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Abstract

Summary: Despite their fundamental role in various biological processes, the analysis of small RNA
sequencing data remains a challenging task. Major obstacles arise when short RNA sequences map to
multiple locations in the genome, align to regions that are not annotated or underwent post-transcriptional
changes which hamper accurate mapping. In order to tackle these issues, we present a novel profiling
strategy that circumvents the need for read mapping to a reference genome by utilizing the actual read
sequences to determine expression intensities. After differential expression analysis of individual sequence
counts, significant sequences are annotated against user defined feature databases and clustered by
sequence similarity. This strategy enables a more comprehensive and concise representation of small
RNA populations without any data loss or data distortion.
Availability: Code and documentation of our R package at http://ibis.helmholtz-muenchen.de/deus/.
Contact: tim.jeske@helmholtz-muenchen.de, hastreiter@helmholtz-muenchen.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
A general approach to analyze small non-coding RNAs (sncRNA) data
encompasses the evaluation of differential expression between conditions
of interest. For this purpose, several software packages, such as

miRDeep (Friedländer et al., 2008), tDRmapper (Selitsky and Sethupathy,
2015), sRNAnalyzer (Wu et al., 2017) and sRNAtoolbox (Rueda et al.,
2015), have been developed. A common step shared by these sncRNA
profiling tools is the alignment of reads to a reference genome, followed
by their annotation, feature count quantification and the subsequent
statistical evaluation between experimental conditions (Anders et al.,
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2013). However, the analysis of the expressed sncRNA populations poses
several hurdles because short reads are more likely to map to multiple
locations in the genome, or map to genomic coordinates that are not
annotated and may deviate from the originating feature sequence due to
editing and post-transcriptional processing steps. Here, we present our
method that analyzes differential expression of unique sequences (DEUS)
for profiling sncRNA sequence data without relying on read mapping.

2 Implementation
Our pipeline starts with the identification of unique reads in each of
the input FASTQ files to generate a typical RNA-seq count matrix, but
utilizing the actual read sequence instead of the gene feature as identifier.
The count table is then used as input for DESeq2 (Love et al., 2014)
analysis to calculate statistically significant read count differences between
samples from different experimental conditions. Adjusted p-values for the
differentially expressed (DE) unique sequences are calculated according
to the Independent Hypothesis Weighting method (Ignatiadis et al.,
2016) using the means of normalized counts as covariate. DE unique
sequences are subsequently annotated by BLASTn (Altschul et al., 1990)
searches against user defined BLAST databases. Subsequently, the CD-
Hit clustering algorithm (Fu et al., 2012; Li and Godzik, 2006) is applied
to classify significant DE reads into subgroups of similar sequences based
on the percentage of sequence identity and the length of the overlapping
sub-sequences as defined by the user. This additional information can
be used to inspect significant sequences in groups that indicate similar
biological origin. Finally, a comprehensive summary table is generated
by combining results from differential expression analysis, BLASTn
annotation and cluster assignment (Supplementary Table 1). To easily
explore the content of the table the user can define an individual set of
terms that represent feature classes of interest. The given terms will be
integrated as columns each containing the number of BLAST hits that
match the corresponding term. DEUS also automatically generates plots
to visualize the expression intensities versus fold changes of the identified
sequences and the distance of the expression profiles of the samples
in analysis. Additionally, we implemented an extended approach that
performs clustering and summarizes sequence counts prior to differential
expression analysis to provide further insights on a more general level
(See Supplementary Material). We implemented each of the described
steps as customizable functions in the R package DEUS. This modular
design allows the user to customize our pipeline, tailored to the specific
needs of the project.

3 Discussion
In accordance with Johnson et al. (2016), we found that sncRNA data sets
from various mouse and human biomaterials are plagued by substantial
amounts of multi-mapping reads (61.5 ± 20.1%) and noticeable amounts
(44.7 ± 17.2%) of reads that map to regions of the genome that are
not annotated (Supplementary Figure 1 and Supplementary Table 2).
Consequently, it requires dedicated methods that account for these issues.
DEUS deviates from mapping-based small RNA profiling methods in
several aspects (Figure 1a). As DEUS is not relying on mapping it
facilitates sncRNA profiling even when a reference genome is not available.
Further, it includes all reads in analysis even those that were mapped
to loci lacking feature annotation and those that can not be mapped,
for example, due to extensive RNA editing events (Figure 1b). DEUS
circumvents the challenge of correctly assigning multi-mapping reads
to their originating feature by representing multiple putative mapping
positions by multiple annotations per unique sequence. Due to the use
of unique sequences, DEUS inherently detects discrete sequence or length

Fig. 1. Major differences between mapping-based and DEUS small RNA profiling
strategies. (a) Schematic representation of the workflow of mapping-based pipelines
compared to DEUS. (b) Schematic representation of scenarios that result in data distortion
or data loss when applying mapping-based sncRNA profiling strategies. Mapping-based
workflows ignore reads that map to non-annotated genome regions (depicted as reads
between the two features) and foster data distortion as variant-specific read counts are
usually summed up during subsequent feature counting even if these reads align at different
spatial coordinates of the same genomic feature (depicted as reads mapped to feature 1)
or exhibit discrete variations in nucleotide sequence or sequence length (depicted as reads
mapped to feature 2).

variations. The information about sequence variations would otherwise
be hidden in read counts grouped on feature-level or lost if varying reads
could not be mapped. To allow feature-based result interpretation despite
sequence-based data analysis, DEUS clusters highly similar sequences
(Figure 1a). This compression of resulting DE sequences to sequence
clusters reduces the number of result entities in a range from about 40% up
to 80%. In combination with the extended differential expression analysis,
the use of sequence clusters improves the overall signal detection power
and provides a second data perspective that includes single sequence and
cluster-level analysis.

In summary, DEUS provides an unprecedented way to profile and
visualize sncRNA data. DEUS clearly diverges from mapping-based
analysis strategies, hampered by substantial data loss and distortion of
feature counts. We believe that our DEUS pipeline considerably improves
the analysis of sncRNA-seq data, being applicable in various existing
pipelines and returning intuitively interpretable results.

Conflict of interest The authors declare no conflicts of interest.
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