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Abstract

Introduction Obesity is a disorder characterized by a disproportionate increase in body weight in relation to height, mainly
due to the accumulation of fat, and is considered a pandemic of the present century by many international health institutions.
It is associated with several non-communicable chronic diseases, namely, metabolic syndrome, type 2 diabetes mellitus
(T2DM), cardiovascular diseases (CVD), and cancer. Metabolomics is a useful tool to evaluate changes in metabolites due
to being overweight and obesity at the body fluid and cellular levels and to ascertain metabolic changes in metabolically
unhealthy overweight and obese individuals (MUHO) compared to metabolically healthy individuals (MHO).

Objectives We aimed to conduct a systematic review (SR) of human studies focused on identifying metabolomic signatures
in obese individuals and obesity-related metabolic alterations, such as inflammation or oxidative stress.

Methods We reviewed the literature to identify studies investigating the metabolomics profile of human obesity and that
were published up to May 7th, 2019 in SCOPUS and PubMed through an SR. The quality of reporting was evaluated using
an adapted of QUADOMICS.

Results Thirty-three articles were included and classified according to four types of approaches. (i) studying the metabolic
signature of obesity, (ii) studying the differential responses of obese and non-obese subjects to dietary challenges (iii) studies
that used metabolomics to predict weight loss and aimed to assess the effects of weight loss interventions on the metabolomics
profiles of overweight or obese human subjects (iv) articles that studied the effects of specific dietary patterns or dietary
compounds on obesity-related metabolic alterations in humans.

Conclusion The present SR provides state-of-the-art information about the use of metabolomics as an approach to under-
standing the dynamics of metabolic processes involved in human obesity and emphasizes metabolic signatures related to
obesity phenotypes.
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1 Background

Obesity is a disorder characterized by a disproportion-
ate increase in body weight in relation to height, mainly
due to the accumulation of fat. Obesity is considered a
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pandemic of the present century by the World Health
Organization (WHO) and other international organiza-
tions (Abarca-Gémez et al. 2017; World Health Organi-
zation 2014). Obesity is associated with the development
of important non-communicable chronic diseases, namely,
hypertension, metabolic syndrome, type 2 diabetes mel-
litus (T2DM), cardiovascular diseases (CVD), obstructive
sleeping apnea, osteoarthropathies and cancer (GBD 2015
Obesity Collaborators et al. 2017; Williams et al. 2015).
Worldwide, obesity has nearly tripled since 1975, and in
2016, more than 1.9 billion adults aged 18 years and older
(39% of the global population) were overweight. Of these
individuals, over 650 million (13% of the total population)
were obese. Moreover, 41 million children under the age
of five were overweight, and over 340 million children and
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adolescents aged 5-19 were overweight or obese (World
Health Organization 2018).

Obesity is usually diagnosed by estimating the body
mass index (BMI), which is calculated as the ratio of body
weight (kg) and height squared (m?), allowing physicians
to classify individuals by grade from overweight to morbid
obesity (World Health Organization 2018). However, this
simple and useful index does not evaluate the metabolic
alterations frequently associated with obesity, which in
turn are closely related to the existence of insulin resist-
ance (IR) in peripheral tissues (Cafiete et al. 2007) or
immunological disorders occurring as a consequence of
the establishment of a low-level inflammatory process
derived from the activation of the innate immune system
(Hotamisligil 2006). The latter process also leads to IR
and altered glucose and lipid metabolism (Bastard et al.
2006), as well as the secretion of numerous pro-inflam-
matory cytokines (Tilg and Moschen 2006) and factors
involved in angiogenesis and blood coagulation (Brestoff
and Artis 2015; Caputo et al. 2017). Additionally, adi-
pocyte hypertrophy induces the accumulation of reactive
oxygen species due to endoplasmic reticulum dysfunction
(Hotamisligil 2010) and the activation of cell inflamma-
tory signaling cascades (Lee and Lee 2014). Many adi-
pokines and inflammatory factors have been suggested as
biomarkers of obesity (Gil-Campos et al. 2004). In fact,
in obese subjects, the expression of many genes related to
cell metabolism and production of adipokines is signifi-
cantly altered (Aguilera et al. 2015; Gil et al. 2007; Kim
and Park 2010).

Substantial controversy exists regarding whether obe-
sity should be considered a disease (Vallgarda et al. 2017).
Within the obese population, clinicians can distinguish
between metabolically healthy obese (MHO) and metabol-
ically unhealthy obese (MUHO) subjects. Increased blood
pressure, hyperlipidemia, hyperglycemia, hyperuricemia
and increased peripheral IR are frequently reported in
MUHO subjects (Badoud et al. 2015a, b; Rupérez et al.
2018).

Metabolomics is defined as a technological tool that aims
to detect and measure changes in the profiles and levels of
low molecular weight metabolites (< 1500 Da) in cells, tis-
sues, organs, systems or whole organisms in response to a
genetic variation or physiological or pathological condition
(Gibney et al. 2005). Therefore, metabolomics enlightens
as a useful tool to evaluate changes in metabolites due to
overweight and obesity at the cellular level, i.e., visceral
and omental white adipose tissues (AT), brown AT, skel-
etal muscle, liver, among others, and body fluid level, i.e.,
plasma, urine, and human milk. Also, this analytical tool
is of keen interest in ascertaining the metabolic fingerprint
(a recognizable chemical pattern specific of an individual
sample) related to metabolically unhealthy obese individuals
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compared to metabolically healthy individuals (Badoud et al.
2015b).

Metabolomics comprises qualitative and quantitative
analyses of intracellular and intercellular metabolites, usu-
ally using two main distinct analytical approaches: (a) non-
targeted metabolite profiling, intended as a comprehensive
analysis without further knowledge of the features covered
and which might result in the identification and characteri-
zation of a large variety of metabolites that can cluster into
recognizable patterns; and (b) targeted metabolite profiling,
that is focused on a reliable quantitative measurement of
the variations in metabolites involved in a number of meta-
bolic pathways (e.g., amino acids (AA) and their deriva-
tives) based on an understanding of their biological roles
in those pathways (Park et al. 2015). These methods differ
in numerous aspects, such as the complexity of the sam-
ple preparation procedures, the experimental precision, the
range of features (metabolites) detected, and the quantifica-
tion level (relative versus absolute) (Rangel-Huerta and Gil
2016). Those characteristics prompt researchers to establish
specific objectives for each approach, such as generating a
hypothesis or testing a previously developed hypothesis
(Putri et al. 2013).

Over the last decade, numerous reports and reviews
have addressed the metabolic changes associated with
obesity in both humans and animal models (Abu Bakar
et al. 2015; Adams 2011; Calvani et al. 2014; Du et al.
2013; Fiehn et al. 2010; Gogna et al. 2015; He et al.
2012; Hivert et al. 2015; Kim and Park 2010; Kim et al.
2010a; Mihalik et al. 2012; Moore et al. 2013; Morris
et al. 2012; Newgard 2017; Newgard et al. 2009; Ober-
bach et al. 2011; Pietildinen et al. 2007; Rauschert et al.
2014, 2016; Rauschert et al. 2017; Rauschert et al. 2017;
Shore and Cho 2016; Tulipani et al. 2016a; Villarreal-
Pérez et al. 2014; Wahl et al. 2012; Williams et al. 2006;
Xie et al. 2012; Zeng et al. 2010; Zhang et al. 2013; Zhao
et al. 2016a, b). Many of them describe changes in the
metabolic profile associated with obesity and diabetes, and
notably features associated with IR (Abu Bakar et al. 2015;
Adams 2011; Fiehn et al. 2010; Gogna et al. 2015; Mihalik
etal. 2012; Newgard 2017; Newgard et al. 2009; Rauschert
et al. 2016; Villarreal-Pérez et al. 2014; Zhao et al. 2016a,
b), and the majority report the results of targeted analy-
ses. Indeed, the identified metabolites can serve as bio-
markers of the pathophysiological mechanisms involved
in the development of obesity and, subsequently, T2DM.
Elevated levels of branched-chain AAs (BCAAs) (leucine,
isoleucine, and valine) and aromatic AAs (phenylalanine,
tyrosine, tryptophan and methionine), as well as some of
their tissue metabolites, have been detected in both sub-
jects with obesity and diabetes, whereas glutamine and
glycine levels are decreased (Adams 2011; Mihalik et al.
2012; Morris et al. 2012; Newgard 2017; Newgard et al.
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2009; Rauschert et al. 2017), although the results have
not always been consistent (Fiehn et al. 2010; Kim et al.
2010b; Oberbach et al. 2011; Wahl et al. 2012). The levels
of other non-protein nitrogen compounds, such as nucleo-
tides, nucleosides, and their metabolites, namely, uridine
and uric acid, vary considerably, depending on the degree
of IR in obese subjects (Fiehn et al. 2010; Park et al. 2015;
Wahl et al. 2012). Regarding lipid metabolites, the lev-
els of some fatty acids (FAs), e.g., palmitic, palmitoleic,
stearic, and oleic acids, and stearoyl carnitine are elevated
in obese subjects (Park et al. 2015). Likewise, the levels of
some lysophospholipids of both choline and ethanolamine
seem to be altered, although the direction of changes is not
consistent and depend on each study (Fiehn et al. 2010;
Gogna et al. 2015; Kim et al. 2010b; Moore et al. 2013;
Pietildinen et al. 2007; Wahl et al. 2012). Concerning car-
bohydrates, the concentrations of glucose, fructose, man-
nose, xylose, gluconic acid, glucuronic acid, glycerol and
lactate in plasma are usually increased, whereas the con-
centrations of glycerol-3-phosphate and other metabolites
are decreased in obese men (Fiehn et al. 2010; Gogna et al.
2015; Moore et al. 2013; Park et al. 2015). A summary of
the changes in the major metabolites in subjects with obe-
sity and diabetes obtained using a targeted metabolomics
approach has been previously reported (Putri et al. 2013).
In this context, we aimed to perform a systematic review
(SR) of human studies focused on identifying metabolomic
signatures in obese individuals and obesity-related metabolic
alterations, such as inflammation or oxidative stress; we con-
sidered the targeted and nontargeted approaches as different
and separate strategies within the metabolomics analyses.
Furthermore, we included studies evaluating the metabolic
signature and its modulation by dietary interventions, such
as dietary challenges or weight loss programs, in humans.

2 Methods

The present SR was designed to review the state-of-the-art
research related to the use of metabolomics as an approach
to understanding the dynamics of metabolic processes
involved in human obesity.

This review was conducted following the PRISMA-P
(Preferred Reporting Items for SR and Meta-Analysis Pro-
tocols) statement (Moher et al. 2015) (see Fig. 1).

2.1 Inclusion and exclusion criteria

Studies employing cross-sectional, prospective, parallel, and
crossover designs were considered. The sample size was not
restricted. Articles, or at least the abstract, must have been
written in English or Spanish. Conference abstracts, reviews,

meta-analyses, case reports, ecological studies, and letters
to the editor were excluded.

2.2 Search strategy and eligibility criteria

Studies should have focused on the metabolic profile of
obese humans or their regulation by weight loss interven-
tions, dietary products, or dietary challenges to be con-
sidered for inclusion in the SR. Studies of overweight or
obese subjects in which the outcomes were strictly related
to the study of obesity were included. All the studies utiliz-
ing a metabolomics approach, including but not limited to
nuclear magnetic resonance (NMR) or MS (coupled to dif-
ferent types of chromatography) of urine or plasma samples,
were included. Studies published up to May 7th, 2019, were
included.

2.3 Literature search

We performed an SR of studies published in English or Span-
ish of the populations included in the following electronic
databases without an age limit: MEDLINE (via PubMed)
and SCOPUS. Figure 1 shows the main steps of the literature
search. Studies were identified in the databases by applying
a publication date of May 7th, 2019, human subjects, and
the following search MeSH terms (exclusive of PubMed):
(“Metabolome”’[Majr] OR “Metabolomics”’[Majr]) AND
“Obesity”’[Majr] AND “humans”’[MeSH Terms].

MeSH terms are restricted to medical databases such
as PubMed. Therefore, as SCOPUS has more extensive
coverage than PUBMED, the search was done using
metabolome, metabolomics, and other additional terms.
The search in SCOPUS was filtered by articles using the
following equation: (“obesity” OR “overweight”) AND
(“metabolic profiling” OR “metabolic fingerprint” or
metabolomics).

2.4 Study selection and data extraction

First, both the titles and abstracts of publications yielded
by the search were reviewed independently by two review-
ers, ODHR and BPV and studies that did not meet the
established language, subject matter, participant, design
and outcome criteria were excluded (see Fig. 1).

ODHR and BPV input the data into the database; one
additional reviewer (AG) resolved any discrepancies. After
selecting the final list of articles to be included, the authors
elaborated a classification according to the objectives and
approach of the studies to facilitate the interpretation of
the results.
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Fig. 1 PRISMA 2009 flow
diagram

PRISMA 2009 Flow Diagram

]

Records identified through
database searching
PubMed (n =157)
Scopus (n = 480)

Additional records identified
through other sources
(n=0)

Identification

[

]

Records after duplicates removed
PubMed (n =57)
Scopus (n = 238)

Eligibility Screening

Included

2.5 Quality assessment

The quality of the selected articles included in the present SR
was evaluated using the QUADOMICS tool, which has been
employed in other metabolomics reviews (Lumbreras et al.
2008; Zhang et al. 2017; Zhao et al. 20164, b). This tool was
developed to evaluate quality issues specific to omics research
and has been used to assess the quality of diagnostic studies in
a highly dynamic field that faces the challenge of sieving many
recently published results (Lumbreras et al. 2008). Because of
the wide range of types of studies, we selected specific items
that covered the major domains. The items and the evaluation
criteria are included as Supplementary Material (Supplemental
Table 1).

@ Springer

Records excluded
PubMed (n = 18)
Scopus (n = 184)

Records screened
PubMed (n = 57)
Scopus (n =238)

A 4

Full-text articles excluded
(i.e. out of scope, animal
studies)
PubMed (n=9)
Scopus (n =24)

Full-text articles assessed
for eligibility N
PubMed (n = 39)
Scopus (n = 54)

A 4

Studies included in
qualitative synthesis
(n=60)

3 Result

3.1 Selection of metabolomics studies investigating
obesity

The process for the selection of studies after the literature
search is described in Fig. 1. Finally, we reviewed 60 stud-
ies that met established inclusion criteria and were evaluated
by quality according to the QUADOMICS evaluation (see
Supplemental Table 1). According to the type of approach
reported on the studies, we have divided the results into four
blocks. The first block includes studies designed to deter-
mine the metabolic signature of obesity; 15 of which used an
untargeted approach (Fattuoni et al. 2018; Ruebel et al. 2019;
Houttu et al. 2018; Sorrow et al. 2019; Butte et al. 2015; Kim
et al. 2010b; Xie et al. 2014; Hanzu et al. 2014; Zhao et al.
20164, b; Foerster et al. 2015; Bagheri, et al. 2019, Cirulli
et al. 2019, Yu et al. 2018, Marco-Ramell et al. 2018, Piening
et al. 2018), 14 used targeted metabolite profiling (Wahl et al.
2012; Gawlik et al. 2016; Newgard et al. 2009; Baker et al.
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Table 1 (continued)

Outcome

Statistical analysis

Characteristics Platform

Population (tissue)

Author (year)

LC-Q-TOF (untargeted), LC— PCA, Wilcoxon signed rank  Signature of obesity

91 non-obese subjects (44

Adolescents (urine)

Cho et al. (2017)

test, simple correlation, and

linear regression

MS/MS, and FIA-MS/MS

(targeted)

women) and 93 obese sub-

jects (40 women)

AA amino acids, BCAA branched-chain amino acids, BMI body mass index, DLDA diagonal discriminant analysis, FAs fatty acids, FDR false discovery rate, FFAs free fatty acids, FIA flow

injection analysis, GC gas chromatography, HFD high-fat diet, /R insulin resistance, LDA linear discriminant analysis, MO morbidly obese, MS mass spectrometry, NMR nuclear magnetic

resonance, OPLS-DA orthogonal partial least square discriminant analysis, PC phospholipids, PLS-DA partial least squares projection to latent structures-discriminant analysis, QDA quadratic

discriminant analysis, Q-TOF quadrupole-time of flight, SCDA nearest shrunken centroid classification, UPLC ultra-high performance liquid chromatography, 72D type 2 diabetes

2015; Kraus et al. 2016; Feldman et al. 2019; Maltais-Payette
et al. 2018; Carayol et al. 2017; Bagheri et al. 2018; Wang
et al. 2018; Ho et al. 2016; Haufe et al. 2016; Stroeve et al.
2016; Tulipani et al. 2016a, b), and one designed the metabo-
lomics study using a combination of both approaches (Cho
et al. 2017) (Table 1). The second block includes five studies
focused on studying the differential responses of obese and
non-obese subjects to dietary challenges (Table 2) (Badoud
et al. 2015b; Baker et al. 2015; Geidenstam et al. 2014; Bak
et al. 2018). The third block comprises three studies that
used metabolomics to predict weight loss (Geidenstam et al.
2017a, b; Stroeve et al. 2016) and 11 randomized clinical trials
(RCTs) aimed to assess the effects of weight loss interventions
(both hypocaloric diet programs and exercise interventions)
on the metabolomic profiles of overweight or obese human
subjects (Table 2) (Almanza-Aguilera et al. 2018; Duft et al.
2017; Kang et al. 2018; Leal-Witt et al. 2018; Meucci et al.
2017; Mills et al. 2019; Munukka et al. 2018; Palau-Rodriguez
et al. 2019; Perez-Cornago et al. 2014; Zheng et al. 2016a, b).
Additionally, the fourth block includes 11 articles that studied
the effects of specific dietary patterns or dietary compounds
on obesity-related metabolic alterations in humans, such as
inflammation or oxidative stress (Table 3) (Baldrick et al.
2018; Gu et al. 2013; Hernandez-Alonso et al. 2019; Hibberd
et al. 2019; Kim et al. 2013; Kim et al. 2017; Mayengbam
et al. 2019; Nieman et al. 2012a, b; Romo-Hualde et al. 2018;
Xu et al. 2018).

3.2 Metabolomic profiling of obesity
3.2.1 Untargeted analysis

Three studies focused on profiling the obesity during preg-
nancy (Table 1). The analysis of placenta samples from
obese women reveals a potentially altered metabolism as
reflected by the dysregulation of several pathways. Metabo-
lites associated with the antioxidant defense system, nucle-
otide production, as well as lipid metabolism and energy
production were modified. A specific serum fatty acid profile
characterized by low levels of LC-PUFA derivatives, arachi-
donic acid, and DHA, and high levels of palmitic acid were
observed (Fattuoni et al. 2018).

Furthermore, the study of the follicular fluid from over-
weight and obese women presented similar oxidative stress
and lipid metabolism alterations. Elevated concentrations of
uric acid and several unknown lipids, as well as a decrease
of 2-ketoglucose dimethyl acetal, aminomalonate, two
unknown primary metabolites, and two unknown complex
lipids in the overweight and obese woman (Ruebel et al.
2019). Moreover, using NMR, serum metabolic profiling
revealed a different lipid profile in pregnant women when
compared with overweight. Specifically, the obese preg-
nant women showed significantly higher very low-density

@ Springer
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Table 2 (continued)

&

Changes in metabolism after

Outcome

24 weeks (3 times/week)

Duration

(1) Control group (n=11) (2)

Intervention

Biospecimen (platform)

Serum (H NMR)

22 obese adults’ subjects

Population

Duft et al. (2017)

Author

Springer

24 weeks of combined train-

ing

combined training (n=11)

AA amino acids, AEE activity energy expenditure, AUC area under the curve, CE capillary electrophoresis, EI electronic ionization, FA fatty acids, H NMR proton nuclear magnetic resonance,
HWL high weight loss group, GC gas chromatography, LC liquid chromatography, LDL low-density cholesterol, LWL low weight loss, MetS metabolic syndrome, MHO metabolic healthy obese,

MO morbidly obesity, MS mass spectrometry, MUO metabolically unhealthy obese, NMR nuclear magnetic resonance, OGTT oral glucose tolerance test, O-TOF quadrupole-time of fligh,

UPBEAT better eating and activity trial, UPLC ultra-performance liquid chromatography

*Based on a reduction of about 600 kcal in the energy intake with a calorie distribution as follows: 35-40% fats (8—10% saturated fatty acids), 40-45% carbohydrates and 20% protein + exercise

(walking on average for 150 min every week)

lipoprotein (VLDL) and lower high-density lipoprotein par-
ticles (HDL); lower proportions of w-6 fatty acid, 18:2 lin-
oleic acid and PUFAs of total FAs, as well as the estimated
degree of unsaturation of FAs (Houttu et al. 2018).

Two studies performed untargeted metabolomics analysis
in children (Sorrow et al. 2019; Butte et al. 2015), (Table 1).
First, the study of the umbilical cord from children develop-
ing obesity by age 3-5 years old provided valuable informa-
tion (Sorrow et al. 2019). Those children with elevated con-
centrations of medium and very long-chain FAs (LCFAs),
such as stearate, oleate or palmitate at birth, developed obe-
sity later in life. Moreover, the authors reported an associa-
tion between obesity and several acetaminophen metabolites
at birth, including 3-(N-acetyl-L-cysteine-S-yl) acetami-
nophen, 2-hydroxyacetaminophen sulfate, 2-methoxyaceta-
minophen glucuronide, and p-acetamidophenyl glucuronide.

Butte et al. (2015) reported that the relative plasma con-
centrations of BCAAs (leucine, isoleucine, and valine),
their catabolites (2-methylbutyrylcarnitine, 3-methyl-2-ox-
obutyrate, and isovalerylcarnitine), propionylcarnitine (C3)
and butyrylcarnitine (C4) were significantly increased in
obese children compared with non-obese children (Butte
et al. 2015). The authors (Butte et al. 2015) also observed
increased levels of both polar and non-polar AAs (gluta-
mate, lysine, tyrosine and phenylalanine, and alanine,
respectively), polyamines, several gamma-glutamyl dipep-
tides and polypeptides in obese children. In contrast, aspar-
agine, aspartate, glycine, serine, and histidine levels were
decreased. Notably, significantly higher levels of the ketone
bodies containing a-hydroxybutyrate and a-ketobutyrate
were observed in the obese children, but lower concentra-
tions of lysophospholipids (glycerophosphocholines and
glycerophosphoethanolamines) and decarboxylated FAs
(dodecanedioate, tetradecanedioate, and 2-hydroxyde-
canoate) were observed compared with non-obese children.
Significantly lower p-hydroxybutyrate levels were also
observed in obese children than in non-obese children. Fur-
thermore, markedly higher levels of steroids, such as dehy-
droepiandrosterone sulfate (DHEA-S), were detected in
obese children. Additionally, higher mannose and pyruvate
levels and lower glycerate and citrate levels were measured
in obese children than in non-obese children. Higher levels
of purine and pyrimidine metabolites were observed in obese
children. Remarkably, tyrosine was considered the highest-
ranked metabolite based on its contribution to the obesity
classification (Butte et al. 2015).

Regarding adults, 11 untargeted studies were included
in the present SR (Table 1). In 2010, Kim et al. (2010b)
reported higher levels of stearic acid and lower levels of
oleic acid among the serum phospholipids of overweight/
obese men. Furthermore, they also identified higher con-
centrations of lysophosphatidylcholine (lysoPC) a C14:0 and
lysoPC a C18:0 and lower levels of lysoPC a C18:1 than in
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lean subjects, and confirmed eight known metabolites for

&

2 o

:» %) £ overweight/obesity men (two BCAAs (valine and leucine);

é 3 i £ two essential AAs (phenylalanine and tryptophan)), as well

2 5 él’ f-; as critical compounds of FA synthesis and oxidation (car-

% % % £ nitine, propionyl-, butyryl-, and hexanoyl-carnitine) (Kim
o E : 2 2 et al. 2010b). Using similar platforms, Xie et al. (2014) also
g gn a5 reported higher serum BCAA levels in obese men than in
g g 5EZ8 lean men; moreover, BCAA levels correlated with IR and

were higher in obese men, but not in obese women. Interest-
ingly, they also reported high levels of propionyl-L-carnitine
(C3) in obese men (Xie et al. 2014). More recently, Yu et al.
(2018) found that obese men presented higher concentra-
tions in serum of phenylalanine, Phe—Phe, and tryptophan,
and lower levels of p-cresol and p-cresol sulfate. Interest-
ingly, the levels of phenylacetamide, L-glutamine, phenyla-
cetylglutamine, indoxyl sulfate, p-cresol, and p-cresol sulfate
were higher in the urine of obese men.

The profiles between obese males and obese females dif-
fered, namely, higher concentrations of creatine, palmitic
acid, myristic acid, n-dodecanoic acid, cis-11,14-eicosadien-

Metabolomics platform
H NMR, FIA-MS/MS

§ fg oic acid and linoleic acid and lower concentrations of several
g i lysoPCs (e.g., lysoPC a C18:2, lysoPC a C20:4, and lysoPC
alla - a C20:5), uric acid and 12a-hydroxy-3-oxochola-dienic acid
. ; in females than in males (Xie et al. 2014).
‘o g E Regarding the study of AT metabolites (Table 1), Hanzu
= 8 § et al. (2014) observed higher levels of glutamine and alanine
é@ g in the visceral AT of obese subjects, as well as decreased
§ ,g?‘ g ‘To‘i uptake of essential AAs (methionine, threonine, and lysine),
§ E"E, i § BCAAs and serine. Also, depletion of a-ketoisocaproic
g ~z g 3 (o-KIC) acid was observed in the subcutaneous AT (Hanzu

et al. 2014).

Zhao et al. (2016a, b) reported the associations between
several measures of obesity and diverse groups of plasma
metabolites. A positive correlation between the levels of ole-
oylethanolamide (fatty amide) and the tryptophan derivative
kynurenine, and negative correlations between mannosyl-
diinositol-phosphorylceramide (sphingolipid) levels with
both BMI and waist circumference (WC). Moreover, auxin
A (prenol lipid) and 12-ketoporrigenin levels were also pos-
itively correlated with BMI, whereas glutamate, Gly-Val-
Arg-Gly peptide, pristanic acid (prenol lipid), and spirolide
E (prenol lipid) levels were associated with WC (Zhao et al.
2016a, b).

Foerster et al. (2015) studied the relationship between
obesity and the serum metabolome identifying two groups
of compounds (compared with principal components)
related to obesity. One included BCAAs and the other AA
derivatives. These components were directly associated
with weight, WC, BMI, body fat mass, and waist-to-height
ratio. While another study (Piening et al. 2018) associated a
metabolic signature comprised of 133 metabolites, mainly
acylcarnitines (AC), FA, and lysophospholipids with BMI.
The evidence from a large twin cohort study (Cirulli et al.

53 overweight/obese adults
(43 women)

Tissue (biospecimen) Characteristics

Serum and faeces
126 kcal (65.5% as carbohydrate, 10.1% as protein, and 5.4% as fat). The daily dose of AB represented 1.3 g of total phenol, including 25.2 mg of myricetin, 16.6 mg of genistein, 7.4 mg of

kaempferol, 3.9 mg of quercetin, 1.8 mg of eriodictyol, and 0.6 mg of daidzein, as well as 111 kcal (67.8% as carbohydrate, 7.5% as protein, and 7.6% as fat)

AA amino acids, BA bile acids, BCAA branched-chain amino acids, EPA eicosapentaenoic acid, FA fatty acids, FIA flow injection analysis, GC gas chromatography, HGI high glycemic index, H

NMR proton nuclear magnetic resonance, HPLC high performance liquid chromatography, HR high-resolution, KBR Korean black raspberry, LA lipoic acid, LC liquid chromatography, LF low-
fat, LGI low-glycaemic index, LU Litesse® Ultra™ polydextrose, MetS metabolic syndrome, MS mass spectrometry, NAB Northern American black raspberry, NMR nuclear magnetic resonance,

Q-TOF quadrupole time of flight, SCFA short-chain fatty acids, TCA tricarboxylic acid, UPLC ultra-high performance liquid chromatography
*Daily dose of KBR represented 0.9 g of total phenol, including 17.5 mg of myricetin, 9.6 mg of genistein, 7.2 mg of quercetin, 1.2 mg of daidzein, and 1.2 mg of eriodictyol, as well as

Table 3 (continued)
Mayengbam et al. (2019)

Author
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2019), provided a 49-metabolites signature (with similar
compounds to those reported by Piening et al. (2018)) asso-
ciated with BML.

A recent report from Bagheri et al. (2019) identified a
metabolic pattern (including 19 metabolites) associated with
obesity. From such a pattern, compounds like alanine, glu-
tamic acid, proline, tyrosine, diacyl-phosphatidylcholines,
and LPCa C16:1 and BCAAs were higher in the obese par-
ticipants, while asparagine, serine, acyl-alkyl-phosphati-
dylcholines, and other lysoPC were higher in non-obese
subjects.

Marco-Ramell et al. (2018) studied the signature of obe-
sity that overlaps with IR, and their design let them iden-
tify those compounds specific to the former. The authors
reported that the presence of arachidonic, hydroxyeicosa-
tetraenoic (HETE), palmitoleic, triHETE and glycocholic
acids, HETE lactone, leukotriene B4 and two glutamyl-pep-
tides conform a unique signature of obesity rather than of IR.

3.2.2 Targeted analysis

In children, one study (Table 1) described significantly
decreased serum concentrations of the acyl-alkyl phos-
phatidylcholines (PC aa C34:1, PC aa C34:2, PC aa C34:3,
PC aa C36:2, PC aa C36:3 and PC ae C38:2) and lysoPCs
(IysoPC a C18:1, lysoPC a C18:2, and lysoPC a C20:4) in an
obese group compared with lean subjects (Wahl et al. 2012).
Moreover, significantly lower levels of the AAs glutamine,
methionine, and proline were detected. In contrast, signifi-
cantly higher concentrations of two AC (C12:1 and C16:1)
were observed in obese children than in normal-weight chil-
dren (Wahl et al. 2012).

Gawlik et al. (2016) aimed to identify steroid signatures
in 24-h urine samples from obese children (Table 1). How-
ever, the authors did not identify any steroid profiles related
to obesity status (Gawlik et al. 2016).

Regarding the adult population (Table 1), Newgard
et al. (2009) observed higher levels of ethyl malonate and
lower levels of isobutyryl glycine, isovaleryl glycine, and
a-ketoglutarate in urine samples from obese subjects than in
lean subjects (Newgard et al. 2009). Moreover, when focus-
ing on BCAAs (Table 1), the authors reported a signature in
obese subjects marked by dramatically increased concentra-
tions of phenylalanine, alanine, valine, leucine/isoleucine,
tyrosine, glutamate/glutamine, aspartate/asparagine, and
arginine, whereas glycine levels appeared to be decreased.
Similarly, Kraus et al. (2016) observed an inverse correla-
tion between plasma glycine levels and BMI. While plasma
phenylalanine levels have been found to be positively cor-
related with BMI (Ho et al. 2016) (Table 1), lower levels of
other AAs, such as glycine, histidine, methionine and cit-
rulline, have been reported in the skeletal muscle of obese
subjects (Baker et al. 2015) (Table 1). Moreover, higher

plasma concentrations of short-chain AC species (SCAC,
C3, C4/4i, C5, and C5:1) were detected in obese subjects
(Baker et al. 2015).

Additionally, Ho et al. (2016) reported positive correla-
tions between BMI and multiple metabolites in the citric
acid cycle (isocitrate, a-ketoglutarate, and aconitate), the
tryptophan pathway (kynurenine and kynurenic acid), the
urea cycle (citrulline and ornithine), nucleic acid metabo-
lism (xanthosine and uric acid), and creatine-related metabo-
lites (carnitine, choline and glycerophosphocholine). Haufe
et al. (2016) also identified a positive correlation between
tyrosine levels and the intrahepatic fat content and correla-
tions between tryptophan and valine levels with hepatic IR.

In plasma samples from women, significantly lower
BCAA concentrations were measured with NMR in sub-
jects with moderate-high (27 <BMI <40 kg/m?) obesity
than in morbidly obese (MO) subjects. Alanine, proline,
and tyrosine concentrations were lower in women with
moderate-high obesity than in MO women. Significant dif-
ferences in the plasma levels of phosphatidylcholine species,
such as lysoPC a C18:2, PC ae (34:3), PC ae (38:7), PC ae
(40:6), PC ae (38:3), PC ae (40:4), and PC ae (40:8), were
quantified between male and female subjects with MO and
moderate-high obesity (Stroeve et al. 2016).

Cho et al. (2017) aimed to distinguish the urinary
metabolomic characteristics between young obese and nor-
mal-weight subjects (Table 1). Docosaenoic acid, 12-oxo-
20-carboxy-leukotriene B4, and 4a-hydroxymethyl-5a-
cholesta-8-en-3f-ol levels were strongly correlated with the
BMI and cholesterol levels. However, in their targeted study
using the commercial solution Absolute IDQ p180, higher
levels of several AC (e.g., C3, C3-DC-M/C5-OH, C3-OH,
C6:1, and C8); AAs (aspartate and histidine); biogenic
amines, such as asymmetric dimethylarginine (ADMA),
3,4-dihydroxyphenylalanine, putrescine and total dimethyl-
arginine; glycerophospholipids such as lysoPC a C18:0, PC
aa C38:0, PC aa C38:6, PC aa C40:6, and PC ae C44:4; and
the sphingolipid (SM) (OH) C14:1 were detected in obese
adolescents. In contrast, lower levels of several AC (C4, C9,
and C14:1-OH), arginine, asparagine, glutamine, glycine,
isoleucine, methionine, ornithine, serine and threonine, car-
nosine, dopamine, serotonin, PC aa C28:1, PC aa C30:2,
PC aa C34:1, PC aa C34:2, PC aa C34:4, PC aa C36:1, PC
ae C38:5, PC ae C38:6, PC ae C44:5, SM (OH) C22:1, SM
C16:0 and SM C24:1 were observed in obese adolescents
than in the non-obese controls.

Other authors have opted to perform targeted analysis
using the same commercial kit with the advantage of pro-
viding comparable results (Table 1). For instance, Tulipani
et al. (2016a, b) concluded that serum concentrations of
lysoPCs (lysoPC a C17:0, lysoPC a C18:1, and lysoPC a
C18:2) show a robust inverse correlation with BMI, body
weight and waist and hip circumference in MO adults.
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Additionally, both choline- and ethanolamine-containing
lysolipids acylated with margaric acid (C17:0) oleic acid
(C18:1) and linoleic acid (C18:2) were the best classifiers
of MO, together with diacyl and acyl-alkyl phosphocholines
with LCFA (Tulipani et al. 2016a, b). Bagheri et al. (2018)
reported that MHO phenotype was associated with alanine,
tyrosine, glutamic acid, ACC18:2, acyl-lysoPC C18:1and
c18:2, and alkyl-lysoPC C:18, and diacyl-phosphatidylcho-
lines C312:1 and C38:3. Whereas the MUHO phenotype
was associated to tyrosine, glutamic acid, serine, proline,
and asparagine), AC C3:0, acyl-lysoPC C18:1, C18:2, and
C16.1, diacyl-phosphatidylcholines C32:1 C32:2, C34:2,
and C38:3, and acyl-alkyl-phosphatidylcholine C34:3. Both
associations were detected when compared with healthy
individuals; however, when both phenotypes were compared
directly, there were no differences.

3.3 Differences in response to dietary challenges
between obese and non-obese individuals

Badoud et al. (2015b) studied the differences in the effect of
a high-calorie meal administered in an acute intervention of
120 min among lean, healthy, MHO, and MUHO subjects
(Table 2). Interestingly, the authors reported correlations
between the levels of various BCAAs and FAs (e.g., satu-
rated myristic and palmitic acids) with glucose levels and
the insulin AUC. Moreover, several metabolites (asparagine,
cystine, glutamine, serine, and the carnitine-to-acetylcarni-
tine ratio) exhibited different responses among the three
groups. In addition, the serum concentrations of the PUFAs
linoleic acid, y-linolenic acid, and arachidonic acid showed
subtle changes after the meal among the obese groups.

Geidenstam et al. (2014) initially studied the response
of subjects with impaired glucose tolerance. Briefly, the
authors reported three significant shifts to oral glucose tol-
erance test (OGTT), including compounds with a delayed
glucose-provoked decrease (mostly FFAs), metabolites that
showed a rapid onset (AAs and BCAAs) and compounds
characterized by a blunted onset (Geidenstam et al. 2014).
Second, in subjects who experienced weight loss and a
weight maintenance period, changes in some but not all
components of the OGTT-elicited serum profile that dif-
fered between obese glucose-intolerant subjects and lean
glucose-tolerant subjects were observed (Geidenstam et al.
2014, 2016).

In a different type of challenge conducted by Baker et al.
(2015), the authors studied the impact of a high-fat diet
(HFD) administered for 5 days after profiling the obesity
signature at baseline and revealed that muscle medium-chain
AC (MCAC) (C6, C8, C10:2, C10:1, C10, and C12:1) levels
are increased in obese subjects but decreased in lean subjects
(Table 2). The plasma C10:1 content is also decreased in
the lean subjects but increased in the obese subjects from
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pre- to post-HFD (Baker et al. 2015). Additionally, after the
HFD intervention, lower glycine, histidine, methionine, and
citrulline levels were observed in obese subjects. Moreover,
skeletal muscle a-ketoglutarate levels were increased in the
lean subjects from pre- to post-HFD conditions but were
decreased in obese individuals (Baker et al. 2015). Further-
more, lean individuals exhibited decreases in MCAC (C4/41,
C6, C8, C10:2, C10:1 (also in plasma), C10, and C12:1) lev-
els in response to the HFD, and the obese subjects showed
increased levels from pre- to post-HFD. Both plasma C3
and C4/41 AC levels were elevated in the obese subjects
compared with lean subjects.

Recently, a study focused on skeletal muscle was carried
out in lean and obese men to explore and compare substrate
metabolism in such tissue after fasting conditions (Table 2)
(Bak et al. 2018). Interestingly, -hydroxybutyrate was found
elevated in plasma, being more pronounced in lean than
obese. Also, plasma glycerol was increased in obese during
12 h of fasting, and ~50% more in lean than obese during
72 h of fasting.

3.4 Metabolomics of weight loss

Three interventions included in this review focused on inves-
tigating potential predictor profiles/signatures of weight loss
interventions.

According to Stroeve et al. (2016), 57% of the variation
in weight loss success is predicted by baseline metabolic
parameters. For males, the models were based on plasma
lipid species (particularly sphingomyelins and phosphatidyl-
cholines), whereas several AAs were included in the mod-
els for females, particularly in the models distinguishing
subjects with obesity from subjects with MO (e.g., alanine,
proline, and tyrosine were lower in women with obesity
versus MO). The best predictive models were obtained for
subjects with MO (including ketone bodies, triacylglycerols,
phosphatidylcholines, AAs as valine, tyrosine, alanine, and
proline, creatine and creatinine).

Geidenstam et al. (2017a) identified changes in the
plasma levels of several AAs after weight loss for nine
months and weight maintenance in obese subjects and evalu-
ated in a replication cohort (Table 2). Of the 21 detected
AAs, only tyrosine approached the lean reference profile (no
initial increase) after weight loss, and this profile was main-
tained after weight maintenance (Geidenstam et al. 2017a).

Subjects enrolled in a 1-year weight loss program were
classified into two groups according to the achievement
(<or>10% weight loss) (Geidenstam et al. 2017a). The
analysis revealed that decreased levels of 1-methyladeno-
sine, alanine, proline, trans-cinnamic acid, tyrosine, and the
BCAAs were associated with a > 10% weight loss. A lower
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baseline concentration of xylitol was predictive of a decrease
in BMI and > 10% weight loss.

Eight articles (Leal-Witt et al. 2018; Kang et al. 2018;
Palau-Rodriguez et al. 2019; Mills et al. 2019; Almanza-
Aguilera et al. 2018; Perez-Cornago et al. 2014; Zheng et al.
20164, b) focused on determining the effect of weight loss on
the metabolomics profiles of overweight and obese individu-
als. The article from Zheng et al. (2016b) was approached as
two studies because the study design including two different
cohorts, see below).

In prepubertal children with obesity, Leal-Witt et al.
(2018) reported a decrease of urine trimethylamine N-oxide
(TMAO) after following a Mediterranean diet with increased
physical activity for 6 months (Table 2). Of the 32 distinct
metabolites identified, highlighted metabolites altered after
the intervention were xanthosine, 3-hydroxyisovalerate, and
dimethylglycine (Leal-Witt et al. 2018).

In the shorter intervention, Perez-Cornago et al.
(2014) studied the effect of an energy-restricted diet
(Table 2). The concentrations of SFAs, including pal-
mitic acid (C16:0) and stearic acid (C18:0), MUFAs (oleic
acid (C18:1) and cis-11-eicosenoic acid (C20:1)), cis-11,
14-eicosadienoic acid (C20:2), and cis-4, 7, 10, 13, 16,
19-docosahexaenoic acid (C22:6n-3), and total, ®-6 and
-3 PUFAs were significantly reduced, and isoleucine con-
centrations were decreased in serum after the intervention.
Palmitoleic acid (C16:1) appeared to predict body fat loss
negatively. Other short-term intervention showed signifi-
cantly higher increases in plasma of MCAC and long-chain
AC (LCAC) and lysoPC (20:4) in overweight adults with
a low-calorie diet than their control group (Table 2) (Kang
et al. 2018). A study including MHO women undergoing a
lifestyle weight loss treatment for 3 months (and a 12-month
follow-up) showed an altered plasma metabolome (Almanza-
Aguilera et al. 2018). Namely, higher levels of formate and
phosphocreatine and lower levels of trimethylamine were
observed in the treatment group than in the control group.
Moreover, higher myo-inositol, methylguanidine, and
3-hydroxybutyrate levels and lower proline levels were also
detected in the treatment group; higher levels of hippurate
and asparagine and lower levels of 2-hydroxybutyrate and
creatine correlated with weight loss. Nevertheless, these
changes were statistically significant after three months
follow-up, but not at the 12-month follow-up. In another
study, MHO women followed a hypocaloric Mediterranean
diet with physical activity recommendations for 12 months
(Table 2) (Palau-Rodriguez et al. 2019). The relative con-
centration of 1,5-anhydroglucitol was increased in plasma
in the low weight loss (LWL) group after the intervention.
The plasmalogen 1-(1-enyl-palmitoyl)-2-oleoyl-sn-glyc-
ero-3-phosphocholine (P-16:0/18:1) and the exogenous
compound carotenediol were increased in the high weight
loss (HWL) group, and significantly more so than in the

LWL. Then, the levels of 3-(4-hydroxyphenyl) lactate and
some sphingolipids (SM (d18:0/22:0) and SM (d18/0/20:0,
d16:0/22:0)) decreased more after the intervention in the
HWL versus LWL. Similarly, the androgens 16a-hydroxy
dehydroepiandrosterone 3-sulfate and androstenediol (3,
17p) disulfate decreased in both weight loss categories, but
a higher decline was observed in the HWL.

Using a different approach, Zheng et al. (2016a, b) ana-
lyzed urine, plasma, and fecal samples from individuals on
an energy-restricted diet with either low or high-dairy intake
for 24 weeks (Table 2). They reported increased levels of
citrate, creatinine, and urea and decreased levels of hippu-
rate and TMAO after a high-dairy intake compared with a
low intake. Furthermore, the plasma metabolome reflected
a change in the lipid and lipoprotein profile associated with
the energy restriction. The changes in the fecal metabolome
(mainly short-chain FAs (SCFAs)) were related to dairy
intake. Furthermore, in a large cohort of pregnant women
with obesity diet and physical activity intervention during
pregnancy and up to 6 months lessened the reduction in the
proportion of ®-6 and PUFAs and reductions in the rate of
increase in the proportion of saturated FAs (Table 2) (Mills
et al. 2019) Rates of increase in lactate, pyruvate, and ala-
nine were reduced, and of acetate increased in comparison
with the control group (Mills et al. 2019). Thereupon, the
lifestyle intervention led to mitigating the metabolic changes
during pregnancy that might be characteristic of obesity and
pregnancy status.

Finally, Zheng et al. (2016b) analyzed data from the
POUNDS LOST and the DIRECT studies (Table 2). Both
cohorts followed a weight loss program with similar charac-
teristics and were followed for 2 years, including a 6-month
visit. The POUND LOST study revealed correlations
between decreased nine plasma levels of AAs (BCAAs (leu-
cine/isoleucine and valine), aromatic AAs (tyrosine and phe-
nylalanine), and finally alanine, proline, sarcosine, hydroxy-
proline, and methionine) with weight loss; moreover, the
DIRECT study validated the correlations with seven of these
AAs (alanine, tyrosine, leucine/isoleucine, sarcosine, phe-
nylalanine, hydroxyproline, and methionine). Additional
analyses showed stronger correlations with these changes
after 6 months, although the change persisted for 2 years.

Additionally, three interventions studied the effect of
weight loss induced by physical activity. First, Meucci
et al. (2017) reported that a four-week exercise program
did not significantly change the metabolic signature of
overweight preadolescents. Nevertheless, an eight-week
program increased the urine concentrations of pantothenic
acid, glyceric acid, L-ascorbic, xanthine, and adenosine
compared to the control group (Meucci et al. 2017).Other
intervention study assessed the effect of endurance training
for 6 weeks on gut metagenome and plasma metabolites of
overweight women (Table 2) (Munukka et al. 2018). The
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training intervention decreased plasma phospholipids and
cholesterol in large VLDL particles, with not more signifi-
cant alterations in any other plasma metabolites (including
AAs, FAs, ketone bodies or gluconeogenesis-related metab-
olites) (Munukka et al. 2018). Likewise, no associations
were studied between plasma metabolites and cardiovascular
and inflammation biomarkers.

In a more extended intervention (Duft et al. 2017), three
times/week for 24 weeks, including obese individuals in a
combined training program, shifts in the serum levels of 20
metabolites were observed. Of these metabolites, tyrosine,
2-oxoisocaproate, histidine, and pyruvate appeared to be the
best discriminators. Moreover, those metabolites were cor-
related with functional and biochemical parameters, such
as strength, peak VO,, the percentages of fat mass and lean
body mass, WC, and plasma insulin concentration.

3.5 Dietary interventions focused on obesity
and risk factors related to obesity

Four studies examined the effects of dietary interventions
on obesity and obesity-related risk factors, such as inflam-
mation and oxidative stress (Table 3). Nieman et al. studied
the plasma and serum metabolomes of overweight women
who ingested a red pepper spice supplement (Nieman
et al. 2012a, b) or chia seeds (Nieman 2012b) for four and
10 weeks, respectively. The targeted analyses were focused
on metabolites associated with inflammation and oxidative
stress, but no significant changes were observed after the
interventions.

Gu et al. (2013) studied the effect of a very low-car-
bohydrate diet (VLCD) on obese subjects (Table 3). The
authors first identified the differences between obese and
lean individuals. A serum profile comprised of increased
levels of FAs, AAs, and carboxylic acids characterized the
obese subjects. After consuming a VLCD for 8 weeks, the
obese subjects exhibited several metabolic shifts in the levels
of these metabolites. In parallel, specific alterations were
also observed, including shifts in the arachidonate, cis-11,
14-eicosadienoate, cis-11, 14, 17-eicosatrienoate, 2-amin-
obutyrate, AC and threonate concentrations, all of which are
involved in inflammation and oxidation processes.

Kim et al. (2013) administered a 12-week black soybean
peptide dietary intervention and identified key metabo-
lites associated with weight loss in healthy obese subjects
(Table 3). After supplementation, the serum concentrations
of metabolites such as betaine, benzoic acid, pyroglutamic
acid, pipecolic acid, N-phenylacetamide, uric acid, 1-aspar-
tyl-L-phenylalanine, and lysoPCs (lysoPC a C18:1, lysoPC a
C18:2, lysoPC a C20:1, and lysoPC a C20:4) were increased.
Meanwhile, the levels of L-proline, valine, L-leucine/isoleu-
cine, hypoxanthine, glutamine, L-methionine, phenylpyruvic
acid, several carnitine derivatives, and lysoPCs (lysoPC a
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C14:0, lysoPC a C15:0, lysoPC a C16:0, lysoPC a C17:1,
lysoPC a C18:0, and lysoPC a C22:0) were significantly
decreased.

Recently, other authors have investigated the effect of
Korean black raspberry (KBR) supplement for 4 weeks
on overweight or obese individuals with a sedentary life-
style (Kim et al. 2017) to identify metabolites that predict
responses to such intervention against oxidative stress and
inflammation (Table 3). Increased levels of several urinary
AAs, organic acids and other type of metabolites were as
betaine, N-phenylacetylglycine and phenylacetate were
observed. Moreover, the levels of adenosine and carnitine
decreased after the intervention. Authors concluded that
higher level of glycine and N-phenylacetylglycine (as a two-
metabolite set) had the most robust prognostic relevance for
future interventions against oxidative stress.

Romo-Hualde et al. (2018) investigated the effects of
eicosapentaenoic acid (EPA) and a-lipoic acid (a-LA) on
urinary metabolomic profiles in overweight/obese women
(Table 3).

The group supplemented with a-LA presented a weight
loss that was associated with a highlighted presence of an
ascorbate intermediate metabolite (one of the isomers of tri-
hydroxy-dioxohexanoate, or dihydroxy—oxohexanedionate).

In a postprandial study, the metabolic profile from obese
adults with MetS showed a differential response to low-fat
milk or a rice beverage consumption (Table 3) (Xu et al.
2018). At 120 min, nine metabolites (i.e., orotate, leu-
cine/isoleucine, mesoxalate, asparagine, citrulline, methio-
nine, allantoin, ornithine, and tyrosine) were significantly
altered in the low-fat milk versus the rice beverage group.
The evaluation of a low-glycemic index diet in overweight/
obese adults for 6 months (Table 3) (Hernandez-Alonso
et al. 2019) revealed several changes. The plasma serine
levels were significantly increased following the low gly-
cemic index diet compared to both the high glycemic index
and low-fat diets. Tyrosine was decreased, and glycine was
increased in the group receiving the low glycemic index
diet versus that having the high glycemic index diet. Also,
they observed a significant decrease in leucine and valine
in the low glycemic index diet in contrast to the low-fat
diet. Regarding lipids, several phosphatidylcholines (i.e.,
C32:1, C34:2e, C36:2e, C36:5e, C38:5 ...) were signifi-
cantly reduced after the low glycemic index diet versus the
high glycemic index and/or low-fat diets.

Hibberd et al. (2019) conducted an RCT to study the
effects of a probiotic (Bifidobacterium animalis subsp. lac-
tis 420™) and/or a prebiotic (polydextrose) interventions
in MHO subjects for 6 months (Table 3). Interestingly, the
primary conjugated plasma bile acid, glycocholic acid, was
reduced in the pre- and probiotic combination compared
to placebo. In addition, secondary conjugated plasma bile
acids were also reduced (Hibberd et al. 2019).
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Finally, an intervention that contained pea fiber did not
cause changes in the serum metabolites of overweight/
obese adults after 12 weeks of consumption (Table 3)
(Mayengbam et al. 2019). However, fecal SCFAs and bile
acids were altered. For instance, acetate was significantly
increased, and isovalerate decreased after pea fiber inter-
vention (but not compared to placebo). The concentrations
of fecal primary cholic acid and chenodeoxycholic acid,
and secondary deoxycholic bile acid and total bile acids
were significantly reduced in the intervention group.

4 Discussion

The use of metabolomics to study obesity is increasing
and improving our understanding of the alterations that
occur during the development of obesity and their rela-
tionships with the disease. The results from the articles
here included were categorized according to the different
approaches reported. However, to facilitate the interpre-
tation, the discussion will be focused on the metabolite
classes to understand the different alterations related to
obesity. Hence, metabolites are grouped in sexual steroids,
AA and protein metabolism, AC, lipids, carbohydrates,
and other relevant molecules (not included in a specific

group).

4.1 Metabolic features of obesity: characterization
and importance of the metabolomics signature

Obesity is a whole-body adaptation to extra energy intake
and decreased energy expenditure, mainly due to a seden-
tary lifestyle and a lack of physical activity. Also, obesity
plays a crucial pathophysiological role in the development
of IR, dyslipidemia and hypertension, leading to T2DM and
an increased risk of CVD (Bastard et al. 2006; GBD 2015
Obesity Collaborators et al. 2017; Williams et al. 2015).
Therefore, the characterization of the metabolomic signature
in obese subjects might aid researchers in identifying those
subjects at a higher risk of developing metabolic diseases,
thus facilitating the timely administration of an appropriate
treatment strategy.

4.1.1 Sexual steroids

The identification of a metabolic signature associated with
age might provide more efficient preventive treatments for
obesity before individuals reach adulthood. Body compo-
sition during puberty has been suggested to be a predic-
tive marker of body composition in adulthood (Guo et al.
2002), as well as predicting the risk of comorbidities such

as obesity, dyslipidemia and CVD (Baker et al. 2007; Van-
dewalle et al. 2015). Accordingly, both puberty and sex hor-
mones have been shown to contribute to the development
of obesity and CVD (Vandewalle et al. 2015; Widén et al.
2012; Zhai et al. 2015). For instance, Butte et al. (2015)
detected an association between DHEA-S and BMI and adi-
posity in obese children. Moreover, prepubertal obese males
showed significantly higher serum levels of DHEA-S, but
also of testosterone than normal-weight children (Reinehr
et al. 2005). However, Gawlik et al. (2016), did not identify
any urinary steroid signature correlated with BMI. Neverthe-
less, we should highlight that these authors did not compare
the obesity profile with lean controls.

Interestingly, the 16a-hydroxydehydroepiandrosterone
3-sulfate decreased after LWL, and even a more signifi-
cant reduction was observed after HWL in MHO women
(Palau-Rodriguez et al. 2019). These findings might reflect
the modulation of endocrine metabolism due to weight loss.
Accordingly, steroid sulfation and desulfation are fundamen-
tal pathways for endocrine balance, specifically for fat mass
distribution and glucose metabolism (Mueller et al. 2015).
Actually, DHEA-S is one of the most abundant steroids in
human circulation and accumulate in AT at even higher con-
centrations (Bélanger et al. 2006). Furthermore, although
the authors claimed that the steroid derivative, 12-ketopor-
rigenin, was also positively correlated with BMI (Zhao et al.
2016a, b), we should highlight that such a compound origin
is related to the consumption of onion-family vegetables
(Fattorusso et al. 2000) and such a finding should be care-
fully interpreted.

Nonetheless, the role of sexual steroids in obesity may
differ at various life stages and with sexual dimorphism.
For example, testosterone, the most critical androgen for
males, has been described to be anti-adipogenic; its supple-
mentation in adult men reduces abdominal fat by stimulat-
ing lipolysis and thereby reducing fat storage in adipocytes
(Vitale et al. 2010). Even during pubertal development,
lower testosterone concentrations have been observed in
obese boys than in normal-weight boys (Mogri et al. 2013;
Taneli et al. 2010). In addition, a consistent inverse correla-
tion between testosterone levels and markers of adiposity in
overweight adult males has been detected (Bann et al. 2015;
Blouin et al. 2005; Gagnon et al. 2018; Gates et al. 2013; He
et al. 2018). However, the data are less uniform in females,
with no association (He et al. 2018) or a positive correla-
tion observed in overweight-obese women (Bann et al. 2015;
De Simone et al. 2001) and an inverse correlation observed
in non-obese postmenopausal women (Casson et al. 2010).
However, DHEA-S appears to play a more significant role
in women body composition, both in young females (De
Simone et al. 2001; Méntyselki et al. 2018) and in adult ones
(Barrett-Connor and Ferrara 1996; De Pergola et al. 1994).
The androgen receptor is expressed widely throughout the
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AT compartment, indicating that white AT adipocytes may
be particularly sensitive to androgens (Newell-Fugate 2017).
Hence, it is consistent with the findings reported by Palau-
Rodriguez et al. (2019) in relation to the weight loss effect
on steroid sulfates. Therefore, more studies focused on deter-
mining the roles of steroids in obesity are necessary, particu-
larly from a metabolomics perspective.

4.1.2 AA and protein metabolism

One of the major groups of metabolites dysregulated in obe-
sity is AAs, particularly BCAAs and AAAs. Phenylalanine
concentrations were higher in obese individuals (Butte et al.
2015; Kim et al. 2010b; Fattuoni et al. 2018; Wang et al.
2018; Houttu et al. 2018; Yu et al. 2018). Moreover, tyrosine
levels, a hydroxylation product of phenylalanine metabo-
lism, have been associated with an increase in the hepatic fat
content (Haufe et al. 2016), and its levels (as well as alanine)
have been associated with prediction of successful weight
loss (Stroeve et al. 2016) and weight loss per se following
dietary and physical activity interventions (Duft et al. 2017;
Geidenstam et al. 2017a; Zheng et al. 2016a, b). Further-
more, tyrosine contributes significantly to the profile defined
in obese children and could serve as a posible predictor of IR
in obese children (Hellmuth et al. 2016; Butte et al. 2015).
In addition, p-cresol and p-cresol sulfate, degradation prod-
ucts of tyrosine and to some extent of the phenylalanine
metabolism and phenylacetamide (an intermediate) were
increased in plasma (Yu et al. 2018). Therefore, modifica-
tions in the phenylalanine and tyrosine metabolism might
be a result of liver dysfunction associated with metabolic
derangement (Libert et al. 2018). Further investigation is
needed to determine if the study of the tyrosine metabolism
could serve to identify the metabolic wellness of overweight
and obese people.

Higher concentrations of tryptophan and its metabo-
lites, kynurenine and kynurenic acid, have been detected
in obese subjects and are associated with BMI (Yu et al.
2018; Ho et al. 2016; Zhao et al. 2016a, b; Carayol et al.
2017). Interestingly, alterations in the kynurenine pathway
have been reported in subjects with obesity and IR (Faven-
nec et al. 2015), and furthermore, increased levels of both
metabolites have been detected in patients with diabetic
retinopathy (Munipally et al. 2011). The higher levels of
such compounds might reflect immune activation or low-
grade systemic inflammation due to an increase in the
enzyme indoleamine 2,3-dioxygenase (IDO) activity (Zhao
et al. 20164, b; Dadvar et al. 2018). The increased activ-
ity of IDO has been closely related to the propagation of
obesity, probably, because the reduced tryptophan mediated
by IDO may reduce serotonin production and cause mood
disturbances, depression, and impaired satiety ultimately
leading to increased caloric uptake and obesity (Brandacher
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et al. 2007). In contrast, decreased glycine levels have been
detected urine, plasma and skeletal muscle samples from
obese subjects and are inversely correlated with BMI (Baker
et al. 2015; Butte et al. 2015; Cho et al. 2017; Kraus et al.
2016; Newgard et al. 2009). Although little is known about
the pathophysiological mechanisms associated with glycine
depletion, glycine utilization in patients with diabetes is
increased because of excess acyl group formation (Adeva-
Andany et al. 2018).

Several studies in animal models support a close asso-
ciation between obesity state and plasma (She et al. 2007,
Sailer et al. 2013) and urine citrulline levels (Connor et al.
2010), indicating impairment of the hepatic amino acid
handling. A possible hypothesis suggested is regarding the
changes of AAs involved in the urea cycle in obesity, that
could indicate in turn an alteration of urea synthesis in the
liver, i.e., a block in the cytosolic reactions with increased
ornithine and citrulline levels (She et al. 2007) and there-
fore a reduced systemic arginine bioavailability (decreased
ratio of plasma arginine to ornithine + citrulline) (Tang et al.
2009; Sailer et al. 2013). HFD mice presented a reduction of
arginine levels, while citrulline levels were elevated (Sailer
et al. 2013). However, metabolomics findings in human
studies have demonstrated the opposite. For instance, an
inverse association of human plasma citrulline with BMI
was observed by Ho et al. (2016) and lower citrulline con-
centrations were observed in the skeletal muscle of obese
subjects compared with lean controls (Baker et al. 2015).
Furthermore, the citrulline levels (along with other AAs
such as leucine/isoleucine, mesoxalate, asparagine, methio-
nine, allantoin, ornithine, and tyrosine) were higher at post-
prandial measurement in the low-fat trial compared to the
rice milk in obese population with MetS, probably because
of the higher protein content of low-fat milk (Xu et al. 2018).
Although unaltered levels of serum citrulline in obese sub-
jects have been reported (Newgard et al. 2009), the most
common finding is to encounter this compound decreased
in obese subjects and in patients with diabetes (Park et al.
2015). Nevertheless, the physiological cause that might
explain this inverse association is still unknown, although
it might be related to the degree of liver steatosis, which is
usually present in the obese state.

Uric acid levels are substantially increased in obese sub-
jects and proportionally associated with BMI (Park et al.
2015; Ho et al. 2016; Ruebel et al. 2019) and recently associ-
ated with BMI (Cirulli et al. 2019). Additionally, it has been
revealed that hyperuricemia is a predictor of IR and T2D
debut (Gil-Campos et al. 2009; Krishnan et al. 2012). Hyper-
uricemia may also cause obesity by accelerating hepatic and
peripheral lipogenesis (Johnson et al. 2011) and could also
reflect high oxidative stress as it is known as an antioxidant
and scavenger of free radicals.
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On the other hand, the characteristic increased exog-
enous consumption of proteins and therefore endogenous
production of uric acid due to the purine catabolism in the
obese population are additional factors that result in hyper-
uricemia (Remedios et al. 2012). Hence, the evidence for
increased uric acid levels in obese individuals is widely
known, although its change in response to dietary interven-
tions should be studied with a more exhaustive design and
statistical adjustments; Kim et al. (2013) reported increased
uric acid levels after the administration of the black soybean
peptide supplement to overweight/obese subjects with a sub-
sequent weight and body fat loss. This unexpected finding
was not discussed and probably the change of dietary habits
because of the soybean intervention might influence on the
unadjusted data for protein consumption.

Regarding BCAAs, associations between elevated serum
concentrations with obesity, IR, and other complications
were observed several decades ago (Felig et al. 1969; New-
gard et al. 2009). In fact, many studies have described higher
blood levels of BCAASs both in obese children (Butte et al.
2015) and adults (Kim et al. 2010b; Newgard et al. 2009;
Xie et al. 2014; Wang et al. 2018) and positive correlations
with anthropometric markers and fat mass (Foerster et al.
2015). Stroeve et al. (2016) detected higher concentrations
of BCAAs in MO women than in obese women. By con-
trary, decreased levels of BCAAs have been associated with
weight loss in obese subjects (Geidenstam et al. 2017a),
after weight loss through diet (Kim et al. 2013; Zheng et al.
2016b; Hernandez-Alonso et al. 2019) or physical activ-
ity in pregnant women (Mills et al. 2019). The increase, or
decrease during weight loss, of BCAAs, reflect the status
of the protein breakdown, which is a consequence of IR,
thus pointing towards to metabolic complications. In fact,
the higher concentrations of glutamate observed in six stud-
ies (Butte et al. 2015; Newgard et al. 2009; Yu et al. 2018;
Maltais-Payette et al. 2018; Wang et al. 2018; Carayol et al.
2017) might be linked to the BCAAs alterations, since such
an AA is produced as the first step of BCAAs catabolism
(Newgard 2017).

Elevated concentrations of ADMA in obese subjects (Cho
et al. 2017; Feldman et al. 2019; Butte et al. 2015) is associ-
ated with endothelial dysfunction, most probably due to the
reduction of arginine availability (Eid et al. 2004; EI Assar
et al. 2016). Interestingly, such findings are reported in ado-
lescents and adult subjects, and it would be of keen interest
to investigate in-depth if this compound might serve as a
marker of severity of endothelial dysfunction.

Furthermore, specific intermediate metabolites of AAs
have been reported to be important markers of obesity and
its complications (Newgard et al. 2009). For instance, lower
levels of a-KIC, a metabolite derived from leucine, were
detected in the subcutaneous AT of obese subjects (Hanzu
et al. 2014), along with diminished leucine uptake in the

obese visceral fat depots. The dysregulation of leucine
metabolism seems to be increased in the visceral obese AT,
preventing the formation of a-KIC. Moreover, catabolic
pathways of leucine through the KIC acid route involve
the formation of substantial amounts of alanine and glu-
tamine. These pathways are the route for the disposal of
amino groups released from the transamination of BCAAs
(Newgard et al. 2009). Therefore, as alanine and glutamine
are highly gluconeogenic AAs, a possible hypothesis is that
the increased amount of alanine released by the visceral AT
to the systemic circulation contributes to hyperinsulinemia
and the development of IR.

4.1.3 Acylcarnitines

AC are organic compounds containing an FA, with the car-
boxylic acid attached to carnitine through an ester bond.
The roles of fatty AC species reflect different situations in
the organism. Increased levels of SCAC species indicate
amino acid anaplerosis; medium-chain species reflect distal
f-oxidation (i.e., downstream of CPT-1) whereas long-chain
species reflect transport and proximal f-oxidation efficiency
(i.e., including an upstream of CPT-1). The sentinel spe-
cies C6, C8, C10, and C10:1 have been used to evaluate the
MCAC flux through the p-oxidation pathway (Baker et al.
2015). Hence, AC might serve as relevant biomarkers of IR
and are defined as a by-product of fat and amino acid oxida-
tion in mitochondria (Makrecka-Kuka et al. 2017). Obese
subjects have shown a high rate of incomplete FA oxidation,
abnormal AC profiles, and AAs biosynthesis, along with
the perturbation of mitochondrial metabolites (Schoone-
man et al. 2013). In obese children, the levels of several
SCAC, such as C5-OH, C3, C4 (Butte et al. 2015), C12:1
and C16:1 (Wahl et al. 2012), are elevated. A higher C3
level was also detected in obese men (Baker et al. 2015; Xie
et al. 2014; Piening et al. 2018), as well as higher C4/41, C5,
and C5:1 levels (Baker et al. 2015; Cirulli et al. 2019; Pien-
ing et al. 2018). Moreover, obese subjects exhibit increased
concentrations of C4/4i, C6, C8, C10:1, and C10:2 in skel-
etal muscle AC, and C3 and C4/4i in plasma in response
to the HFD challenge compared with lean subjects (Baker
et al. 2015). Overall, the observed accumulation of BCAAs
in the flux increases its catabolism in the liver and skeletal
muscle. As a result, the elevated concentration of BCAAs
may hypothetically be associated with the higher concen-
trations of the SCACs C3 and C5 as C3 AC reflects the
propionyl CoA pool; propionyl CoA is a by-product of
both isoleucine, and valine catabolism and C5 AC are com-
prised of a-methylbutyryl and isovalerylcarnitine species;
a- methylbutyryl CoA and isovaleryl CoA are intermediates
in mitochondrial isoleucine, and leucine catabolism, respec-
tively, and these intermediates equilibrate with their cognate
AC esters (Newgard et al. 2009; Schooneman et al. 2013;
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Feldman et al. 2019). Whereas C4 can be produced in both
amino acid and fatty acid catabolism (Koves et al. 2008).

Remarkably, Kang et al. (2018) observed increases in
plasma MCAC AND LCAC in overweight adults with a
low-calorie diet and these changes were negatively corre-
lated with changes in visceral fat areas (Kang et al. 2018).
Such findings could be explained as increased oxidation of
the free FAs (FFA) released from the visceral fat due to the
weight loss, thus generating MCAC and LCAC. Then, the
increase of MCAC and LCAC levels may be driven by an
improvement of the acetyltransferase activity rather than an
unbalanced mitochondrial fatty acid oxidation (Schooneman
et al. 2016; Kang et al. 2018).

4.1.4 Lipid metabolism

Lipids have diverse roles as signaling molecules, metabolic
substrates, and cellular membrane components. The chain
length and the degree of desaturation of the FA moieties in
lipid molecules increase the complexity of biological roles
assigned to various lipid classes. Moreover, lipids that are
synthesized endogenously or obtained through diet exhibit
differences in accumulation and/or metabolism and subse-
quent biological roles (Yang et al. 2018).

In the current study, we reported diverse findings from
various studies, namely, changes in FAs, such as PUFAs
and SFAs, as well as more complex lipids, such as sentinel
lysophospholipids and sphingomyelins.

Houttu et al. (2018) identified a lipid signature in obese
pregnant women characterized by high VLDL subclasses
and lower HDL particles and other PUFAs. Furthermore,
according to Mills et al. (2019), obese pregnant women
following a lifestyle intervention reduced their o-6 and
total PUFAs. Such a profile should be related to lifestyle
and diet rather than a consequence of obesity. Remarkably,
the study of the placenta from obese women revealed a
lipid profile that suggested a disruption of the LCPUFA
biomagnification that might impact in the risk of adverse
fetal outcomes and of the development of metabolic dis-
eases throughout postnatal life (Fattuoni et al. 2018). In
fact, this is corroborated in the study from Sorrow et al.
(2019) in which the presence of elevated lipid species,
including linoleate, myristate, oleate, palmitate, stearate,
caprate, and species of AC in the umbilical cord was asso-
ciated with the development of obesity at 3 to 5 years of
age (Sorrow et al. 2019).

The serum concentrations of SFAs, including C16:0 and
C18:0, and MUFAs (C18:1 and C20:1), and total, ®-6, and
-3 PUFAs were decreased after the weight loss interven-
tion in the study by Perez-Cornago et al. (2014). Moreo-
ver, C16:1 was suggested to serve as a negative predictor
of body fat loss. Concretely, SFAs are positively correlated
with the development of obesity and diabetes, increasing
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complications related to metabolic disease (Jakobsen et al.
2009; Kien et al. 2013).

Controversial findings related to lysoPC have been
reported. Some authors have reported decreased levels of
these compounds (Barber et al. 2012; Heimerl et al. 2014;
Cirulli et al. 2019), whereas other evidence suggests a corre-
lation between plasma levels of lysoPC, sphingomyelins and
phosphatidylcholines with obesity, although the pathways
are not yet completely understood (Rauschert et al. 2016) but
is hypothesized that such perturbations are a consequence
of changes in weight rather than being a contributing factor.

Furthermore, phospholipids are also a group that charac-
terizes the obesity profile. Indeed, obese mice treated with
PC 18:0/18:1 (1-Octadecanoyl-2-(9Z)-octadecenoyl-sn-glyc-
ero-3-phosphocholine) exhibited increased glucose tolerance
and IS (Liu et al. 2013). Numerous studies reported in the
current review have described profiles of several phospholip-
ids. For instance, Piening et al. (2018) detected a signature
associated with BMI, which included several lysophospho-
lipids and that respond to fluctuations in the BMI. This was
suggested to be related to a decrease in the catabolism due
to increased caloric intake.

Higher lysoPC a C18:0 concentrations have been iden-
tified in urine samples from obese adolescents (Cho et al.
2017) and in plasma samples from overweight/obese men
(Kim et al. 2010b). Interestingly, after a black soybean pep-
tide intervention for 12 weeks, the levels of this lysoPC spe-
cies were decreased (Kim et al. 2013) and MHO showed
lower levels than MUHO subjects (Bagheri et al. 2018). A
similar phenomenon was detected for lysoPC a C14:0 in the
same dietary intervention study (Kim et al. 2013).

Moreover, the lifestyle intervention by Mills et al. (2019)
in obese pregnant women, resulted in a decrement in the rate
of increase of phospholipids along with triacylglycerols in
extremely large, very large, large and medium VLDL parti-
cles (Mills et al. 2019).

In contrast, decreased lysoPC a C18:1 and C18:2 were
detected in obese children and adults (Wahl et al. 2012; Kim
et al. 2010b), and both compounds were inversely associated
with BMI (Bagheri et al. 2018). Whereas, an increase was
observed after a black soybean intake (Kim et al. 2013).
Moreover, significantly lower plasma lysoPC a C18:2 levels
were observed in MO men and women than in obese subjects
(Stroeve et al. 2016). In a young population, the PC a C34:1
and C34:2 levels are decreased in obese individuals (Cho
et al. 2017; Wahl et al. 2012). While lower PC a 20:4 levels
were only observed in obese children (Wahl et al. 2012).
Nevertheless, the levels of these three lipids increased in
obese adults after the black soybean peptide intervention
(Kim et al. 2013). Overall, the presented evidence points
towards an association of phospholipids with a diet mainly
high-fat composed and might be regulated through the addi-
tion of fiber-contained products.
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Differences in the levels of other phosphatidylcholines,
such as PC a C34:4, PC a C38:5, and PC a C38:6, sphin-
gomyelins and hydroxysphingomyelins, such as SM C16:0
or SM (OH) C22:1, PC ae (C38:7), PC ae (C40:6), PC ae
(C38:3), and PC ae (C40:4) between healthy and obese sub-
jects have been observed in some studies, but not in other
studies, and thus these molecules are not considered critical
metabolites in obesity signatures or as markers of weight
loss.

Overall, the role of these lipid species remains to be
investigated in-depth in humans. Nevertheless, some find-
ings are consistent and might at least partially explain the
physiopathology of obesity and the associated everyday hab-
its, such as high-fat intake. For instance, higher saturated
fat intake with a lower ratio of PUFAs/SFAs and relatively
lower carbohydrate levels in overweight/obese than in lean
subjects might partially explain the higher levels of lysoPC a
C18:0 (Kim et al. 2010b, 2014). The hypothesis that the FA
composition of serum (lyso-) phospholipids partially reflects
an individual’s medium-term dietary FA intake has already
been supported (Hodge et al. 2007).

4.1.5 Carbohydrates

Carbohydrate metabolism is vital for all metabolic pro-
cesses, and its roles in the development and maintenance
of obesity have been a matter of debate for decades. Glu-
cose is catabolized via glycolysis to pyruvate, which is con-
verted into acetyl coenzyme A (CoA), the entry point into
the TCA cycle, under aerobic conditions (Park et al. 2015).
Xylitol may be used as a substrate in the pentose phosphate
pathway to produce fructose-6-phosphate that can generate
acetyl CoA, a primary substrate for the TCA cycle, via gly-
colysis. Most likely, because of its implication in the TCA
cycle, xylitol has been investigated in some studies. A lower
baseline concentration of xylitol predicted a more significant
decrease in BMI and > 10% weight loss in subjects after
a 1-year weight loss program (Geidenstam et al. 2017a).
Human metabolism of xylitol, as well as its absorption from
food (Islam and Indrajit 2012) or potential involvement of
the gut microbiota, is not well understood. A study in mice
detected significant changes in the microbiota following
daily dietary supplementation with xylitol; the abundance
of the phylum Firmicutes was increased in the group fed an
HFD with xylitol solution (Park et al. 2015). The phylum
Firmicutes accelerates the degradation of food components
to supply energy to the host, and therefore is considered an
obesity-related bacterial phylum (Khan et al. 2016).
Interestingly, 1,5 anhydroglucitol, a monosaccharide
found almost in all foods, has been proposed as a biomarker
of short-term glycemic control, for screening undetected
T2D in saliva (Mook-Kanamori et al. 2014) and associations
with BMI and adiposity indicators have been shown (Lipsky

et al. 2016). In fact, a reduction after a lifestyle interven-
tion in women and reported positive associations of such
a compound with weight variables has been found (Palau-
Rodriguez et al. 2019).

Mannose is one of the most common glucose metabolites
reported in the current SR at incremented levels, both in
obese adults (Fiehn et al. 2010; Gogna et al. 2015; Moore
et al. 2013; Park et al. 2015) and in obese children (Butte
et al. 2015). The liver is the main organ for mannose con-
sumption; thus, an abnormal utilization will reflect higher
concentrations in plasma. It is hypothesized that mannose
may play a role in the development of IR, as it will reflect
defective glycosylation that could also affect the insulin
receptors in the liver tissue (Lee et al. 2016).

In this context, targeted metabolomics research that
includes an analysis of glucose metabolites in obese and lean
individuals will provide comprehensive information about
their contributions to the metabolic signature of obesity and
facilitate a determination of whether these metabolites might
be targets for obesity treatments.

4.1.6 Other relevant molecules

Other molecules reported in the literature have controver-
sial roles, such as the nucleoside, adenosine. Although no
evidence has suggested a possible correlation between the
levels of this nucleoside and the obesity signature, polyphe-
nol supplementation in overweight or obese adults decreases
the plasma adenosine levels (Kim et al. 2017). In contrast,
a physical activity program increased urinary adenosine
concentrations in overweight preadolescents (Meucci et al.
2017). The role of adenosine in obesity is not clear, since it
not only participates in the obesity but is also involved in the
initiation of obesity, and it may have anti-obesity activities
as well (Pardo et al. 2017). Adenosine promotes adipogen-
esis by activating the A1 receptor and inhibits adipogenesis
mediated by the activation of the A2B receptor in preadipo-
cytes (Gharibi et al. 2012). In this context, adenosine exerts
areceptor- and tissue-dependent effect. For example, adeno-
sine receptor activation impairs insulin action in skeletal
muscle (Pardo et al. 2017).

2-Ketoglutarate, also known as a-ketoglutarate or 2-oxo-
glutarate, is a key intermediate metabolite of one of the most
fundamental biochemical pathways in carbon metabolism,
the TCA. According to a study in mice, the administration of
a-ketoglutarate might affect body weight and innate intesti-
nal immunity by influencing the intestinal microbiota (Chen
et al. 2017). Also, a-ketoglutarate has been associated with
the induction of skeletal muscle hypertrophy and inhibition
of protein degradation. In obese subjects, urine and skel-
etal muscle were decreased (Newgard et al. 2009; Baker
et al. 2015), despite a targeted approach revealed positive
correlations with BMI abdominal obesity, HOMA-IR and

@ Springer



93 Page 22 of 31

0.D. Rangel-Huerta et al.

triacylglycerol levels (Ho et al. 2016). Therefore, further
studies should focus on the role of this compound and its
relationships with obesity, protein degradation, hypotrophy,
and the intestinal microbiota.

In urine, serotonin levels were observed lower in young
obese than normal-weight subjects (Cho et al. 2017). In the
central nervous system, serotonin is intricately involved
in appetite and subsequent nutrient intake (Tecott 2007),
primarily regulated by processes innervated in the hypo-
thalamus (Yabut et al. 2019). In fact, the inhibitory effect
of serotonin on appetite has led to the approval of receptor
agonists for the treatment of obesity (Bohula et al. 2018;
Fidler et al. 2011; O’Neil et al. 2012; Smith et al. 2010) or
even treatments based on the serotonin precursor 5-HTP that
are involved in the meal satiation and the end state of post-
meal satiety (Halford et al. 2005).

TMAO has been reported as biomarker of obesity (Zheng
et al. 2016a, b), CVD risk (Bennett et al. 2013; Trgseid et al.
2015) and it is originated from microbial activity (Leal-Witt
et al. 2018; Zheng et al. 20164, b). Its precursor trimethyl-
amine (TMA) provided from the microbial metabolism of
dietary carnitine and choline, decreased in weight loss con-
ditions (Almanza-Aguilera et al. 2018). TMA is oxidized by
hepatic flavin-containing monooxygenases to form TMAO,
which has been shown to be both proatherogenic and asso-
ciated with CVD (Tang et al. 2013; Wang et al. 2011).
Almanza-Aguilera et al. (2018) reported that lower levels
of TMA after weight loss associated to lifestyle intervention
are related to either a lower intake of its dietary precursors
(i.e., eggs and meat) (Koeth et al. 2013; Tang et al. 2013)
or modulation of choline and carnitine metabolism. Simi-
larly, TMAO was reduced in urine after a lifestyle interven-
tion program in obese prepubertal children (Leal-Witt et al.
2018). Although cholesterol levels in these children were
within the average values, the authors detected a positive
association between the changes in TMAO and cholesterol
levels. Additionally, TMAQO decreases expression of two key
enzymes, CYP7A1 and CYP27A1, essential for bile acid
biosynthesis and multiple bile acid transporters (OATP1,
OATP4, MRP2, and NTCP) in the liver, which decreases
bile acid pool, resulting in decreased reverse cholesterol
efflux (Koeth et al. 2013). In this context, the primary con-
jugated plasma bile acid, glycocholic acid along with sec-
ondary conjugated plasma bile acids (glycoursodeoxycholic
acid, taurohyodeoxycholic acid, and tauroursodeoxycholic
acid) were reduced in the pre- and probiotic combination
compared to placebo after 6 months (Hibberd et al. 2019). In
feces, the primary bile acids, cholic acid, and chenodeoxy-
cholic acid, the secondary deoxycholic acid and overall total
bile acids were reduced after 12 weeks of pea fiber consump-
tion (Mayengbam et al. 2019). It is known that bile acids
are synthesized from cholesterol and excreted through the
feces (Ma and Patti 2014). Thereupon, as fiber (especially
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insoluble fiber) increases fecal mass, a dilution of bile acids
content might be expected (Woodbury and Kern 1971).

4.2 Obesity as arisk factor for other metabolic
comorbidities

Obesity is a risk factor for the development of several
metabolic disorders. In fact, many authors reported meta-
bolic alterations, such as IR, related to obesity or weight.
For instance, decreased decrease in the uptake of BCAAs
in obese subjects (21) might explain the accumulation of
these metabolites in the bloodstream and the subsequent pro-
gressive obesity-associated complications. Hence, elevated
BCAA concentrations may also serve as a biomarker for an
increased risk of metabolic syndrome (Iwasa et al. 2015;
Newgard et al. 2009; Shah et al. 2010). For example, Badoud
et al. (2015b) reported correlations between the levels of
BCAAs (and FAs) with glucose levels and insulin AUC,
Xie et al. (Xie et al. 2014) reported a correlation with IR
and Haufe et al. (2016) reported a correlation with hepatic
IR. Furthermore, negative correlations between whole-
body IS (calculated using the composite insulin-sensitivity
index (C-ISI)) with plasma BCAA concentrations have
been reported (Haufe et al. 2016). Similarly, Tulipani et al.
(20164, b) reported a positive correlation between valine lev-
els and the degree of IR, independent from the BMI. Gluta-
mate levels showed positive correlations with fasting insulin
levels and the HOMA-IR index, while glycine concentra-
tions were negatively correlated with the same parameters.

Ketone bodies, such as a-hydroxybutyrate, are increased
in obese children plasma (Butte et al. 2015) and have been
identified as strongly associated with the obese and diabetic
state (Fiehn et al. 2010; Gall et al. 2010; Stroeve et al. 2016).
Interestingly, a-hydroxybutyrate has been investigated as an
early marker of both IR and impaired glucose regulation in
a nondiabetic population (Gall et al. 2010). Furthermore,
the ketone body p-hydroxybutyrate was highly elevated in
the skeletal muscle of obese men (more than in lean) during
prolonged fasting (up to 72 h) (Bak et al. 2018). The greater
increment of ketone bodies in obesity status might be the
result of the increased catabolism of more available BCAAs,
but increased metabolization of intracellular skeletal fat
mass could also contribute to the increased production of
ketone bodies. Hence, all the findings regarding the impli-
cations of several metabolites on IR progression in obese
subjects might elucidate the relevance of metabolomics to
explain the obesity-associated complications.

A hypothesis proposed to explain the development of IR
in obesity is focused on the lipotoxicity. This hypothesis
states that an oversupply of fats that exceed the capacity of
adipocytes leads to storage in other tissues. Consequently,
these cells produce bioactive lipids that reduce IS and fat
flow into the cell (Rauschert et al. 2016). LysoPCs are
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derived from PCs during LDL oxidation via either the leci-
thin-cholesterol acyltransferase (LCAT) or the lipoprotein-
associated phospholipase A2 (LpPLA2) pathway. In fact,
LpPLA?2 activity has been reported to be increased in obese
children. As a significant component of oxidized LDL, satu-
rated lysoPCs exert pro-atherogenic and pro-inflammatory
effects and impair insulin signaling (Murugesan 2003; Wahl
et al. 2012). Consistent with these findings, Rauschert et al.
(2016). observed a significant correlation between increased
lysoPC a C14:0 levels with a high HOMA-IR in normal-
weight young adults.

Thus, the current controversy regarding the causative
role of and mechanisms underlying the effects of specific
lipid classes on the subsequent development of IR in obese
subjects is not surprising. However, new high-resolution
metabolomics techniques have enabled the identification of
lipid subclasses, and novel families of lipids that might even
regulate IS, such as FA esters of hydroxy FAs (FAHFAs),
diacylglycerols (DAG) and ceramides (Yang et al. 2018).

4.3 Metabolic challenges

The knowledge acquired through metabolomics in metabolic
challenges is fundamental due to the real-time data obtained
that reflects the dynamics of the human metabolome. A
standard definition of metabolomics is that it provides “a
snapshot” of the metabolism; however, in some situations,
such as in patients with a particular disease, researchers must
understand the dynamics and obtain a “motion picture” of
the events occurring in the metabolism. For example, Gei-
denstam et al. (2014) first studied the differential response
of lean and obese subjects to an OGTT and reported evi-
dent disruptions in the regulation of ketogenesis, lipolysis,
and proteolysis in the obese individuals. Afterward, the aim
was to study the response of an overweight/obese popula-
tion to an OGTT after weight loss and a weight maintenance
period. As expected, the response differed between obese
glucose-intolerant individuals and lean glucose-tolerant sub-
jects (Geidenstam et al. 2014). Most likely, the most exciting
result is that those changes occurred in a temporally different
manner that coincides with improvements in either hepatic
or peripheral IS during weight loss and weight maintenance,
respectively (Geidenstam et al. 2017a).

Badoud et al. (2015b) concluded that FAs, such as 14:0
and 16:0 should serve as distinct markers of fasting and/or
postprandial IS whereas SFA 18:0 can be inversely related to
the fasting glucose levels. Interestingly, shorter chain SFAs
were previously linked with an unhealthy cardiometabolic
profile compared to longer chain SFAs (18:0, 22:0 and 24:0)
(Badoud et al. 2015b). Subsequently, 18:0 SFA and w-6
PUFA were inversely correlated with fasting glucose levels
in adults, regardless of the BMI (Badoud et al. 2015b). Fur-
thermore, MHO individuals showed better adaptability to the

caloric challenge when compared to the MUHO individuals
as the former preserved the IS. These findings are relevant
if replicated in larger cohorts, in the translation to potential
diagnostic use. We should note that recently, Bagheri et al.
(2018) could identify differences between MHO and MUHO
phenotypes when compared with normal-weight subjects but
not when compared among them. Although their analysis
had broad coverage, their reported metabolic signatures did
not include any of the compounds reported by Badoud et al.
(2015b).

Moreover, Baker et al. (2015) performed a 5-day HFD
intervention that altered the metabolism of AC species, and
its relationship with limited p-oxidation has already been
discussed.

Bak et al. (2018) detected FFAs (palmitate, stearate, and
arachidate) lower during 12 h of fasting in obese versus lean
subjects. In addition, free carnitine that sustains the FFAs
transportation into the mitochondria was lower in obese than
lean participants. This phenomenon could indicate that there
is a lower rate of release of FFAs during fasting in obese
subjects that even might facilitate the insulin response at
short-term in such population. Nevertheless, the regulatory
mechanism of FFAs in context with insulin actions requires
more detailed studies and to consider cautiously the pro-
cesses of fasting condition that could result controversial
in humans.

4.4 Future perspectives

As shown in the present review, metabolomics studies facili-
tate the identification of metabolites involved in obesity by
observing variations in metabolite concentrations in obese/
overweight subjects compared with healthy individuals.
Additionally, metabolomics has been used to discover bio-
markers for several clinical conditions (Vinayavekhin et al.
2010). Biomarkers are regularly used in clinical practice to
measure disease severity and provide essential prognostic
information related to survival (Park et al. 2015). Using
metabolomics studies, the clinical practice and the studies
of obese subjects might be more productive and focused on
specific metabolites and critical pathways to treat or even
prevent the development of obesity and its severe complica-
tions. Furthermore, an understanding of the metabolic sig-
nature of obesity and its dynamics should lead to elaborate
subclassifications within obese patients, according to their
metabolic characteristics. These profiles would help clini-
cians to either screen individuals or identify and character-
ize outliers in clinical trials designed to test solutions for
obesity. In this regard, a very comprehensive guide for help-
ing in the developing of future nutrimetabolomics studies
is presented by Ulaszewska et al. (2019) and must serve to
harmonize the field.

@ Springer
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Significant findings are presented in this review and sug-
gest that several tracks should be followed. Moreover, more
targeted and well-designed studies should focus on com-
pounds such as BCAAs, AC species, and phospholipids.
Their pathways must be delineated, and in-depth studies of
not only the metabolites but also the catabolites and come-
tabolites should be performed to understand their relevance.

Currently, the study of the microbiome is gaining impor-
tance, and researchers have hypothesized a link between
obesity and the microbiome. Nevertheless, an integrative
approach, including metabolomics, might improve our
understanding that not only the variability but also the func-
tion of the microbiome may lead to dysregulations in obe-
sity, and further research must be developed. This approach
will help researchers to clarify and understand the interac-
tions of the microbial metabolites with the host organism
and to avoid misinterpretations when reporting allegedly
dysregulated compounds that might be related to the micro-
biome or to the diet. For instance, metabolites such as hippu-
rate, isobutyryl glycine, and isovaleryl glycine, and TMAO
were reported as biomarkers of obesity and might originate
from microbial activity (Zheng et al. 2016a, b; Almanza-
Aguilera et al. 2018).

The field still faces many challenges. During the elabo-
ration of this review, we encountered many problems with
the interpretation of the results due to the lack of a unified
reporting scheme. Based on the metabolomics standards
initiative (MSI) and core information for metabolomics
reporting (CIMR) (Creek et al. 2014; Salek et al. 2015;
Sumner et al. 2007, 2014), these deficiencies must be
improved, and this topic has been reviewed elsewhere
(Considine et al. 2018). Furthermore, although a consen-
sus regarding the metabolites that comprise the metabolic
signature of obesity has been achieved, further studies
are needed to ensure the homologation, proper identifi-
cation and validation of these features to guarantee their
reliability.

In the present study, we have used the quality assessment
tool QUADOMICS and, although it has been adapted for
omics studies, we found some deficiencies in metabolomics
reporting. Our major concern is related to the evaluation of
the reporting of identification. This topic should be covered
in-depth to provide the reader with a concise view of the
level of identification of the features reported and thus, inte-
grating these criteria might strengthen the reliability of the
findings. For instance, a correct identification will provide
tools to discriminate between endogenous and exogenous
metabolites and reduce misinterpretations correctly. There-
fore, researchers should develop a specific tool for assessing
the quality of metabolomics studies. As a final reflection,
the combined use of untargeted and targeted approaches
should be acknowledged as complementary. Untargeted
metabolomics is the best approach to generate a hypothesis
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or to detect compounds that were not initially contemplated
or were utterly unknown, thus generating new knowledge.
Nevertheless, several drawbacks must be considered when
using untargeted approaches to advance the field, namely,
the validation of protocols, workflows and standards, the
consolidation of the features reported with a rational soft-
ware (including the correct grouping of adducts) and the
correct use of databases. In addition, targeted studies are
necessary to validate and quantify the changes in metabo-
lism in a more precise manner.

5 Conclusions

Metabolomics provides a better understanding of disease
progression and metabolic pathways in obese subjects.
The present SR provides valuable information on specific
metabolite patterns as characteristics of obesity, such as the
metabolically healthy and unhealthy phenotypes, and even
possible metabolomic profiles associated with their compli-
cations. These metabolites can be considered as biomarkers
of obesity and improve our understanding of disease pro-
gression and metabolic pathways. Nevertheless, significant
progress is needed, and further studies are required to test
whether the proposed metabolites are considered an estab-
lished and specific metabolic signature. If this goal is accom-
plished, the signature might be useful as a clinical tool and
for the development of more accurate clinical treatments
focused on the pathogenesis of obesity and its potential
comorbidities.
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