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Volumetric optoacoustic 
tomography enables non-invasive 
in vivo characterization of impaired 
heart function in hypoxic conditions
Ivana Ivankovic1,2, Xose Luis Deán-Ben1,2, Hsiao-Chun Amy Lin3,4, Zuwen Zhang5, Benjamin 
trautz5, Andreas petry5, Agnes Görlach4,5,6 & Daniel Razansky  1,2,3,4

exposure to chronic hypoxia results in pulmonary hypertension characterized by increased vascular 
resistance and pulmonary vascular remodeling, changes in functional parameters of the pulmonary 
vasculature, and right ventricular hypertrophy, which can eventually lead to right heart failure. The 
underlying mechanisms of hypoxia-induced pulmonary hypertension have still not been fully elucidated 
while no curative treatment is currently available. Commonly employed pre-clinical analytic methods 
are largely limited to invasive studies interfering with cardiac tissue or otherwise ex vivo functional 
studies and histopathology. In this work, we suggest volumetric optoacoustic tomography (VOT) 
for non-invasive assessment of heart function in response to chronic hypoxia. Mice exposed for 3 
consecutive weeks to normoxia or chronic hypoxia were imaged in vivo with heart perfusion tracked by 
VOT using indocyanide green contrast agent at high temporal (100 Hz) and spatial (200 µm) resolutions 
in 3D. Unequivocal difference in the pulmonary transit time was revealed between the hypoxic and 
normoxic conditions concomitant with the presence of pulmonary vascular remodeling within hypoxic 
models. Furthermore, a beat-to-beat analysis of the volumetric image data enabled identifying and 
characterizing arrhythmic events in mice exposed to chronic hypoxia. The newly introduced non-
invasive methodology for analysis of impaired pulmonary vasculature and heart function under chronic 
hypoxic exposure provides important inputs into development of early diagnosis and treatment 
strategies in pulmonary hypertension.

Pulmonary hypertension (PH) is a disorder characterized by pulmonary vascular remodeling, right ventricular 
hypertrophy and increased pulmonary arterial pressure. PH has been associated with various disorders while, 
according to the recent WHO classification, it is regarded as a separate entity when associated with hypoxia or 
chronic diseases of the respiratory system1. The latter include chronic obstructive pulmonary disease (COPD), 
interstitial lung diseases, sleep disordered breathing, but also chronic exposure to high altitude and some rare 
neonatal diseases2,3.

Murine models have been widely used to gain deeper insight into lung-heart interactions under chronic 
hypoxic conditions4. The hypoxia-inducible factor (HIF) has been highly implicated in the development of PH5 
where several preclinical studies focus on the molecular mechanisms of HIF and its role in PH6–9. However, there 
is a lack of direct functional studies of the heart in response to chronic hypoxia. Methods for assessing pulmo-
nary and cardiac structural alterations in PH are usually limited to histopathological ex vivo analyses looking at 
right ventricular (RV) hypertrophy and pulmonary vasculature changes. RV catheterization is an invasive in vivo 
procedure to measure pressure differences as a surrogate parameter of increased pulmonary arterial pressure10–13. 
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Yet, the majority of the analytical methods interfere with integrity of the heart, which calls for introduction of new 
methods for direct in vivo assessment of cardiopulmonary coupling in small animal models.

In vivo imaging of the murine heart is challenging due to its small size and rapid motion14, which imposes 
hard requirements on the spatial and temporal resolution of non-invasive imaging modalities to accurately cap-
ture a heart volume of less than a cubic centimeter beating at a 400–600 cardiac cycles per minute. Even though 
cardio-respiratory gating in magnetic resonance imaging (MRI) and X-ray computed tomography (CT) may 
enable characterizing some of the in vivo functional cardiac parameters, those methods are generally ill-suited 
for cardiac imaging due to insufficient temporal resolution when performing true 3D whole-heart imaging at 
high spatial resolution15,16. To this end, ultrasound (US), and more recently ultrafast US, are arguably the most 
suitable modalities for cardiac imaging in murine models. US enables discerning anatomy and measuring impor-
tant physiological parameters, such as blood flow17. Yet, it is generally not suitable for measuring some of the key 
functional parameters in the entire heart volume in 3D, in particular for analysis of right ventricular size within 
murine models. To our knowledge, very few methods generally exist for non- or minimally-invasive imaging and 
assessment of the effects of exposure to chronic hypoxia in pre-clinical models.

Optoacoustic (OA) imaging is becoming an increasingly powerful tool in pre-clinical research, in particular 
for in vivo cardiac imaging in murine models, for a number of reasons: (1) the high number of effective voxels 
rendered by state-of-the-art systems allows for imaging the whole murine heart with high spatial resolution using 
stationary matrix detection arrays; (2) optical contrast allows for blood perfusion monitoring18, and (3) the high 
temporal resolution in 3D facilitates analyzing functional parameters of the living murine heart on a beat to beat 
basis19. An important functional parameter that can be measured with OA via injection of a contrast agent is the 
pulmonary transit time (PTT). The latter has been shown to significantly decrease in infarct murine models and 
hence can serve as an important indicator of heart function19. Another key feature of volumetric optoacoustic 
tomography (VOT) is the ability of imaging the entire heart with a single laser pulse. This is crucial to character-
ize potential delays in cardiac activation across different regions, e.g. during arrhythmic events. In this work, we 
demonstrate the capabilities of a recently developed real-time three-dimensional OA imaging system for analyz-
ing heart function in vivo and non-invasively in chronic hypoxic murine models.

Results
Volumetric optoacoustic tomography of the murine heart. The VOT imaging setup was optimally 
designed for in vivo murine heart imaging (Fig. 1A). The dedicated design consists of a spherical array transducer 
which was held pointing upwards for optimal OA signal detection of the heart, a fiber bundle for light illumi-
nation, a fast-tuning optical parameter oscillator laser and a data acquisition system for simultaneous OA signal 
detection for all elements of the array. Mice which have been exposed to chronic hypoxia for 3 weeks (n = 4) and 
normoxic counterparts (n = 3) were anesthetized and laid on the transducer with the chest facing down (See 
Methods section for a detailed system description). High-frame-rate images of the beating murine heart were 
acquired with the VOT system, specifically designed for high performance pre-clinical cardiac imaging (Fig. 1B). 
The VOT data was acquired for each ICG injection for a total duration of 50 s (5000 frames), which is a sufficient 
amount of time to track blood flow through the pulmonary circuit.

Pulmonary transit time. The PTT was measured as the difference between the time points corresponding 
to the maximum signal peaks for the right (RV) and left ventricles (LV), corresponding to the time of appear-
ance of the ICG bolus (Fig. 1C). Boxplots of the measured PTT values for hypoxia-treated (n = 4, 6 injections 
altogether) and normoxic models (n = 3, 6 injections altogether) are presented in Fig. 1D. A t-test was carried 
out to analyze the difference between the observed PTT values. The PTT values measured from the hypoxic 
models were significantly longer than those obtained for the normoxic models (mean-1.91 [1.7386–2.02] s versus 
mean-1.43 [1.0602–1.64] s, P < 0.0023). This clear difference in PTT between hypoxia-treated and normoxic mice 
strongly suggests that chronic hypoxia affects cardiac function and/or pulmonary hemodynamics.

Immunohistochemistry and right ventricular hypertrophy. Characteristically, exposure to chronic 
hypoxia results in a vasoconstrictor response as well as in muscularization of small pulmonary vessels indicative 
of pulmonary vascular remodeling leading to an increase in pulmonary vascular resistance and right ventricular 
hypertrophy. As evinced by staining for α-smooth muscle actin of lung sections (Fig. 2A), the number of small 
muscularized pulmonary vessels was significantly increased in lung sections from hypoxic mice in comparison to 
normoxic mice (Fig. 2B), indicating pulmonary vascular remodeling. Subsequently, the masses of the right and 
left ventricle including septum were measured and the Fulton index was determined as a measure of right ven-
tricular hypertrophy. Compared to the normoxic mice, the Fulton index was elevated in hypoxic mice indicating 
right ventricular hypertrophy (Fig. 2C).

Heart beat characterization. Due to the excellent temporal resolution of the VOT system, it was possible 
to characterize the heart motion on a beat-by-beat basis. Heart rate variability was clearly identified within the 
hypoxic models (n = 3 (3 of 4)) in VOT image sequences of 500 frames (100 frames per second), whereas only 
periodic cycles were recorded in normoxic models (Fig. 3A). The irregular heartbeats are also clearly visible in 
the supplementary video of the reconstructed VOT image sequences available in the online version of the jour-
nal. A t-test analysis revealed that the irregular cycles, marked with grey crosses in Fig. 3A, have a length of 333 
[282–437.3] ms versus 189 [145–229] ms, P < 0.001 (Fig. 3B). The real-time 3D imaging capability of VOT allows 
for mapping the mechanical motion globally throughout the heart by plotting time-lapse OA signal intensity 
profiles in different locations within the heart wall (Fig. 3C). The profiles indicate that the length of the irregular 
heart cycle is approximately twice the duration of the regular cycles. This may be attributed to a steady sinus rate 
and impaired atrioventricular conduction or ‘heart block’ rather than a supra-ventricular arrhythmia20. Atrial 
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deformations may additionally be produced during ventricular pauses, which may become visible if the resolu-
tion of the VOT system is enhanced by using a higher frequency array. The cycle length lasts for approximately 
430 ms, by which ventricular activity is primarily in diastole (D). The irregular cycles are also clearly visible in 
the supplementary videos of the reconstructed VOT image sequences available in the on-line version of the 
journal. Figure 3D shows the short-time Fourier transform (STFT) analysis carried out on image data from a 
hypoxia-treated murine model revealing multiple irregularities throughout cycle length. By calculating the fre-
quency spectra of the time profiles as a function of time, the STFT facilitates detecting changes of heart rate over 
time, corresponding to arrhythmic events as areas of lower frequencies of the time-series (Fig. 3D). The green 
arrows in Fig. 3D represent irregular cycles, while the white dashed lines indicate breathing periods. The profile 
in Fig. 3D show that the peaks of normal contractions before and after arrhythmic events follow a defined perio-
dicity, which further suggests failure in atrio-ventricular conductivity.

Discussion
Pre-clinical animal models are commonly used to investigate the pathophysiology of pulmonary hypertension 
and potential therapeutic interventions. Exposure to chronic hypoxia over 3 weeks characteristically leads to 
pulmonary hypertension in mice. To this end, pre-clinical assessment of PH has been largely limited to ex vivo or 
invasive procedures that interfere with the integrity of the heart tissue, hampering an accurate assessment of heart 
function within an intact living organism. Development of new imaging approaches is thus crucial for compre-
hensive understanding of the scope of PH in an in vivo environment.

In this study, we have examined the potential of VOT for assessing in vivo heart function in murine models 
of chronic-hypoxia-induced PH. The high temporal resolution of the imaging system enables tracking fast per-
fusion of contrast agents and estimation of the pulmonary transit time (PTT), a valuable capacity for functional 
assessment of the heart and pulmonary circuit dynamics. PTT has previously been shown to serve as an accurate 
indicator of heart performance, specifically left ventricular performance under pathophysiological conditions 
in the murine heart19. In this study, we have shown that the PTT in murine models exposed to chronic hypoxia 
was considerably longer than in normoxic models. As the PTT is determined by cardiac function and pulmonary 

Figure 1. The experimental protocol. (A) Non-invasive imaging procedure of the murine heart with volumetric 
optoacoustic tomography. (OA; optoacoustic, ICG; indocyanine green, NIR; near-infrared, PC; personal 
computer, GPU; graphics processing unit, DAQ; data acquisition system). (B) 3D view of the optoacoustic 
image of the murine heart reconstructed with a single laser pulse (AA - aortic arch, RA - right atrium, LA - left 
atrium, RV - right ventricle, LV - left ventricle). (C) Temporal profiles of the optoacoustic signal intensities in 
two voxels in RV and LV, as indicated in (B). (D) The pulmonary transit time (PTT) is calculated as a difference 
in time of arrival of the contrast agent, i.e. time difference corresponding to the maximum signal values in the 
RV and LV (Hx; mean-1.91 [1.7386–2.02] s versus Nx; mean-1.43 [1.0602–1.64] s, P < 0.0023).
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hemodynamics, these findings point to deteriorated cardio-pulmonary function in response to chronic hypoxic 
conditions. In fact, as indicated in this study, chronic hypoxia results in pulmonary vascular remodeling and right 
ventricular hypertrophy. This has not only been associated with an increase in pulmonary vascular resistance and 
right ventricular pressure due to increased afterload in chronic hypoxic mice21,22, but has also been associated 
with a decreased ability of conductance vessels to store and deliver the entire stroke volume of the right ventricle 
and ultimately resulting in a loss of pulmonary flow during diastole23. PTT values (or CPTT - Cardiopulmonary 
Transit Times) have been previously studied in humans by using the first pass radionuclide cardiography tech-
nique24. In support of our studies on hypoxia-induced PH in mice, longer PTT values were shown in patients 
with pulmonary hypertension25,26. PTT is becoming increasingly recognized as an important marker for cardio-
pulmonary function, where very recent studies have been evaluating the PTT in patients using MRI and US27. At 
present, pulmonary hypertension in mice is mostly characterized by invasive measurement of right ventricular 
pressure, and ex vivo histopathological analysis of pulmonary and cardiac tissues. Very recently, MRI and US has 
been applied to evaluate pulmonary hypertension in the more severe hypoxia/Sugen5416 murine model by meas-
uring right ventricular ejection fraction28 However, in mice PTT was only determined invasively using microan-
giography29. VOT enables measuring the PTT in vivo in mice, thus offering a new efficient and non-invasive tool 
to monitor heart remodeling and pulmonary circuit dynamics in models of pulmonary hypertension.

Arrhythmic events, in particular atrial fibrillation or flutter have been frequently observed in patients with 
pulmonary hypertension or COPD30. However, heart rate or arrhythmia have not been well documented in the 
adult chronic hypoxia murine model. Here we show that irregular heart cycles were present in mice exposed 
to chronic hypoxia as detected in the time profiles of the VOT data that represented mechanical motion of the 
heart in three dimensions. Although actual blood pressure values cannot be extracted from the VOT data, the 
non-invasively recorded OA signal intensity changes extracted at given spatial locations, plotted similar patterns 
to pressure waveforms usually extracted via catheterization31. This is expected considering that pressure changes 
in the heart chambers induce a displacement or strain in the heart walls, which are easily detectable in the OA 
signal intensity profiles. In catheterization procedures, pressure waveforms can only be measured at a specific 
location of the heart, which generally hinders measuring the delays between mechanical activation across dif-
ferent heart regions. With the suggested VOT approach, the OA signal intensity changes can be simultaneously 
obtained from multiple locations in the heart, which enables readily identifying such delays and could serve as 
an alternative method to strain imaging which also maps mechanical activation across the heart. The preliminary 
results presented here on cycle variability have promoted future studies on this topic using VOT in order to fully 

Figure 2. Staining for α-smooth-muscle actin of murine lungs. Formalin fixed and paraffin embedded (FFPE) 
lung sections derived from normoxic (Nx) or hypoxic (Hx) mice were stained for α-smooth-muscle actin and 
the number of muscularized small vessels (<30 µm) was counted. (A) Small muscularized vessels are indicated 
with arrows. (B) Graph shows the number of small muscularized vessels per mm2 lung tissue, assembled 
from three regions of interest per lung (n = 3, **p < 0.01 Hx vs. Nx). (C) The Fulton index as measure of right 
ventricular hypertrophy was determined as ratio between mass of the right (RV) and left ventricle (LV) with 
septum (S) (n = 3, *p < 0.05 Hx vs. Nx).
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understand the effect of chronic hypoxia on the electromechanical activity of the heart, where ECG and VOT data 
would be directly compared.

In conclusion, in vivo simultaneous detection of two impaired heart functions have been demonstrated with 
VOT in the murine model of chronic-hypoxia-induced pulmonary hypertension. The PTT and heart rate were 
both altered in hypoxic hearts compared to normoxic hearts. Overall, VOT has been suggested as a method offer-
ing new capabilities for in vivo volumetric beat-by-beat characterization of cardio-pulmonary function in murine 
models of pulmonary hypertension, not attainable with existing approaches.

Methods
Animal models. All animal procedures were approved by the local legislation on protection of animals 
(Government of Upper Bavaria, Munich, Germany under animal protocol reference number 55.2-1-2532-
50-12) and conducted in accordance with the European directive 86/609/EEC and internal regulations of the 
Technical University of Munich and Helmholtz Centre Munich. Mice (129S/Sv/C57BL6 mixed background) were 

Figure 3. Optoacoustic characterization of impaired heart function in hypoxic models. (A) Examples of time-
lapse optoacoustic signal intensity profiles for selected voxels in the heart of normoxic and hypoxic mice (n = 4). 
Irregular heart beating events are marked with grey crosses in the time traces for hypoxic models. (B) Boxplots of the 
measured cycle period for normal versus abnormal beating cycles (NB - normal beating, AB - abnormal beating). (C) 
Volumetric mapping of the heart mechanical motion and onsets of the irregular beats, where the colored circles in the 
heart in systolic phase (S – blue box) correspond to the colored OA signal profiles below. The red shade in the profiles 
indicate heartbeat onset at varying locations and the yellow shade indicates the duration of the heartbeat. The diastolic 
phase of the heart (D-red panel) is the heart phase present for the majority of the heartbeat (RA – right atrium, LA, 
left atrium, RV – right ventricle, LV – left ventricle, S-systole, D-diastole). (D) Short-time Fourier transform (STFT) of 
the temporal OA signal profile in a selected voxel in hypoxic heart, where blue indicates normal beating periods and 
red indicates irregular beating periods. Green arrows identify the areas of abnormal beat periods in the time series 
and the areas of low frequency acquired from STFT. White dashed lines indicate breathing events.

https://doi.org/10.1038/s41598-019-44818-8


6Scientific RepoRts |          (2019) 9:8369  | https://doi.org/10.1038/s41598-019-44818-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

maintained for 21 days either under normoxic conditions (n = 3) or under hypoxic conditions (10% oxygen, 
n = 4) in a custom-built normobaric chamber, as described previously21.

Animal handling. All mice were anesthetized with approximately 2% isoflurane – oxygen medical mix 
(~0.81 L/min gas flow) for in vivo imaging of the heart. The fur covering the region of interest was initially clipped 
and then completely removed with hair removal cream. During imaging, the anesthetized mice were placed on 
top of a solid agar matrix filling the volume enclosed by the spherical array (Fig. 1A). Warmed ultrasound gel 
was further used between the tissue surface and the agar matrix for optimum acoustic coupling and maintain-
ing homeostasis. Approximately 15 sec after beginning of the image acquisition each mouse was intravenously 
injected with 100 nmol/L of indocyanine green (ICG) contrast agent (Profiplus Bvba, Kortessem, Belgium) 
diluted in 50 µl saline solution. Mice were then injected a second time 10 minutes after the first injection.

Volumetric optoacoustic tomography (VOT) of the murine heart. High-frame-rate images of the 
beating murine heart were acquired with a VOT system specifically designed for high performance pre-clinical 
cardiac imaging (Fig. 1B)18,32. The imaging system consists of a spherical array transducer (Imasonic Sas, Voray, 
France) composed of 512 piezoelectric elements with 5 MHz central frequency and >80% detection bandwidth. 
The array provides 140° solid angular coverage with 40 mm radius. The large angular coverage of the array reduces 
limited-view effects and further enables an improved sensitivity and deeper penetration. In the experiments, the 
spherical array was held pointing upwards (Fig. 1A). The spherical volume enclosed by the spherical aperture was 
filled with clear agar (3 w/v% concentration), which provided acoustic coupling while being transparent for light. 
Short light pulses (<10 ns) at 800 nm wavelength and 100 Hz repetition frequency were generated by a fast-tuning 
optical parameter oscillator laser (Innolas Laser GmbH, Krailling, Germany) and guided via a fibre bundle 
(Ceram Optec GmbH, Bonn, Germany) through the center of the transducer array. The 800 nm wavelength corre-
sponds to the absorbance peak of ICG. The OA signals for all elements of the array were simultaneously sampled 
by a custom-made parallel data acquisition system (Falkenstein Microsysteme GmbH, Taufkirchen, Germany). 
Volumetric images were reconstructed on the fly for each laser pulse by a graphics processing unit-based 3D 
back-projection reconstruction algorithm, which enabled real-time preview during the experiments and facil-
itated correct positioning of the animal33. After correct positioning, VOT data was acquired for a total of 5000 
frames and 3D images were later reconstructed offline in a volume of 12 × 12 × 12 mm3 (120 × 120 × 120 voxels). 
All processing steps were performed in MATLAB (MathWorks Inc, Natick, USA).

Pulmonary transit time (PTT). The method for extracting the PTT values from the heart image sequence 
has been previously described18. In short, the PTT was measured as the difference between the time points cor-
responding to the maximum signal peaks for the right (RV) and left ventricles (LV), corresponding to the time of 
appearance of the ICG bolus (Fig. 1C). The PTT was measured for both hypoxic and normoxic models, followed 
by statistical analyses. Voxels in the RV and LV were identified in the VOT images using a 4-dimensional viewing 
toolbox in Matlab.

Cardiac cycle characterization. OA signal intensity profiles were extracted from different locations in the 
LV and RV, the left atria and right atria as well as the aortic arch by selection of voxels in the images. These cycles 
were used for characterizing the heart rate as well as irregularities corresponding to arrhythmias. The latter were 
identified when the length of a single cycle significantly exceeded the average cycle length of a normal periodic 
rhythm. Also, the spectrogram of the cardiac cycle was calculated as the short-time Fourier transform (STFT) 
of the signals. The STFT was used to resolve the frequency content at specific time points and track it over time. 
Abnormal beating events are expected to result in a lower frequency distribution in the STFT as opposed to the 
normal beating rhythm.

Immunohistochemistry and Fulton index. Hypoxia-induced pulmonary vascular remodeling was 
validated by immunohistochemistry, as described previously21. Briefly, lung tissue samples were immersed in 
10% buffered formalin solution for 48 h and subsequently embedded in paraffin (FFPE). FFPE lung sections 
were stained with an antibody against α-smooth muscle actin (clone 1A4; DAKO, Hamburg, Germany). The 
slides were heated at 60 °C for 1 h before rehydration in a series of alcohol solutions of decreasing alcohol con-
centration. The endogenous peroxidase activity was quenched in 1% hydrogen peroxide solution in methanol. 
The hydration process was completed by rinsing in DAKO wash buffer. Sections were heated in a water bath at 
90 °C while submerged in antigen retrieval pH 9 epitope retrieval solution (DAKO) for 30 min. They were sub-
sequently blocked in blocking reagent for 1 h, and then incubated with the antibody 1:100 diluted in M*O*M 
diluent (Vector M*O*M kit) (Vector Laboratories, Burlingame, CA) for 1 h at room temperature in a humidity 
chamber. The sections were washed in DAKO wash buffer and the secondary antibody was applied (anti-mouse 
IgG in dilution 1:250). The avidin–biotin complex (Vectastatin Elite Kit, Vector Laboratories) was applied to the 
slides for 30 min at room temperature. The chromogenic reaction was performed with diaminobenzidine (DAB; 
DAKO) for 5 min at room temperature. Slides were counterstained with Mayer’s hematoxylin for 30 s (Merck, 
Darmstadt, Germany), dehydrated in an ascending alcohol concentration, and mounted with Entelan (Merck). 
Positive and negative controls were included with each run. For evaluation of each lung, small α-smooth muscle 
actin positive vessels less than 30 µm were identified in three randomly selected regions of interest covering an 
area of 1 mm2 each22.

To determine the Fulton index as a measure of right ventricular hypertrophy, the right ventricle was separated 
from the left ventricle and septum, and masses were determined.
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