four of the seven novel loci contain genes that are known to
be involved in glycan synthesis pathways—ST6GAL1, ST3GAL4,
B4GALT1 and MGAT3 (see Table 3 and Fig. 1). Moreover, SMR
and HEIDI analyses have shown that expression of ST6GAL1,
ST3GAL4 and MGAT3 genes may mediate the association
between corresponding loci and plasma N-glycome. ST6GAL1
and ST3GAL4 genes encode sialyltransferases, enzymes that
catalyze the addition of sialic acid to various glycoproteins. The
locus-containing ST6GAL1 was associated with ratio of sialylated
and non-sialylated galactosylated biantennary glycans. The
locus containing ST3GAL4 was associated with galactosylated
sialylated tri- and tetra-antennary glycans. The locus containing
MGAT3 was associated with core-fucosylation of bisected
glycans, which is in line with the known effect of GnT-III
(product of MGAT3 gene) on FUT8 activity (52). For this locus,
we have found two possible functional variants: non-coding
variant rs7423 and in-frame deletion rs149306472 that was
predicted to be pathogenic for the product of the SYNGR1
gene. The SYNGR1 gene encodes an integral membrane protein
associated with presynaptic vesicles in neuronal cells. Since
MGAT3 has a known role in glycan biosynthesis, we choose
MGAT3 as the candidate gene for this locus. The B4GALT1 gene
encodes galactosyltransferase, which adds galactose during
the biosynthesis of different glycoconjugates. This gene was
associated with galactosylation of biantennary glycans. Thus,
we observe consistency between known enzymatic activities of
the products of selected candidate genes and the spectrum of
glycans that are associated with corresponding loci.

The other three novel loci do not contain genes that are
known to be directly involved in glycan synthesis (Fig. 1).
Variant rs9624334 (chromosome 22 at 24 Mb) is located in the
intron of SMARCB1 gene that is known to be important in
antiviral activity, inhibition of tumor formation, neurodevel-
opment, cell proliferation and differentiation (53). However,
gene prioritization analysis (DEPICT) showed that the possible
candidate gene is DERL3, which encodes a functional component
of endoplasmic reticulum (ER)-associated degradation for
misfolded luminal glycoproteins (54) (see Table 3). Additionally,
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Table 3. Summary of in-silico functional annotation for 12 replicated loci

Locus Nearest gene Candidate Gene CV SMR/HEIDI D Funct. studies Glycan synth. Prev. annot.

Previously implicated loci

2:135015347 MGAT5 MGAT5 − + Pl
11:134274763 B3GAT1 B3GAT1 − Whole

blood/lung
+ Pl

12:121436376 HNF1A HNF1A − (27) + Pl
14:66011184 FUT8 FUT8 − FDR < 20% + Pl, IgG
19:5828064 NRTN FUT3 − FDR < 20% + Pl

FUT6 rs17855739 + Pl, IgG

Novel loci

3:186722848 ST6GAL1 ST6GAL1 − Whole blood + IgG
7:50355207 IKZF1 IKZF1 − IgG
9:33128617 B4GALT1 B4GALT1 − + IgG
11:126232385 ST3GAL4 ST3GAL4 − Muscle skele-

tal/pancreas
+

14:105989599 C14orf80 TMEM121 − Whole blood
IGH − IgG

22:24166256 SMARCB1 DERL3 rs3177243 FDR < 20% IgG
CHCHD10 − Whole blood

22:39859169 MGAT3 MGAT3 − CD19+ (B cells) + IgG
SYNGR1 rs149306472,

rs7423
Nerve tibial

For each locus, we report the gene nearest to the top SNP and plausible candidate genes. CV—variant with predicted (by FATHMM-XF or FATHMM-INDEL) pathogenic
impact on the gene; SMR/HEIDI—evidence for pleiotropy with expression demonstrated by SMR-HEIDI analysis; D—evidence provided by DEPICT analysis; Funct.
studies—evidence from functional studies; Glycan synth.—known genes involved in glycan synthesis or its regulation are present in the locus; Prev. annot.—the region
has previously been revealed in glycome GWAS, and the gene was suggested as candidate [Pl—gene was reported as affecting plasma protein N-glycome by Huffman
et al. (27); IgG—gene was reported as affecting IgG glycome either by Lauc et al. (43) and/or by Shen et al. (56)].

FATHMM analysis demonstrated missense-coding DERL3 variant
rs3177243 to be potentially pathogenic. This polymorphism
is in strong LD (r2 = 0.98 in 1000 Genome EUR samples) with
the leading SNP rs9624334. However, the SMR/HEIDI analysis
suggested that the association with N-glycome could be (also)
mediated by expression of CHCHD10 gene, which encodes a
mitochondrial protein that is enriched at cristae junctions in
the intermembrane space. The CHCHD10 gene has the highest
expression in heart and liver and the lowest expression in spleen
(55). While the role of mitochondrial proteins in glycosylation
processes remains speculative, we propose CHCHD10 as a can-
didate based on our eQTL pleiotropy analysis. Thus, we consider
two genes—DERL3 and CHCHD10—as possible candidate genes in
this locus. Interestingly, this and the MGAT3 loci were associated
with similar glycan traits (core-fucosylation of bisected glycans).
This indicates that core fucosylation of bisected glycans is under
joint control of MGAT3 and DERL3/CHCHD10.

The locus on chromosome 14 at 105 Mb contains the IGH
gene that encodes immunoglobulin heavy chains. This locus
was associated with sialylation of core-fucosylated biantennary
monogalactosylated structures that are biochemically close to
those influenced by the ST6GAL1-containing locus. Since IgG
is the most prevalent glycosylated plasma protein (51), we can
consider IGH a good candidate, as indeed was suggested by Shen
and colleagues (56). However, our functional annotation results
(SMR/HEIDI) suggested that association of this locus with plasma
N-glycome may be mediated by TMEM121 gene. Therefore, we
consider two genes—IGH and TMEM121—as candidate genes for
this locus.

For the locus on chromosome 7 at 50 Mb, we were not able
to select a candidate gene based on the results of our in-silico
functional annotation. This locus was previously reported to
be associated with glycan levels of IgG (43), and the authors
suggested that IKZF1 may be considered a candidate gene in the
region. The IKZF1 gene encodes the DNA-binding protein Ikaros
that acts as a transcriptional regulator and is associated with
chromatin remodeling. It is considered an important regulator

of lymphocyte differentiation. Taking into account that IgG [the
most abundant glycoprotein in the blood plasma (51)] is secreted
by B cells (57), IKZF1 seems to be a plausible candidate gene.

Gene network regulating N-glycosylation

To identify possible clusters in the gene network of plasma pro-
tein N-glycosylation, we draw a graph in which 11 genome-wide
significant loci and genome-wide significantly (P < 1.66 × 10−9)
associated glycan traits were presented as nodes and edges rep-
resent observed associations (Fig. 3). We labeled each glycan trait
as ‘immunoglobulin-linked’ (Ig-linked), ‘non-immunoglobulin-
linked’ (non-Ig-linked) or mixed depending on the contri-
bution of Ig- and non-Ig-linked glycans to the trait value
(Supplementary Material, Table 10), which was inferred based
on the information about protein-specific glycosylation reported
previously (51). For more details about the procedure of Ig/non-
Ig/mixed assignment, see Supplementary Material, Note 4.

The resulting network shows that candidate genes and
glycan traits cluster into two major subnetworks or hubs
(Fig. 3). The first subnetwork contained the six loci: FUT8,
DERL3/CHCHD10, IKZF1, TMEM121, ST6GAL1 and MGAT3, with
FUT8 as a hub. These loci, as well as the locus containing
B4GATL1, were associated with core-fucosylated biantennary
glycans. It is known that the majority of plasma core-fucosylated
biantennary glycans are linked to immunoglobulins (51).
Moreover, in previous studies, these seven genes were found
to be associated with N-glycosylation of IgG (43,56). At the same
time, these genes were associated with non-Ig-linked glycans.
We can consider this cluster (7 genes out of 11) as related
to both IgG and non-IgG glycosylation. Taking into account
that IgG is the most prevalent glycosylated plasma protein,
it is not surprising that more than a half of replicated loci
are actually associated with immunoglobulins glycosylation.
However, previous GWAS on HPLC plasma N-glycome reported
only one locus—FUT8—as overlapping with IgG glycosylation-
associated loci.
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Figure 3. A network view of associations between loci and glycan traits. Square nodes represent genetic loci labeled with the names of candidate gene(s), circle

nodes represent glycan traits. Squares with polka dot pattern represent candidate genes, located in genomic regions that were previously found to be associated

with IgG N-glycome. Grey squares represent candidate genes, located in genomic regions associated with plasma N-glycome. Grey/white squares represent candidate

genes, located in genomic regions associated with plasma N-glycome, that were previously found to be associated with IgG N-glycome. Circles with polka dot pattern

highlights glycan traits mostly containing glycans that are linked to immunoglobulins. Grey circles represent traits that are mostly formed by glycans linked to other

(not immunoglobulin) proteins. Grey/white circles represent glycan traits, formed by a mixture of glycans that are linked to immunoglobulin and non-immunoglobulin

proteins. Arrows represent genetic association (P < 1.66 × 10−9) between gene and specific glycan.

The second subnetwork contained four loci (ST3GAL4, HNF1A,
FUT3/FUT6 and B3GAT1, with FUT3/FUT6 as a hub) associated
with tri- and tetra-antennary glycans. It is known that these
types of glycans are linked to plasma proteins other than
IgG (51). Thus, we attributed this cluster to non-IgG plasma
protein N-glycosylation. Among these four loci, we report
ST3GAL4 as the novel locus controlling N-glycosylation of non-
IgG plasma proteins. We attribute it to non-immunoglobulins
plasma protein N-glycosylation owing to its association with
tetra-antennary glycans.

Discussion
We conducted the first GWAS of total plasma N-glycome mea-
sured by UPLC technology. Our efforts brought the number of
loci significantly associated with total plasma N-glycome from
6 (26,27) to 16, of which 12 were replicated in our study. This
allowed us to use a range of in silico functional genomics analyses
and identify candidate genes in the established loci.

Compared to the HPLC glycan measurement technology used
in previous GWAS of plasma N-glycome (26,27), UPLC tech-
nology provides better resolution and quantification of glycan
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structures, resulting in increased power of association testing.
Thus, despite the reduced sample size in our study [2763 samples
here vs. 3533 samples in the study reported by Huffman et al.
(27)], we have detected 14 vs. 6 plasma N-glycome QTLs. In
particular, we revealed and replicated novel loci containing
ST3GAL4 and ST6GAL1. An interesting question is why these
two strongly associated loci were not detected in previous
HPLC-based GWAS. In our study, ST3GAL4 locus showed the
strongest association with PGP17 peak (which corresponds
to A2G2S[3,6+3]2 trait; P = 8.6 × 10−28). On an average UPLC
chromatogram, a nearby PGP19 peak has 8× and 28× bigger
area than PGP17 and PGP18 peaks, respectively. On the HPLC
chromatogram, these three peaks are merged into one GP9 peak.
Thus, GP9 HPLC peak is mostly formed by PGP19. In our study,
we revealed association of ST3GAL4 locus neither with PGP18
(P = 6.14 × 10−1) nor with PGP19 (P = 8.25 × 10−4) peaks. We can
therefore assume that association in the previous study (27) was
not detected due to a small signal-to-noise ratio. We suggest
the same reasoning for the ST6GAL1 locus. In our study it was
associated with PGP13 peak (P = 3.12 × 10−23), which together
with PGP12 forms GP6 HPLC peak. ST6GAL1 locus showed
association neither with GP6 in Huffman et al. study (P = 0.012)
(27) nor with PGP12 in our study (P = 3.19 × 10−2). PGP12 peak has
1.5× bigger area than PGP13. Thus, we propose that ST6GAL1 has
an exclusive effect on PGP13 (FA2[3]G1S[3+6]1) trait.

It should be noted that we used a new imputation panel (1000
Genomes instead of HapMap in the previous studies) that more
than tripled the number of polymorphisms analyzed (from 2.4 M
SNPs to 8 M). That may have contributed to the higher power of
our study as well.

In addition to detecting novel loci, we were able to replicate
five (HNF1A, FUT6, FUT8, B3GAT1 and MGAT5) out of six loci
that were reported previously to be associated with human
plasma N-glycome measured using the HPLC technology (26,27).
However, 3 out of 10 novel loci have not been replicated.
For two of them, associated SNPs had relatively low (<2%)
MAF. For rare variants, multiple testing burden is increased
compared to common variants, which may lead to higher
than expected false positive rate (58) in discovery. At the
same time, relative effects of drift that are more pronounced
for rare variants (59,60) may increase false negative rate in
replication. The third unreplicated locus is located in HLA region
known to have very complex structure (61). This locus showed
highest (although not significant) heterogeneity of association
(P-value of Cochran’s Q-test = 0.07) among loci in the replication
meta-analysis.

Among six plasma glycome loci that were identified as
genome-wide significant previously (26,27), only one (region of
FUT8) had overlap with a locus identified as associated with IgG
glycome composition (43). A recent multivariate GWAS study of
plasma IgG glycome composition (56) identified five new loci,
including the region of FUT3/FUT6, thus bringing the overlap
between plasma and IgG glycome loci to two. In our study, among
12 replicated loci, the majority (8 loci) overlapped with loci that
were reported to be associated with IgG glycome composition
(43,56) (Fig. 3). We therefore established a strong overlap between
IgG and plasma glycome loci.

In a way, this overlap is to be expected. It is known that major-
ity of serum (and therefore plasma) glycoproteins are either
immunoglobulins produced by B-lymphocytes or glycoproteins
secreted by the liver (62). We thus expected overlap between IgG
and total plasma glycome loci, and we expected that loci asso-
ciated with the plasma N-glycome would be enriched by genes
with tissue specific expression in liver and B cells. Indeed, we

find that plasma N-glycome loci are enriched by genes expressed
in plasma cells, antibody producing-cells and B-lymphocytes,
and we also find overlap between plasma N-glycome loci and
CD19+ eQTLs. However, we neither find enrichment of genes
that are expressed in liver (Supplementary Material, Table 5C)
nor overlap between plasma N-glycome loci and liver eQTLs.
In the future, it will be important to achieve better resolution
and separation of loci that are related to glycosylation of non-
immunoglobulin glycoproteins. This could be achieved either
technologically (e.g. performing analyses of IgG-free fractions of
proteins), or this could be attempted via statistical modeling.

The genetic variation in the FUT3/FUT6 locus is a major (in
terms of proportion of variance explained and number of glycans
affected) genetic factor for non-immunoglobulins glycosylation.
According to current knowledge, these enzymes catalyze fucosy-
lation of antennary GlcNAc32, resulting in glycan structures that
are not found on IgG (51,63). This is consistent with the spectrum
of glycan traits associated with FUT3/FUT6 locus in our work
(Fig. 3). However, this locus was recently found to be associated
with IgG glycosylation (56). The authors could not explain this
finding because at that time IgG glycans were not known to
contain antennary fucose. Two explanations could have been
proposed for this surprising finding: either enzymes encoded by
FUT3/FUT6 locus exhibit non-canonical activity of core fucosyla-
tion or some IgG glycans actually do contain antennary fucose.
Recently, the latter was demonstrated in the study by Russell
et al. (10). Based on our results showing no evidence for associ-
ation between FUT3/FUT6 locus and core fucosylation, we can
speculate that association of this locus with IgG glycosylation
could be explained by the presence of antennary fucose on some
IgG-linked glycans.

An interesting pattern starts emerging out of study of genetic
control of plasma glycosylation. We now see a clear overlap in
genetic control between plasma and IgG glycosylation, which
calls for future studies that would help distinguish among global,
cell-specific, tissue-specific and protein-specific pathways of
protein glycosylation. Many (8 out of 12) replicated loci contained
genes that encode enzymes directly involved in glycosylation
(FUT3/FUT6, FUT8, B3GAT1, ST6GAL1, B4GALT1, ST3GAL4, MGAT3
and MGAT5). However, glycosylation results from a complex
interplay not only of enzymes responsible for transfer of
monosaccharides to a growing glycan chain but also of enzymes
involved in biosynthesis of individual monosaccharides and
mechanism ensuring timely localization of all components
involved in the process. Moreover, a number of environmental
factors, such as diet and smoking, were found to be associated
with plasma N-glycome composition (25). Studies in mouse
models suggested complex compensatory mechanisms to pay
role in glycosylation, which can complicate interpretation of
the observed associations (64,65). We now start seeing loci and
genes, which are likely to reflect complex aspects of plasma
protein glycosylation, such as regulation of fucosylation by
HNF1a (26). Such regulatory genes, in our view, are plausible
candidates that will help linking glycans with complex human
diseases. The results of our study provide evidence for potential
role of genes DERL3, CHCHD10, TMEM121, IGH and IKZF1,
although for some loci we could not prioritize only one particular
gene (e.g. for locus containing DERL3 and CHCHD10). These genes
can be considered candidates for future experimental research.
To facilitate further studies of glycosylation and of the role of
glycome in human health and diseases we have made full results
of our plasma N-glycome GWAS (almost 1 billion of trait–SNP
associations) freely available to the scientific community via
GWAS archive.
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Previous GWAS of HPLC measured plasma N-glycome (27)
identified six genes controlling plasma N-glycosylation of which
four implicated genes with obvious links to the glycosylation
process. Here, using a smaller sample but more precise UPLC
technology and new GWAS imputation panels, we confirmed
the association of five known loci and identified and replicated
additional seven loci. Our results support the idea that genetic
control of plasma protein N-glycosylation is a complex process,
which is under control of genes that belong to different pathways
and are expressed in different tissues. Further studies with larger
sample size are warranted to further decrypt the genetic archi-
tecture of the glycosylation process and explain the relations
between glycosylation and mechanisms of human health and
disease.

Materials and Methods
Study cohort description
This work is based on analysis of data from four cohorts—
TwinsUK, PainOR, SOCCS and QMDiab. Sample demographics
can be found in Supplementary Material, Table 11.

TwinsUK. The TwinsUK cohort (66) (also referred to as the UK
Adult Twin Register) is a nationwide registry of volunteer twins
in the UK, with about 13 000 registered twins (83% female, equal
number of monozygotic and dizygotic twins, predominantly
middle-aged and older). The Department of Twin Research and
Genetic Epidemiology at King’s College London hosts the registry.
From this registry, a total of 2763 subjects had N-linked total
plasma glycan measurements that were included in the analysis.

QMDiab. The QMDiab is a cross-sectional case–control study
with 374 participants. QMDiab has been described previously
and comprises male and female participants in near equal
proportions, aged between 23 and 71 years, mainly of Arab,
South Asian and Filipino descent (67,68). The initial study was
approved by the institutional review boards of Hamad Medical
Corporation (HMC) and Weill Cornell Medicine—Qatar (WCM-
Q) (research protocol #11131/11). Written informed consent
was obtained from all participants. All study participants
were enrolled between February 2012 and June 2012 at the
Dermatology Department of HMC in Doha, Qatar. Inclusion
criteria were a primary form of type 2 diabetes (for cases) or
an absence of type 2 diabetes (for controls). Sample collection
was conducted in the afternoon, after the general operating
hours of the morning clinic. Patient and control samples were
collected in a random order as they became available and at the
same location using identical protocols, instruments and study
personnel. Samples from cases and controls were processed in
the laboratory in parallel and in a blinded manner. Data from
five participants were excluded from the analysis because of
incomplete records, leaving 176 patients and 193 controls. Of the
193 control participants initially enrolled, 12 had HbA1c levels
above 6.5% (48 mmol/mol) and were subsequently classified as
cases, resulting in 188 cases and 181 controls.

SOCCS. SOCCS study (69,70) comprised 2057 (colorectal cancer)
CRC cases (61% male; mean age at diagnosis, 65.8 ± 8.4 years) and
2111 population controls (60% males; mean age ,67.9 ± 9.0 years)
as ascertained in Scotland. Cases were taken from an indepen-
dent, prospective, incident CRC case series and aged <80 years at
diagnosis. Control subjects were population controls matched by
age (±5 years), gender and area of residence within Scotland. All

participants gave written informed consent and study approval
was from the MultiCentre Research Ethics Committee for Scot-
land and Local Research Ethics committee. Sample collection is
described in (69,70).

PainOR. The PainOR (71) is the University of Parma cohort of
patients of a retrospective multicenter study (ClinicalTrials.gov
Identifier: NCT02037789) part of the PainOMICS project funded
by European Community in the Seventh Framework Programme
(Project ID: 602736). The primary objective is to recognize genetic
variants associated with chronic low back pain (CLBP); secondary
objectives are to study glycomics and Activomics profiles asso-
ciated with CLBP. Glycomic and Activomic approaches aim to
reveal alterations in proteome complexity that arise from post-
translational modification that varies in response to changes in
the physiological environment, a particularly important avenue
to explore in chronic inflammatory diseases. The study was
firstly approved by the institutional review boards of Istituto
di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation
San Matteo Hospital Pavia and then by the institutional review
boards of all clinical centers that enrolled patients. Copies of
approvals were provided to the European Commission before
starting the study. Written informed consent was obtained from
all participants. In the period between September 2014 and
February 2016, 1000 patients (including 38.1% male and 61.9%
female, averaging 65 ± 14.5 years) were enrolled at the Anesthe-
sia, Intensive Care and Pain Therapy Department of University
Parma Hospital. Inclusion criteria were adult Caucasian patients
who were suffering of lower back pain (pain between the costal
margins and gluteal fold, with or without symptoms into one
or both legs) more than 3 months who were admitted at Pain
Department of University Parma Hospital. We exclude patients
with recent history of spinal fractures or lower back pain due
to cancer or infection. Sample collection was performed in all
patients enrolled, according to the standard operating proce-
dures published in PlosOne in 2017 (72). Samples were processed
in PainOmics laboratory in a blinded manner in University of
Parma.

Genotyping

For full details of the genotyping and imputation see
Supplementary Material, Table 12.

TwinsUK. Genotyping was carried out using combination Illu-
mina SNP arrays: HumanHap300, HumanHap610Q, 1 M-Duo and
1.2MDuo 1 M. Standard quality control of genotyped data was
applied, with SNPs filtered by sample call rate > 98%; MAF > 1%;
SNP call rate, >97% (for SNP with MAF ≥ 5%) or >99% (for SNPs
with 1% ≤ MAF < 5%); and HWE, P < 1 × 10−6. In total 275 139 SNPs
passed criteria. Imputation was done using IMPUTE2 software
with 1000G phase 1 version 3 and mapped to the GRCh37 human
genome build. Imputed SNPs were filtered by imputation quality
(SNPTEST proper-info) > 0.7, MAF ≥ 1% and MAC ≥ 10, leading to
8 557 543 SNPs passed to the GWAS analysis.

QMDiab. Genotyping was carried out using Illumina Omni
array 2.5 (version 8). Standard quality control of genotyped
data was applied, with SNPs filtered by sample call rate > 98%;
MAF > 1%; SNP call rate, > 98%; and HWE P ×< × 1 × 10−6. In
total 1 223 299 SNPs passed criteria. Imputation was done using
SHAPEIT software with 1000G phase 3 version 5 and mapped to
the GRCh37 human genome build. Imputed SNPs were filtered
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by imputation quality >0.7, leading to 20 483 276 SNPs passed to
the GWAS analysis.

SOCCS. Details of the genotyping procedure can be found here
(73). Genotyping was carried out using Illumina SNP arrays:
HumanHap300 and HumanHap240S. Standard quality control of
genotyped data was applied, with SNPs filtered by sample call
rate > 95%; MAF > 1%; SNP call rate, >95%; and HWE, P < 1 × 10−6.
In total 514 177 SNPs passed criteria. Imputation was done using
SHAPEIT and IMPUTE2 software with 1000 Genomes, phase 1
(Integrated haplotypes, released June 2014) and mapped to the
GRCh37 human genome build. Imputed SNPs were not filtered,
leading to 37 780 221 SNPs passed to the GWAS analysis.

PainOR. Genotyping was carried out using Illumina Human-
Core BeadChip. Standard quality control of genotyped data
was applied with SNPs filtered by sample call rate > 98%;
MAF > 0.625%; SNP call rate, >97%; and HWE, P < × 1 × 10−6. In
total 253 149 SNPs passed criteria. Imputation was done using
Eagle software with HRC r1.1 2016 reference and mapped to the
GRCh37 human genome build. Imputed SNPs were not filtered,
leading to 39 127 685 SNPs passed to the GWAS analysis.

Phenotyping
Plasma N-glycome quantification

Plasma N-glycome quantification of samples from TwinsUK,
PainOR and QMDiab were performed at Genos by applying
the following protocol. Plasma N-glycans were enzymatically
released from proteins by PNGase F, fluorescently labeled
with 2-aminobenzamide and cleaned up from the excess of
reagents by hydrophilic interaction liquid chromatography
solid phase extraction (HILIC-SPE), as previously described. (74).
Fluorescently labeled and purified N-glycans were separated
by HILIC on a Waters BEH Glycan chromatography column,
150 × 2.1 mm, 1.7 μm BEH particles, installed on an Acquity UPLC
instrument (Waters, Milford, MA, USA) consisting of a quaternary
solvent manager, sample manager and a fluorescence detector
set with excitation and emission wavelengths of 250 and
428 nm, respectively. Following chromatography conditions
previously described in details (74), total plasma N-glycans
were separated into 39 peaks for QMDiab, TwinsUK and PainOR
cohorts. The amount of N-glycans in each chromatographic
peak was expressed as a percentage of total integrated area.
Glycan peaks (GPs)—quantitative measurements of glycan
levels—were defined by automatic integration of intensity peaks
on chromatogram. The number of defined GPs varied among
studies from 36 to 42 GPs.

Plasma N-glycome quantification for SOCCS samples were
done at the National Institute for Bioprocessing Research and
Training (NIBRT) by applying the same protocol as for TwinsUK,
PainOR and QMDiab, with the only difference in the excitation
wavelength (330 nm instead of 250 nm).

Harmonization of GPs

The order of the GPs on a UPLC chromatogram was similar
among the studies. However, depending on the cohort some
peaks located near one another might have been indistinguish-
able. The number of defined GPs varied among studies from
36 to 42. To conduct GWAS on TwinsUK following by repli-
cation in other cohorts, we harmonized the set of peaks (or
GPs). According to the major glycostructures within the GPs we

manually created the table of correspondence between differ-
ent GPs (or sets of GPs) across all cohorts, where plasma gly-
come was measured using UPLC technology. Then, based on this
table of correspondence, we defined the list of 36 harmonized
GPs (Supplementary Material, Table 13) and the harmonization
scheme for each cohort. We validated the harmonization pro-
tocol by comparing with manual re-integration of the peaks on
chromatogram level using 35 randomly chosen samples from
three cohorts: TwinsUK, PainOR and QMDiad. We show the full
concordance between two approaches (Pearson correlation coef-
ficient R > 0.999, see Supplementary Material, Table 14 for the
details). We applied this harmonization procedure for the four
cohorts: TwinsUK, QMDiab, CRC and PainOR, leading to the set
of 36 glycan traits in each cohort.

Normalization and batch correction of GPs

Normalization and batch correction were performed on har-
monized UPLC glycan data for four cohorts: TwinsUK, PainOR,
SOCCS and QMDiab. We used total area normalization (the area
of each GP was divided by the total area of the corresponding
chromatogram). Normalized glycan measurements were log10-
transformed due to right skewness of their distributions and the
multiplicative nature of batch effects. Prior to batch correction,
samples with outlying measurements were removed. Outlier
was defined as a sample that had at least one GP that is out
of three standard deviations from the mean value of GP. Batch
correction was performed on log10-transformed measurements
using the ComBat method (75), where the technical source of
variation (batch and plate number) was modeled as a batch
covariate. Again, samples with outlying measurements were
removed.

From the 36 directly measured glycan traits, 77 derived traits
were calculated (see Supplementary Material, Table 10). These
derived traits average glycosylation features such as branching,
galactosylation and sialylation across different individual glycan
structures, and consequently, they may be more closely related
to individual enzymatic activity and underlying genetic poly-
morphism. As derived traits represent sums of directly mea-
sured glycans, they were calculated using normalized and batch-
corrected glycan measurements after transformation to the pro-
portions (exponential transformation of batch-corrected mea-
surements). The distribution of 113 glycan traits can be found
in Supplementary Material, Figure 2.

Prior to GWAS, the traits were adjusted for age and sex
by linear regression. The residuals were rank transformed to
normal distribution [rntransform function in GenABEL (76,77) R
package].

Genome-wide association analysis

Discovery GWAS was performed using TwinsUK cohort (N = 2763)
for 113 GP traits. Genome-wide Efficient Mixed Model Associ-
ation algorithm (GEMMA) (78) was used to estimate the kin-
ship matrix and to run linear mixed model regression on SNP
dosages assuming additive genetic effects. Obtained summary
statistics were corrected for genomic control inflation factor λGC

to account for any residual population stratification. An asso-
ciation was considered statistically significant at the genome-
wide level if the P-value for an individual SNP was less than
5 × 10−8/(29 + 1) = 1.66 × 10−9, where 29 is an effective number of
tests (traits) that was estimated as the number of principal com-
ponents that jointly explained 99% of the total plasma glycome
variance in the TwinsUK sample.
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Locus definition

In short, we considered SNPs located in the same locus
if they were located within 500 Kb from the leading SNP
(the SNP with lowest P-value). Only the SNPs and the traits
with lowest P-values are reported (leading SNP-trait pairs).
The detailed procedure of locus definition is described in
Supplementary Material, Note 1.

Replication

We have used TwinsUK cohort for the replication of six
previously described loci (27) affecting plasma N-glycome. From
each of six loci we have chosen leading SNP with the strongest
association as reported by authors (27). Since there is no direct
trait-to-trait correspondence between glycan traits measured
by HPLC and UPLC technologies we tested the association
of the leading SNPs with all 113 glycan traits in TwinsUK
cohort. We considered locus as replicated if its leading SNP
showed association with at least one of 113 glycan traits with
replication threshold of P < 0.05/(6∗30) = 2.78 × 10−4, where six is
number of loci and 30 is a number of principal components
that jointly explained 99% of the total plasma N-glycome
variance.

For the replication of novel associations, we used data from
three cohorts: PainOR (N = 294), QMDiab (N = 327) and SOCCS
(N = 472) with total replication sample size of N = 1048 samples
that have plasma UPLC N-glycome and genotype data (for
details of genotyping, imputation and association analysis; see
Supplementary Material, Table 12). We used only the leading
SNPs and traits for the replication that were identified in the
discovery step. For these SNPs we conducted a fixed-effect
meta-analysis using METAL software (79) combining association
results from three cohorts. The replication threshold was set
as P < 0.05/10 = 0.005, where 10 is the number of replicated loci.
Moreover, we checked whether the sign of estimated effect was
concordant between discovery and replication studies.

Functional annotation in silico

Functional annotation of associated variants. All SNPs and indels
in high LD (r2 > 0.6) with the 12 lead variants at replicated loci
were selected. LD was calculated using genotype data for 503
samples with European descent from 1000 Genomes phase 3
version 5 data and Plink tool (80) (version 1.9) using –show-
tags option. Additionally, for each of the 12 replicated loci we
have selected the set of SNPs that had strong associations,
defined as those located within +/−250 kbp window from
the strongest association, and having P-value < T, where
log10(T) = log10(Pmin) + 1, where Pmin is the P-value of the
strongest association in the locus. This additional inclusion
criteria was applied since genotype data for TwinsUK samples
was imputed using 1000 Genomes phase 1 version 3 panel and
some of the SNPs from this panel are not exists in 1000 Genomes
phase 3 version 5 panel. The list of selected variants can be
found in Supplementary Material, Table 4A. Next all selected
variants passed to functional annotation using Ensembl Variant
Effect Predictor (VEP) method (33). Then, we used FATHMM-XF
(34) and FATHMM-INDEL (35) methods to predict the impact of
SNPs and small indels. Predictions are given as P-values in the
range [0, 1]: values above 0.5 are predicted to be deleterious,
while those below 0.5 are predicted to be neutral or benign. P-
values close to the extremes (0 or 1) are the highest-confidence
predictions that yield the highest accuracy.

Gene-set and tissue/cell enrichment analysis. To prioritize genes
in associated regions, gene set enrichment and tissue/cell type
enrichment analyses were carried out using DEPICT software v.
1 rel. 194 (32). For the analysis we have chosen independent vari-
ants (see ‘Locus definition’) with P < 5 × 10−8/30 (14 SNPs) and
P < 1 × 10−5/30 (93 SNPs). We used 1000G dataset for calculation
of LD (81). GO enrichment analysis was performed using FUMA
GENE2FUNC (82) analysis based on MsigDB c5 (83) and MAGMA
(37) with default parameters and ‘All genes’ as background genes.

Pleiotropy with complex traits. We have investigated the overlap
between associations obtained here and elsewhere, using
PhenoScanner v1.1 database (42). For 12 replicated SNPs (Table 1;
Table 2) we looked up traits that have demonstrated genome-
wide significant (P < 5 × 10–8) association at the same or at
strongly (r2 > 0.7) linked SNPs.

Pleiotropy with eQTLs. To identify genes whose expression lev-
els could potentially mediate the association between SNPs and
plasma glycan traits we performed a SMR analysis followed
by HEIDI method (38). In short, SMR test aims at testing the
association between gene expression (in a particular tissue) and
a trait using the top associated eQTL as a genetic instrument.
Significant SMR test indicates not only evidence of causality or
pleiotropy but also the possibility that SNPs controlling gene
expression are in linkage disequilibrium with those associated
with the traits. These two situations can be disentangled using
the HEIDI test.

The SMR/HEIDI analysis was carried out for leading SNPs that
were replicated and were genome-wide significant (P < 1.7 × 10−9)
on discovery stage (11 loci in total, see Table 1). We checked
for overlap between these loci and eQTLs in blood (39), 44
tissues provided by the GTEx database (40) and in nine cell
lines from CEDAR dataset (41), including six circulating immune
cell types (CD4+ T-lymphocytes, CD8+ T lymphocytes, CD19+
B lymphocytes,CD14+ monocytes, CD15+ granulocytes and
platelets). Technical details of the procedure may be found in
Supplementary Material, Note 2. Following Bonferroni proce-
dure, the results of the SMR test were considered statistically
significant if PSMR < 2.445 × 10−6 (0.05/20448, where 20448 is a
total number of probes used in analysis for all three data sets).
Inferences whether functional variant may be shared between
plasma glycan trait and expression were made based on HEIDI
test: PHEIDI > 0.05 (likely shared), 0.05 > PHEIDI > 0.001 (possibly
shared) and PHEIDI < 0.001 (sharing is unlikely).

Data availability

Summary statistics from our plasma N-glycome GWAS for 113
glycan traits are available for interactive exploration at the GWAS
archive (http://gwasarchive.org). The dataset was also deposited
at Zenodo (http://doi.org/10.5281/zenodo.1298406) (84). The data
generated in the secondary analyses of this study are included
with this article in the supplementary tables.

Supplementary Material
Supplementary Material is available at HMG online.
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