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Abstract 

Tight regulation of gene expression is orchestrated by enhancers. Through recent research advancements, it is 

becoming clear that enhancers are not solely distal regulatory elements harboring transcription factor binding 

sites and decorated with specific histone marks, but they rather display signatures of active transcription, 

showing distinct degrees of transcription unit organization. Thereby, a substantial fraction of enhancers give rise 

to different species of non-coding RNA transcripts with an unprecedented range of potential functions. In this 

review, we bring together data from recent studies indicating that non-coding RNA transcription from active 

enhancers, as well as enhancer-produced long non-coding RNA transcripts, may modulate or define the 

functional regulatory potential of the cognate enhancer. In addition, we summarize supporting evidence that 

RNA processing of the enhancer-associated long non-coding RNA transcripts may constitute an additional layer 

of regulation of enhancer activity, which contributes to the control and final outcome of enhancer-targeted gene 

expression. 

 

Keywords: transcription, enhancer, RNA processing, co-transcriptional RNA splicing, chromatin, long 

non-coding RNA (lncRNA). 

 

 

 Introduction 

Precise regulation of RNA polymerase II (Pol II) transcription is critical for accurate gene activity. Gene 

expression is to a large degree regulated by distal regulatory elements called enhancers, which positively drive 

the expression of their targets in an orientation-independent, but highly temporal- and cell type-specific manner 

(Shlyueva et al., 2014). 

In the last years, several high-throughput and computational prediction methods have been developed to 

annotate enhancers genome-wide. Many of them rely on the accepted evidence that enhancer activity is reflected 

genome-wide in accessible chromatin regions flanked by nucleosomes carrying the H3K27Ac modification and 
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a higher proportion of H3K4me1 over H3K4me3 mark. Widely-used algorithms and established computational 

pipelines, such as chromHMM (Ernst and Kellis, 2012) (Table 1), can segment the genome in different 

chromatin states based on combinations of histone marks from ChIP-seq experiments and predict genomic 

regions corresponding to putative enhancers. Other methods rely on the overlap with transcription factor binding 

sites, such as p300, to define potential enhancers, or on signatures of nascent bidirectional RNA Pol II 

transcription (Hoffman et al., 2013; Andersson et al., 2014a; He et al., 2017). These methods are usually 

accompanied by experimental pipelines to validate the enhancer potential on the predicted associated target gene 

expression, since only the computational annotation of a region as an enhancer does not ensure that this region 

enhances gene activity in vivo. 

Enhancers and gene promoters have been proposed to share similar organization, in terms of transcription 

initiation and transcription factor binding (Core et al., 2014; Andersson et al., 2015; Kim and Shiekhattar, 2015), 

and functional properties, such as the pausing of Pol II (Henriques et al., 2018; Tippens et al., 2018). In addition, 

highly transcribed enhancers can act as weak promoters in vivo (Nguyen et al., 2016; van Arensbergen et al., 

2017; Mikhaylichenko et al., 2018) and a subset of promoters may intrinsically possess enhancer activity (Li et 

al., 2012; Arnold et al., 2013; Zabidi et al., 2015; Nguyen et al., 2016; Diao et al., 2017; Mikhaylichenko et al., 

2018), suggesting that a dual enhancer-promoter activity has evolved at some regulatory sequence elements. In 

accordance, recent advancements of high-throughput genomics have set the ground to establish that enhancers 

are not just distal regulatory elements acting as binding platforms for proteins, but they are also actively 

transcribed, greatly contributing to the overall pervasive transcription observed in eukaryotic genomes (Berretta 

and Morillon, 2009; Dinger et al., 2009; Jensen et al., 2013). Large-scale sequencing studies have revealed that 

~75 % of the human genome is transcribed, but only ~2 % of this output is protein-coding RNA (Kapranov et al., 

2007; Djebali et al., 2012). The rest includes several species of non-coding RNA transcripts showing distinct 

degrees of stability and turnover, as well as different functions, although the specific roles of some non-coding 

RNA species are still not fully understood.  

In this review, we will summarize data examining the role and functional implications of enhancer-associated 

non-coding RNA transcription and its products in transcription regulation of target gene expression, with a focus 

on stable long non-coding RNAs. We will discuss the findings of recent studies providing evidence that 

transcription-associated processes, including splicing, may have a functional impact on transcriptionally active 

enhancers producing long non-coding RNAs, shaping the regulatory potential of the cognate enhancer on target 

gene expression. 

 

 Different types of non-coding RNA transcripts encoded in the human 

genome show distinct degrees of processing and stability 

Enhancers display extensive RNA Pol II transcription in a bidirectional mode, giving rise to 

enhancer-associated non-coding RNA molecules, termed eRNAs, which were first described in high-throughput 

experiments and large-scale transcriptome analyses (De Santa et al., 2010; Kim et al., 2010; Koch et al., 2011). 

eRNAs are typically short, unspliced and unstable, but based on their average detected length (>100 nt), 

sometimes they are also classified into ‘long’ non-coding RNAs (lncRNAs) (Nojima et al., 2018). By definition, 

long non-coding RNAs (lncRNAs) are molecules >100‒200 nt, which lack coding potential (Jensen et al., 2013). 
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In the current human Gencode annotation (Derrien et al., 2012), lncRNAs consist of ten subclasses, including 

‘lincRNAs’, ‘sense overlapping’, ‘antisense’ and ‘sense intronic’ transcripts. The last three subclasses refer to 

lncRNAs overlapping other annotated transcription units in the same (sense) or antisense orientation, or found 

within introns of protein coding genes, respectively. lincRNAs refer to ‘intergenic’ lncRNAs, meaning not 

overlapping any other annotated transcription unit. lincRNAs are usually spliced and polyadenylated (Ulitsky 

and Bartel, 2013) and thus rather stable. In fact, 84.5% of Gencode lincRNAs have at least one splicing junction.  

lncRNAs can be identified starting by de novo transcript assembly in RNA-sequencing data using specialized 

algorithms like Cufflinks (Trapnell et al., 2010) and StringTie (Pertea et al., 2015). These tools also allow the 

identification of splicing junctions and putative alternative splicing isoforms. The assembled transcription unit 

can be supported by available CAGE data (Shiraki et al., 2003) (Table 1) indicating transcription initiation site. 

The coding potential of the assembled transcript is then assessed by tools like CPAT (Wang et al., 2013) and 

PhyloCSF (Lin et al., 2011), and transcripts with a protein-coding score above a given cutoff are filtered out. 

Intergenic lncRNAs (lincRNAs) are further identified by excluding overlaps with known protein-coding genes, 

while histone modification marks, like the promoter-associated H3K4me3, may also be employed to support the 

identification. For instance, for the automated annotation of lincRNAs included in the final Gencode datasets, 

Ensemble follows an established pipeline (Guttman et al., 2009) where firstly, regions of chromatin methylation 

(H3K4me3 and H3K36me3) outside known protein-coding loci are identified. Next, cDNAs that overlap with 

H3K4me3 or H3K36me3 features are identified as candidate lincRNAs. In the final evaluation step, candidate 

lincRNAs with substantial protein-coding potential (an open reading frame covering at least 35% of length and 

containing PFAM protein domains) are discarded.  

eRNA as a term is not included in Gencode annotation; however, this does not preclude that many of the 

Gencode annotated lncRNA transcripts may actually overlap enhancer-transcribed eRNAs in specific cell lines. 

Because of their rapid turnover by nuclear decay pathways employing the exosome activity (Lubas et al., 2015), 

eRNAs are not readily detectable in steady-state RNA-seq data, and therefore for their annotation nascent 

RNA-sequencing techniques like GRO-seq (Table 1) or conditions of exosome depletion are employed (Core et 

al., 2008, 2014; Hah et al., 2011, 2013; Andersson et al., 2014a, b).  

On the other hand, using actinomycin treatment and expression microarrays, Clark et al. (2012) showed that 

lncRNAs as a class cannot be characterized as unstable, since their median half-life (~3.5 h) is comparable to 

mRNAs (~5.1 h). They also showed that intergenic (lincRNAs) and antisense lncRNAs are more stable 

compared to intronic lncRNAs, and that spliced lncRNAs are more stable compared to mono-exonic transcripts, 

demonstrating that splicing as a process contributes to overall transcript stability (Hicks et al., 2006). Recently, 

Mele et al. (2017) showed that Gencode annotated mRNAs and lincRNAs with similar expression levels exhibit 

equal stability (half-lives), although lincRNAs as a class are overall less efficiently spliced compared to 

mRNAs. Yet, the authors do find a substantial fraction of lincRNAs showing efficient splicing and conserved 

splice junctions, which are enriched in functionally annotated lincRNAs (Amaral et al., 2011), like FIRRE 

(Hacisuleyman et al., 2014), Xist (Cerase et al., 2015), and MIAT (Liao et al., 2016). This might imply that 

efficient splicing and the process of maturation is important for a subset of lncRNAs in order to exert their 

functional roles. This possibility may apply not only to lincRNAs, but also to other lncRNA subclasses as well. 

For instance, by inhibiting the core spliceosome component PRP8, Marquardt et al. (2014) showed that splicing 
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of the COOLAIR lncRNA, overlapping and transcribed antisense to the FLC protein-coding gene, is functionally 

important for sense gene transcription. 

On the other extreme, mono-exonic or inefficiently spliced lncRNAs are more likely to be byproducts of the 

act of transcription having itself a regulatory role in cis. In support of this, for one of the first identified 

inefficiently spliced lncRNAs, Airn, overlapping the Igf2r gene in the antisense direction, it was experimentally 

validated that the act of transcription exerts a regulatory effect in cis, whereas the RNA product has no important 

function (Latos et al., 2012). Adding to this, splicing may not be functionally necessary for those lncRNAs 

enriched in the chromatin fraction of the cell; lncRNAs tethered to chromatin may exert their function in cis, 

regulating gene expression through the act of their transcription and via mechanisms like transcriptional 

interference (Stojic et al., 2016) or by enhancing the binding of transcription factors to regulatory elements 

(Sigova et al., 2015).  

 

 Towards understanding the functional distinctions among different 

non-coding RNA transcripts produced at enhancers 

Apart from the relatively short, unstable and unspliced bidirectional eRNAs (De Santa et al., 2010; Kim et al., 

2010; Djebali et al., 2012), a subset of enhancers transcribe unidirectional lncRNAs showing different 

characteristics in terms of splicing and stability (Koch et al., 2011; Marques et al., 2013; Hon et al., 2017; Gil 

and Ulitsky, 2018; Tan et al., https://doi.org/10.1101/287706). In a previous study, using solely the H3K4me1 

histone modification mark and the correlation of the H3K4me1 signal with cell type-specific expression of 

putative mRNA targets to predict enhancers (Corradin et al., 2014), it was estimated that about one third of 

Gencode annotated lincRNAs overlap cell type-specific enhancers (Vucicevic et al., 2015). The Marques lab 

refers to these intergenic enhancer-associated lncRNAs as ‘elincRNAs’ (Marques et al., 2013; Tan et al., 

https://doi.org/10.1101/287706). About half of the Marques elincRNAs (44%) are spliced, i.e. having at least 

one splice junction and more than one exon. Given the complexity of the transcriptional landscape at enhancers 

and that relatively little is known about the functional impact of the production of long, stable non-coding RNA 

transcripts on the enhancer activity, two recent studies have set out to unveil the functional distinctions of the 

different classes of lncRNA transcripts produced from active enhancers, using genome-wide computational 

approaches (Gil and Ulitsky, 2018; Tan et al., https://doi.org/10.1101/287706). 

Bidirectional Pol II transcription producing eRNAs is tightly associated with enhancer activity and is therefore 

considered a hallmark of active enhancers. Hence, it is increasingly being employed in enhancer annotation, 

usually in combination with signal of DNase I hypersensitivity which reflects elevated chromatin accessibility 

due to a more open and active chromatin environment (Melgar et al., 2011; Andersson et al., 2014a; Nagari et 

al., 2017). Nascent RNA sequencing techniques, like GRO-seq (Core et al., 2008) (Table 1) map nascent RNA 

molecules produced from transcriptionally engaged RNA Pol II, and can therefore be used to detect the 

short-lived eRNAs (not captured in steady-state RNA-seq data). Using GRO-seq data, Gil and Ulitsky (2018) 

annotated enhancers as regions displaying substantial bidirectional transcription around DNase I 

hypersensitivity sites (DHSs), discarding any overlaps with protein coding genes (PCGs). These enhancers, 

termed eRNA-producing centers (EPCs), were validated to display canonical enhancer histone marks (high 

H3K4me1 and H3K27Ac signal) and were annotated in three ENCODE human cell lines and in mouse 
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embryonic stem cells (mESC). The authors computed the distance between each EPC and the closest Gencode 

lncRNA transcription start site (TSS), and found that ~5 % of all EPCs have an lncRNA TSS within a distance 

<0.8 kb. This implies that intrinsically bidirectional transcription originating at active enhancers (Andersson et 

al., 2014a, b) is sometimes preferentially elongated and strengthened in one direction to produce a stable 

lncRNA transcript, perhaps by the unidirectional accumulation of random mutations that bring together 

transcription factor binding sites, splice sites and poly(A) sites. They termed these lncRNA-associated 

enhancers ‘la-EPCs’, and the rest ‘na-EPCs’; the latter correspond to non-lncRNA-associated enhancers, 

producing solely bidirectional eRNAs, and constitute the majority of active enhancers. Notably, >90 % of the 

enhancer-associated lncRNAs are spliced. Essentially, all of them could be classified as intergenic (lincRNAs) 

per definition, as any overlap with PCGs was excluded in the first place in their analysis. 

A different approach is utilized by Tan et al. (https://doi.org/10.1101/287706) to define a set of actively 

transcribed intergenic enhancers in mESCs, based on ENCODE chromHMM-annotated enhancers in the same 

cell line (Bogu et al., 2015) overlapping mESC-specific DHSs (Mouse et al., 2012) and a CAGE cluster 

indicating transcription initiation (Fraser et al., 2015). In agreement with Gil and Ulitsky (2018), they found that 

~5 % of the analyzed mESC transcribed enhancers overlap previously annotated lincRNAs expressed in mESCs 

(Tan et al., 2015). They termed these intergenic enhancer-associated lncRNAs ‘elincRNAs’ to distinguish them 

from other mESC-expressed intergenic lncRNAs not overlapping enhancers. Because of the different initial 

methodologies employed to define the final working datasets of transcribed enhancers, the fraction of spliced 

(multi-exonic) enhancer-associated lncRNAs differs between the two studies: about half in Tan et al. 

(https://doi.org/10.1101/287706) versus > 90% in Gil and Ulitsky (2018). A schematic representation of the 

computational methodologies employed for the genome-wide annotation of transcribed enhancers is 

summarized in Figure 1.  

Both groups then set out to characterize the properties and the functional distinctions between the different 

classes of enhancers and non-coding RNA transcripts produced at enhancer loci. In particular, Gil and Ulitsky 

(2018) conducted a detailed analysis to distinguish between bidirectionally transcribed enhancers associated 

with lncRNA production (la-EPCs) and the rest majority of bidirectionally transcribed enhancers not associated 

with lncRNAs (na-EPCs). Similarly, Tan et al. (https://doi.org/10.1101/287706) focused on characterizing the 

functional impact of transcribed elincRNAs on their cognate enhancer activity. They also compared the 

functional properties of elincRNAs to other expressed lincRNAs not associated with a transcribed enhancer.  

A first interesting finding in Gil and Ulitsky (2018) is that lncRNA-associated enhancers (la-EPCs) exhibit 

significantly higher signals of marks associated with enhancer activity, compared to the rest of bidirectionally 

transcribed enhancers (na-EPCs). These are: increased transcription activity (GRO-seq), higher H3K27Ac—a 

hallmark of transcriptionally active enhancers, and higher ATAC-seq signal (Buenrostro et al., 2013) (Table 1) 

reflecting local chromatin accessibility. This result suggests that the production of lncRNAs may have a positive 

impact on enhancer activity. Intriguingly, this effect may be intrinsically encoded in the DNA sequences of the 

lncRNA-associated enhancers, as these also display higher STARR-seq signal (Arnold et al., 2013; Muerdter et 

al., 2015) (Table 1) compared to the rest bidirectionally transcribed enhancers. Notably, lncRNA-associated 

enhancers are preferentially found at the anchor points of chromosomal loops, the latter identified by Pol II 

ChIA-PET (Fullwood et al., 2009a, b; Fullwood and Ruan, 2009) (Table 1), suggesting that these 
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lncRNA-transcribing enhancers are more likely to form three-dimensional contacts with distal loci 

encompassing putative target genes.  

Related to this, it was previously reported that some disease/trait-associated lncRNAs showing enrichment in 

enhancer-like chromatin signatures (elevated H3K4me1 to H3K4me3 ratio) are enriched at the boundaries of 

TADs (Tan et al., 2017) (Table 1). It was further suggested that these lncRNAs might promote intra-TAD 

chromosomal interactions, since their abundance (expression or RNA levels) correlates with the frequency of 

intra-TAD DNA‒DNA contacts, the latter computed from Hi-C contact matrices (Lieberman-Aiden et al., 2009) 

(Table 1). Interestingly, TAD boundaries are the sites where chromosomal looping between enhancers and target 

gene promoters frequently occurs (Symmons et al., 2014; Lupianez et al., 2015). In their following study, Tan et 

al. (https://doi.org/10.1101/287706) unveiled that this preferential location of enhancer-associated lncRNAs at 

TAD boundaries is strictly restricted to spliced lncRNAs. In particular, they found that transcription initiation 

regions of multi-exonic (spliced) enhancer-associated lncRNAs are significantly enriched at the anchors of 

chromosomal loops, when compared to all other enhancer-derived non-coding RNA transcripts (i.e. eRNAs and 

mono-exonic enhancer-associated lncRNAs) or to other lincRNAs expressed in mESC. The authors therefore 

suggested that multi-exonic, spliced enhancer-associated lncRNAs might be involved in shaping (or 

modulating) the local chromosomal architecture (Tan et al., https://doi.org/10.1101/287706).  

In support of a linkage between potentially functional lncRNAs and higher order chromatin organization, 

Amaral et al. (2018) found that the majority of a set of positionally conserved spliced lncRNAs, which are 

preserved in their genomic location relative to orthologous protein-coding genes between mouse and human, are 

located at loop anchor points and TAD boundaries, showing enrichment of CTCF binding sites. In the same line, 

we recently identified in breast cancer cells a subset of spliced lncRNAs transcribed from active enhancers at the 

anchors of chromosomal loops to putative target genes. These enhancer-associated lncRNAs show significant 

correlation in expression with their putative targets, stressing their role in cognate enhancer activity. 

Intriguingly, this group of enhancer-associated lncRNAs are less enriched in the chromatin-associated RNA 

fraction, indicating that these molecules are less tethered to chromatin, and that their chromatin-dissociation may 

be important for potential downstream functions (Ntini et al., 2018 and discussed in the last section). 

Gil and Ulitsky (2018) also found enrichment of CTCF binding at the lncRNA-associated enhancers 

(la-EPCs), which is considered a factor involved in the maintenance of chromosomal loops (Weintraub et al., 

2017), as well as differential binding of several proteins preferentially found at PCG promoters. In addition, a 

higher fraction of the lncRNA-associated enhancers bear the H3K4me3 promoter histone mark (compared to the 

rest bidirectionally transcribed enhancers), overall underscoring that lncRNA-producing enhancers harbor 

promoter characteristics (Gil and Ulitsky, 2018). This is in agreement with previous studies reporting that 

lncRNA transcription initiation regions show both promoter and enhancer characteristics (Marques et al., 2013; 

Andersson et al., 2015). Notably, the promoter regions of the enhancer-associated lncRNAs show significant 

enrichment for DNA binding proteins which bind also RNA (i.e. containing an RNA recognition motif, RRM), 

whereas they are depleted from chromatin-remodeling forkhead-domain proteins acting as pioneer transcription 

factors (Cirillo et al., 2002; Lalmansingh et al., 2012; Soufi et al., 2015). Based on that, the authors suggested 

that the lncRNA-producing enhancers may employ specific mechanisms for opening the local chromatin 

structure and initiate transcription; thereby cotranscriptional splicing of the associated nascent lncRNA 

transcript may play a role in reinforcing this process, as discussed in the last section of this review. 
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 Splicing has a positive impact on enhancer activity 

A prominent distinguishing characteristic between the lncRNA-associated enhancers (la-EPCs) and the rest of 

the enhancers transcribing bidirectional transient eRNAs (na-EPCs), highlighted in the Gil and Ulitsky (2018) 

study, is splicing. In fact, among the DNA binding proteins with an RNA recognition motif enriched at the 

enhancer-associated lncRNA promoters several are RNA processing factors, including essential proteins 

involved in splicing, such as RBFOX2, SRSF1, and U2AF1. As a proxy for splicing activity, the authors used 

the exon density, defined as the number of exons of a transcript normalized to the locus length. They found a 

correlation between the exon density of the enhancer-transcribed lncRNAs and the density of DHSs and 

H3K27Ac signal at the same locus. This suggests that splicing is positively associated with the enhancer 

activity. Notably, the consequent effect of splicing on increasing chromatin accessibility is exerted on the 

broader enhancer region and not only on the lncRNA-body transcribed part. Based on that, the authors suggested 

that the observed splicing-coupled stimulating effect on enhancer activity is more likely to be due to the 

recruitment of activating factors—either by the produced lncRNA transcript itself or by its transcription and 

associated processing—rather than by some local effect of Pol II elongation along the lncRNA body (Gil and 

Ulitsky, 2018).  

Similarly, Tan et al. (https://doi.org/10.1101/287706) also observe a positive impact of enhancer-associated 

lncRNA splicing on cognate enhancer activity. In particular, using CAGE data to measure transcription 

initiation during different stages of embryonic neurogenesis, they found that changes in enhancer-associated 

lncRNA transcription positively correlated with changes in transcription of the closest PCG, the latter 

considered as a putative cis target. This correlation was significantly stronger for the spliced (multi-exonic) 

enhancer-associated lncRNAs, compared to their mono-exonic counterparts. In agreement, there seems to be a 

positive correlation between the number of exons of the enhancer-associated lncRNAs and the expression 

changes of their putative cis-target genes, implying that the amount of splicing of the enhancer-associated 

lncRNAs may contribute to their cis-regulatory roles, impacting the regulatory potential of their cognate 

enhancer. In addition, in agreement with the findings by Gil and Ulitsky (2018), Tan et al. 

(https://doi.org/10.1101/287706) also find enrichment of H3K4me1, DHSs and H3K27Ac signals in enhancers 

transcribing multi-exonic lncRNAs versus mono-exonic ones, thereby strengthening the notion that splicing of 

lncRNAs contributes to enhancer activity. 

In support of this, a significant enrichment of evolutionary conserved U1 splicing sites is found at the 

lncRNA-associated enhancers and only in the direction downstream of the lncRNA TSS, similarly to what is 

observed downstream of a PCG TSS (Gil and Ulitsky, 2018). Overall, this suggests that evolutionary selection 

acts on splicing signals to promote the formation of spliced lncRNA transcripts at some enhancers (~5 % of 

transcribed enhancers). In agreement, Tan et al. (https://doi.org/10.1101/287706) find that mutations are 

selectively suppressed at splice sites of enhancer-associated lncRNAs, and that their splice-site flanking regions 

are enriched in conserved exonic splicing enhancers and U1 snRNP recognition motifs, when compared to other 

intergenic lncRNAs. In general, there is a significant difference in the GC content between exonic and intronic 

sequences of all multi-exonic lincRNAs (either transcribed from enhancers or not) (Schuler et al., 2014; Haerty 

and Ponting, 2015; Tan et al., https://doi.org/10.1101/287706), a feature observed also for mRNAs and 

implicated in promoting splice site recognition and splicing efficiency (Amit et al., 2012). 
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The notion that conserved splice sites guide the processing of lincRNAs may seem on a first sight to come in 

contrast with previous studies reporting that lincRNAs as a class are overall less efficiently spliced compared to 

mRNAs (Mele et al., 2017; Mukherjee et al., 2017). However, this does not apply to the enhancer-associated 

lincRNAs (elincRNAs), which show splicing efficiency comparable to mRNAs (Tan et al., 2018). Finally, using 

a statistical genetics approach, Tan et al. (https://doi.org/10.1101/287706) analyzed the effect of nucleotide 

variants on elincRNA transcription/splicing, cognate enhancer and putative target gene activity. They 

demonstrated that the decrease of elincRNA splicing due to mutations at splice junctions resulted in 90 % of the 

cases in significant downregulation of their putative protein-coding target gene expression. These inferred 

causal relationships further validate the hypothesis that it is the RNA splicing important in strengthening 

enhancer function, rather than the enhancer activity being a cause for splicing (Tan et al., 

https://doi.org/10.1101/287706). 

 

 Experimentally-derived data support a role of lncRNA splicing in 

regulation of gene expression and shaping enhancer functionality 

Apart from the genome-wide approaches discussed in the previous sections (Gil and Ulitsky, 2018; Tan et al., 

https://doi.org/10.1101/287706), previous studies employing experimental strategies have provided significant 

support for the potential functional impact of lncRNA splicing in regulation of target gene expression and on 

enhancer activity.  

Marquardt et al. (2014) analyzed the effect of antisense lncRNA splicing in the plant Arabidopsis flowering 

system: the COOLAIR lncRNA is transcribed antisense and overlapping the FLC gene, displaying a major 

promoter-proximal and an alternative distal polyadenylation site (the latter overlaps the sense FLC promoter).  

Analysis of a hypomorphic mutation in the core spliceosome component PRP8 (prp8-6) revealed elevated 

histone methylation in the FLC gene body (active histone mark H3K4me2) and upregulated FLC transcription. 

Interestingly, the prp8-6 mutation did not affect the sense splicing events of FLC or two other control genes, but 

greatly inhibited the splicing of the unique short intron of the major (most abundant) antisense COOLAIR 

isoform. This splicing event is necessary to create the exon, which contains the proximal poly(A) site, hence in 

the prp8-6 mutation, usage of the proximal poly(A) site is reduced, while usage of the distal alternative poly(A) 

site is relatively increased. These results could be recapitulated by mutating the proximal acceptor splice site of 

COOLAIR, which again led to reduced proximal poly(A) site usage, increased H3K4me2 and sense FLC 

transcriptional upregulation, confirming the role of antisense lncRNA splicing in sense gene transcriptional 

suppression. In particular, the essential splicing event is coupled with targeted 3’ end processing of the antisense 

COOLAIR proximal poly(A) site, which triggers histone demethylase activity at the locus in an as yet 

mechanistically unclear step (Liu et al., 2010). Based on the findings by Liu et al. (2010) and Marquardt et al. 

(2014), the authors suggested that alternative splicing and targeted 3’ end processing of antisense lncRNA 

transcripts may comprise a common mechanism in regulation of gene expression, by modulating the 

overlapping sense gene transcription through cotranscriptional coupling processes associated with repressive 

chromatin modifications. Functional investigation of other antisense lncRNAs in different systems is expected 

to further support this notion.   
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Through experimental dissection it is also possible to address the important question whether it is solely the act 

of transcription and/or cotranscriptional splicing, or rather the mature lncRNA product that constitutes the 

important functional aspect of enhancer activity, in the case of enhancer-associated lncRNAs. These two 

possible functional components are not mutually exclusive. The same question is also urging to be resolved in 

the case of antisense lncRNAs which may be involved in regulation of gene expression in cis through 

transcriptional interference. Stojic et al. (2016) uncoupled the act of transcription from the function of the 

lncRNA transcript by using siRNAs targeting different regions of the GNG12-AS1 lncRNA. The authors 

demonstrated that transfection of siRNAs in human cell lines targeting the first exon of GNG12-AS1, near its 

transcription start site, causes downregulation of the lncRNA transcription, which is accompanied by a 

consequent transcriptional upregulation of the sense overlapping DIRAS3 gene. The latter was profiled by an 

increase in Pol II binding and the active histone modifications H3K4me3 and H3K36me3. In contract, targeting 

other exons of GNG12-AS1 (closer to its 3’ end) with siRNAs led only to depletion of the lncRNA isoforms 

through post-transcriptional gene silencing, without affecting its nascent transcription, and importantly had no 

effect on the overlapping sense DIRAS3 transcription. Hence, the authors established that it is the act of 

transcription of the antisense lncRNA that causes transcriptional interference of the sense overlapping target 

gene (Stojic et al., 2016). 

In a similar direction, aiming to distinguish between the cis and trans implicated functions of transcribed 

lncRNAs, Engreitz et al. (2016a) employed genetic manipulation of twelve lncRNA loci, using CRISPR 

technology (Cong et al., 2013; Mali et al., 2013), to perform heterozygous knockouts in 129/castaneus F1 hybrid 

mESC. This line contains a polymorphic site every ~140 bp, which allowed to distinguish between the two 

alleles and classify the lncRNA effects as cis or trans, based on whether the observed associated expression 

changes of nearby genes (within 1Mb of the lncRNA locus) are on the same modified (cis) or on the unmodified 

(trans) homologous chromosome allele. When the observed target expression changes are restricted to the cis 

allele, this most probably reflects a direct local cis-regulatory effect from the lncRNA locus; on the other hand, 

when the observed expression changes involve both alleles, this most probably means that the lncRNA transcript 

itself (dissociated from the cis modified allele) exerts some downstream trans regulatory role(s). Depletion of 

five lncRNA promoters specifically affected the expression of nearby genes solely on the same allele (in cis); 

intriguingly, that was also the case by depleting six PCG promoters, suggesting that both non-coding and coding 

transcription units may contribute to shaping neighboring gene expression. This is well related to the general 

correlation observed in neighboring gene expression (Purmann et al., 2007; Ebisuya et al., 2008). The observed 

perturbation of cis regulation upon promoter depletion could be due to abolishment of essential 

promoter-associated DNA regulatory elements, due to impeding the process of transcription, or due to 

abolishment of the RNA transcript itself. To distinguish among these three possibilities, the authors introduced 

polyadenylation signals (PAS) 0.5‒3 kb downstream of the TSS to terminate transcription early and abolish 

most of the RNA transcript, without affecting the promoter. Interestingly, insertion of the early PAS turned 

down completely transcription at the whole lncRNA locus, and consequently abolished the lncRNA product; 

most probably, an early PAS inserted within the first intron prevents splicing, which in turn substantially reduces 

transcription. Importantly, despite abrogating both transcription and the lncRNA transcript product itself, 

insertion of the early PAS did not have an effect on the cis target gene, suggesting that essential DNA regulatory 

elements in the depleted lncRNA promoter-proximal region (~750 bp) exert the cis regulatory effect on the 
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nearby gene. These broad lncRNA promoter regions did not show an enhancer-like H3K4me1 to H3K4me3 

ratio, hence they would not be classified as enhancers based solely on this measure (Heintzman et al., 2007; 

Koch and Andrau, 2011; Djebali et al., 2012; Calo and Wysocka, 2013). Still, they seem to possess enhancer 

activity since they are regulating neighboring gene expression in cis, perhaps by containing binding sites for 

proteins recruiting histone modifiers and chromatin remodelers, which results in increased chromatin 

accessibility. This observation is also in line with additional reports supporting that promoters and enhancers 

share organizational and functional characteristics (Li et al., 2012; Marques et al., 2013; Andersson et al., 2015; 

Kim and Shiekhattar, 2015; Sahlen et al., 2015), and that promoters may function as enhancers (Li et al., 2012; 

Sanyal et al., 2012; Arnold et al., 2013, 2017; Zabidi et al., 2015; Nguyen et al., 2016; Paralkar et al., 2016; 

Rajagopal et al., 2016; Dao et al., 2017; Diao et al., 2017; Groff et al., 2018; Mikhaylichenko et al., 2018) and 

vice versa (Kowalczyk et al., 2012; Nguyen et al., 2016; van Arensbergen et al., 2017; Mikhaylichenko et al., 

2018).  

In order to assess the effect of splicing in shaping the lncRNA functional potential, Engreitz et al. (2016a) 

deleted the first 5’ splice site of the lncRNA Blustr using CRISPR in the same system. The functional coupling 

between splicing and transcription was well established in previous studies, demonstrating that 

promoter-proximal splice sites and the process of splicing can significantly enhance transcription (Brinster et al., 

1988; Fong and Zhou, 2001; Le Hir et al., 2003). Components of the spliceosome can directly enhance Pol II 

transcription initiation (Kwek et al., 2002) and elongation (Fong and Zhou, 2001), mechanistically explaining 

why and how splicing enhances gene expression (Schuler et al., 2014).  In accordance, by depleting the first 5’ 

splice site of Blustr, Engreitz et al. (2016a) reported a total reduction of the lncRNA transcription (using 

GRO-seq) and a consequent downregulation in neighboring gene expression (Sfmbt2). This demonstrates that 

the process of transcription at the lncRNA locus coupled with cotranscriptional splicing is functionally 

important for transcription regulation of the target gene. Since the process of splicing depends on direct 

interactions between the spliceosome and the nascent RNA transcript, the nascent lncRNA itself is required for 

target gene activation. However, this mechanism does not seem to involve specific primary sequences of the 

lncRNA, as progressive depletion of individual exons with CRISPR had no significant effect on target gene 

expression. 

In a previous study, removing the splicing signal from the lncRNA Haunt by replacing the endogenous 

lncRNA locus with its cDNA sequence could not rescue its cis-regulatory function (Yin et al., 2015). However, 

in this case, the possibility that essential DNA cis-regulatory elements in the omitted intronic sequences are 

depleted from the genetically modified lncRNA locus cannot be excluded. Therefore, CRISPR genetic 

manipulation employing depletion of genomic intervals (like promoter regions, exonic or intronic sequences) in 

independent experiments, complemented by carefully designed short deletions around individual splice sites and 

isolated sequence motifs, allows for a more thorough dissection and conclusive examination of an lncRNA locus 

of interest. Consequently, this enables to evaluate the functional importance of individual lncRNA elements and 

characterize mechanistic aspects of transcription regulation of target gene expression. 

 

 Possible mechanisms underlying the functional impact of lncRNA 

splicing on cognate enhancer and target gene activity 
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Despite the genome-wide results and the experimental supportive data summarized in this review, which 

strongly implicate a role of enhancer-transcribed lncRNA splicing in shaping enhancer activity, the molecular 

mechanism(s) and underlying mechanistic details of this process are unknown. So far, some possible implicated 

scenarios exist that we will discuss here.  

First of all, the lack of primary sequence conservation in the exonic lncRNA sequences of the 

enhancer-associated lncRNAs (Marques et al., 2013; Tan et al., https://doi.org/10.1101/287706), or even the 

lack of conservation in their specific exon-intron structure (Ulitsky, 2016), may on a first sight shadow the 

evidence for a functional role of the lncRNA transcript itself in enhancer activity and cis regulation of target 

gene expression. The latter is established through detailed examination and experimental dissection of 

individual lncRNA loci (Nagano et al., 2008; Wang et al., 2008, 2009; Khalil et al., 2009; Orom et al., 2010; 

Cabianca et al., 2012; Guil and Esteller, 2012; Engreitz et al., 2016a; Ntini et al., 2018). In the case of 

functionally characterized lncRNAs with virtually conserved functions such as Xist, a minimum primary 

sequence conservation is observed (Nesterova et al., 2001; Kirk et al., 2018), although the overall lncRNA gene 

structure may be well conserved (Brockdorff, 2002; Hoki et al., 2009; Senner et al., 2011). Similarly, the 

sequence motifs associated with splicing in enhancer-associated lncRNAs, including splice sites and exonic 

splicing enhancers, are evidently conserved (Ponjavic et al., 2007; Schuler et al., 2014; Haerty and Ponting, 

2015; Nitsche et al., 2015; Mele et al., 2017; Tan et al., https://doi.org/10.1101/287706), supporting that splicing 

is an important functional aspect of enhancer-associated lncRNAs. But how is this functional impact 

mechanistically exerted?  

One possible scenario is that splice factors binding to the conserved lncRNA splice sites recruit in turn protein 

factors which remodel the chromatin structure in the broader locus, for instance through histone modifications 

(Kim et al., 2011) (Figure 2A). Data from Schüler et al. (2014) suggest a coupling mechanism between splicing 

and effected changes in chromatin organization. In this model, splicing affects chromatin through the 

recruitment of splice-coupled activating factors, such as the CHD1 and SWI/SNF chromatin remodelers, which 

in turn may modulate neighboring gene activity. A second possibility is that cotrancriptional splicing of the 

nascent lncRNA transcript has an indirect effect on the transcription activity of the locus, through a functional 

coupling between splicing and transcription, as described above (Brinster et al., 1988; Fong and Zhou, 2001; 

Kwek et al., 2002; Le Hir et al., 2003; Schuler et al., 2014). This could involve interactions between the 

spliceosome and components of the transcriptional machinery (McCracken et al., 1997). Increased transcription 

and the process of transcription itself may then contribute to cis gene regulation by recruiting activating factors 

like histone modifiers and nucleosome remodelers, resulting in an overall chromatin opening of the locus and 

increased chromatin accessibility at cis target genes (Ebisuya et al., 2008). In support of this, impeding either 

transcription or splicing at the lncRNA gene via genetic manipulation led to reduction in the H3K4me3 promoter 

histone mark and a spreading of the repressive mark H3K27me3 at the neighboring gene locus (Engreitz et al., 

2016a). 

Co-transcriptional splicing as well as the 3’ end formation (cleavage and polyadenylation) are processes 

tightly coupled to transcription and required for the efficient dissociation of the nascent RNA transcript from the 

chromatin-associated site of transcription (Perales and Bentley, 2009; Rigo and Martinson, 2009; Pandya-Jones 

et al., 2013; Proudfoot, 2016). Using splicing inhibiting morpholinos we recently showed that impeding the 

co-transcriptional splicing of an enhancer-associated lncRNA (A-ROD) leads to increased chromatin retention 
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of the lncRNA transcript, and has a consequent repressive effect on transcription of the target gene DKK1 (Ntini 

et al., 2018). Therefore, splicing of the enhancer-associated lncRNA may also have some downstream effects 

mediated by the lncRNA transcript itself. Upon its dissociation from chromatin, the nascent lncRNA may 

interact with protein factors required and recruited for transcription regulation of target gene expression within 

the spatial three-dimensional proximity of pre-established chromosomal loops (Ntini et al., 2018). The 

enhancer-transcribed lncRNA, upon its chromatin dissociation permitted by splicing, may also be involved in- 

and contribute to ‘spatial amplification’ of the cis-regulatory signal (Engreitz et al., 2016b). For instance, the 

chromatin-dissociated lncRNA could be bound by RNA recognition motif (RRM)-containing proteins, which 

bind also to DNA, and thereby get recruited to the promoters of genes within the spatial proximity of the 

enhancer (Figure 2B). Consequently, this would contribute to a quasi-cis mode of gene regulation (Ntini et al., 

2018). In this model, the overall primary sequence conservation of the lncRNA is not a necessity, as RRMs can 

be short and degenerate or can even be emerging in secondary structures formed locally in the nascent 

chromatin-dissociated lncRNA. These hypotheses are intriguing but need to be further verified by large-scale or 

more specific analyses, such as bioinformatics prediction of local secondary structure elements in 

enhancer-associated lncRNAs (Gawronski et al., 2018), or by enrichment analysis of DNA/RNA-binding 

protein sites from the numerous available high-throughput data in public repositories.  

Overall, the recent experimental and genome-wide derived results suggest that the feature of 

chromatin-dissociation may be an additional functional aspect of enhancer-produced lncRNAs, and therefore 

understanding the dynamics, underlying molecular mechanism(s), and mechanistic details of this process may 

help to further characterize the functional distinctions among the various non-coding RNAs transcribed from 

active enhancers. For instance, whether there is an overall association between the degree of 

chromatin-dissociation and the degree of splicing, and whether efficiently chromatin-dissociated 

enhancer-transcribed lncRNAs are more efficiently spliced compared to their chromatin-retained counterparts, 

are important questions to address.  

An overview of the mechanistic scenarios involved in mediating the functional impact of lncRNA splicing on 

enhancer activity is presented in Figure 2.  

In addition, apart from splicing, other cotranscriptional processes associated/coupled with lncRNA 

transcription, like transcription termination and the formation of a mature 3’ end, might as well have a similar 

functional impact in shaping enhancer activity and contributing to cis gene regulation. In this direction, similarly 

to analyzing DNA motifs and the enrichment of transcription factor binding sites at the promoters of 

enhancer-associated lncRNAs (Gil and Ulitsky, 2018), characterizing the interactions of RNA-binding proteins 

with the nascent lncRNA transcripts and their functional impact in co-transcriptional RNA processes is urging. 

Therefore, in order to comprehensively design and pursue large-scale and long-term experimental analyses, the 

use of recently developed computational algorithms to predict RNA-binding protein interactions, and their 

specific application for predictions using RNA sequence-structure motifs, is of great importance (Cirillo et al., 

2016; Heller et al., 2017; Krakau et al., 2017; Budach and Marsico, 2018). Such tools facilitate the analysis and 

characterization of functional RNA-protein interactions and create a meaningful starting dataset of potential 

candidates to further dissect their functions experimentally. 

By combining and employing both experimental and computational strategies, locus specific genetic 

manipulation and complementary large-scale analyses, future research is expected to comprehensively 
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characterize the mechanistic details and functional impact of non-coding RNA transcription and its various 

products in the precise regulation of target gene expression. We have only started scratching the surface. 
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Figure 1 Strategy used for enhancer annotation and identification of enhancer-associated lncRNAs. (A) The 

annotation of enhancers starts from the mapping of DNAse I hypersensitivity sites (DHSs) that reflect increased 

chromatin accessibility. CAGE (Andersson et al., 2014a) and/or nascent RNA sequencing data like GRO-seq 

(Hah et al., 2013) or PRO-seq (Mahat et al., 2016) are used to detect substantial Pol II transcription emanating 

bidirectionally from the DHS. The unstable eRNAs, which are short, non-spliced, and non-polyadenylated, are 

the products of bidirectional Pol II transcription activity at the enhancer and can be detected using de novo 

transcript assembly in GRO-seq data. Apart from Pol II and general transcription factors (GTFs) like CBP/p300 

binding at the DHS, the presence of active histone marks like H3K27Ac and H3K4me1 validate the enhancer. 

eRNAs are terminated early by polyadenylation (pAS)-like signals and are rapidly turned-over by the exosome, 

hence they are not readily detectable in steady-state RNA-seq data. (B) In some cases (estimated ~5% of active 

enhancers), Pol II transcription initiating intrinsically bidirectionally at active enhancers is preferentially 

elongated in one direction, most probably due to the accumulation of activating random mutations leading to 

enrichment of U1 sites and splicing signals, which suppress early pAS (Wu and Sharp, 2013; Gil and Ulitsky, 

2018). The production of long, spliced, and polyadenylated lncRNAs, which are stable and thus readily 

detectable in steady-stade RNA-seq data, is associated with higher enhancer activity; the latter is reflected by 

increased chromatin accessibility (DHS) and enrichment of positive histone modifications: H3K27Ac (enhancer 

mark), H3K4me3 (promoter mark), and H3K36me3 (a hallmark of transcription elongation). (C) The genomic 

topology of the predicted active enhancer is also examined, and its position relative to anchor points of 

chromosomal loops is characterized from Pol II ChIA‒PET interactions and/or TAD boundaries. One or more 

putative target genes are identified based on long-range 3D interactions, and induced effects on target gene 

expression are examined in conditions of enhancer perturbation, including genetic manipulation of the 

enhancer-associated lncRNA locus. (D) Flow diagram of the steps employed for enhancer annotation and 

enhancer-associated lncRNA identification. 
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Figure 2 Possible mechanisms explaining the functional impact of lncRNA splicing on enhancer activity. (A) 

Splicing factors cotranscriptionally engaged at the conserved lncRNA splice sites may in turn recruit activating 

factors like histone modification enzymes and chromatin remodelers, resulting in an overall chromatin opening 

of the locus and a positive effect on cis-gene regulation. This happens while the lncRNA is tethered on 

chromatin, at its site of transcription, during cotranscriptional processing. (B) Splicing permits dissociation of 

the nascent lncRNA transcript from chromatin, which in turn interacts with additional proteins contributing to 

spatial amplification of the cis-regulatory signal. The two distinct possible mechanisms are not mutually 

exclusive. 
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Table 1 Glossary. 

Term Description Reference 

ChromHMM Software developed to learn and characterize chromatin states, by 

integrating chromatin datasets, such as ChIP-seq of histone modifications. 

It employs a multivariate Hidden Markov Model, which models the 

presence or absence of each histone mark. 

(Ernst and Kellis, 2012) 

CAGE Capped Analysis of Gene Expression is a technique that maps the 5’ ends of 

capped RNA transcripts, thereby capturing transcription initiation sites 

genome-wide.  

(Shiraki et al., 2003) 

GRO-seq Global Run On sequencing is a technique that maps transcriptionally 

engaged RNA polymerase II (Pol II) genome-wide, capturing nascent RNA 

transcription. In this method, Pol II is allowed to run on in the presence of a 

labeled nucleotide analog (5’-bromouridine), which is incorporated into 

newly transcribed RNA. 

(Core et al., 2008) 

ATAC-seq Assay for Transposable Accessible Chromatin followed by deep 

sequencing is a technique that captures open chromatin sites. It is used to 

identify regions of open chromatin, such as nucleosome-free positions in 

regulatory regions. It is based on the transposition of sequencing adapters 

into native chromatin in vitro. Essentially, it probes chromatin accessibility 

using transposons in vitro. 

(Buenrostro et al., 2013) 

STARR-seq Self-Transcribing Active Regulatory Region sequencing measures 

enhancer activity (enhancer strength) genome-wide, by assaying candidate 

sequences from any source of DNA using a reporter system in vitro. 

(Arnold et al., 2013) 

ChIA-PET Chromatin Interaction Analysis by Paired-End Tag sequencing provides 

large-scale analysis of long-range chromatin interaction networks. In this 

technique, cross-linked chromatin interaction sites bound by specific 

proteins are enriched by chromatin immunoprecipitation, and the remote 

DNA elements interacting in close spatial proximity are connected through 

proximity ligation. 

(Fullwood et al., 2009a,b; 

Fullwood and Ruan, 2009) 

TADs Topologically Associating Domains are considered the basic organizational 

units of chromosome architecture, covering hundreds of kilobases to 

several million bases in length. DNA sequences within a TAD physically 

interact with each other more frequently than with sequences outside the 

TAD. 

(Dixon et al., 2012; Nora et 

al., 2012) 

Hi-C Hi-C is based on chromosome conformation capture (3C) technique. It 

captures the 3D architecture of entire genomes, by coupling proximity 

ligation of DNA fragments tethered together in spatial proximity (enriched 

by crosslinking) with high-throughput sequencing, to produce 

genome-wide interaction maps. 

(Lieberman-Aiden et al., 

2009) 
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