Manuscript Details

Manuscript number	ENVINT_2018_2800_R1
Title	Methylome-wide association study provides evidence of particulate matter air pollution-associated DNA methylation
Article type	Research Paper

Abstract

Background: DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤2.5, ≤10, and 2.5-10 µm in diameter (PM2.5; PM10; PM2.5-10). Methods: We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in Communities study (n = 8,397; mean age: 61.5 years; 83% female; 45% African American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not heterogeneous across subpopulations (P < 1.0x10-7; PCochran's Q > 0.10), we characterized associations using publicly accessible genomic databases and attempted replication in the Cooperative Health Research in the Region of Augsburg (KORA) study. Results: Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day mean PM10 was positively associated with DNAm at cg19004594 (chromosome 20; MATN4; P = 3.33x10-8). One-month mean PM10 and PM2.5-10 were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; P = 5.84x10-8) and inversely associated with DNAm at cg12124767 (chromosome 7; CFTR; P = 9.86x10-8). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with gene expression in blood cells and did not replicate in KORA. Conclusions: Ambient PM concentrations were associated with DNAm at genomic regions potentially related to poor health among racially, ethnically and environmentally diverse populations of U.S. women and men. Further investigation is warranted to uncover mechanisms through which PM-induced epigenomic changes may cause disease.

Keywords	particulate matter; dna methylation; epigenetics; air pollution; epigenome-wide association study
Taxonomy	Air Pollution Health Impact, Environmental Epidemiology
Corresponding Author	Rahul Gondalia
Corresponding Author's Institution	University of North Carolina Department of Epidemiology
Order of Authors	Rahul Gondalia, Antoine Baldassari, Kathryn Holliday, Anne Justice, Raul Mendez Giraldez, James Stewart, Duanping Liao, Jeff Yanosky, Kasey Brennan, Stephanie Engel, Kristina Jordahl, Elizabeth Kennedy, Cavin Ward-Caviness, Kathrin Wolf, Josef Cyrys, Parveen Bhatti, Steve Horvath, Themistocles Assimes, James Pankow, Ellen Demerath, Weihua Guan, Myriam Fornage, Jan Bressler, Kari North, Karen Conneely, Yun Li, Lifang Hou, Andrea Baccarelli, Eric Whitsel
Suggested reviewers	Radhika Dhingra, Colleen Sitlani, Gregory Wellenius, John Hartman

Submission Files Included in this PDF

File Name [File Type]

PM-DNAm_CoverLetter_2019_03_27.docx [Cover Letter]
pm-mwas_response_2019_03_27.docx [Response to Reviewers]
PM-DNAm_2019_03_27.docx [Revised Manuscript with Changes Marked]
PM-DNAm_Highlights_2019_03_27.docx [Highlights]
PM-DNAm_abstract_2019_03_27_clean.docx [Abstract]
PM-DNAm_2019_03_27_clean.docx [Manuscript File]
manhattan_plots.pdf [Supplementary Material]
PM-DNAm_2019_03_27_suppl_clean.docx [Supplementary Material]

Submission Files Not Included in this PDF

File Name [File Type]

TableS3_2018_12_01.xlsx [Supplementary Material]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given: Data from the ARIC and WHI study are available on request: https://www2.cscc.unc.edu/aric/distribution-agreements. https://www.whi.org/researchers/SitePages/Write%20a%20Paper.aspx. **Title:** Methylome-wide association study provides evidence of particulate matter air pollutionassociated DNA methylation

Highlights

- DNA methylation (DNAm) may underlie processes linking air pollution and poor health
- We conducted a methylome-wide association study of 8,397 women and men with daily and monthly estimates of $PM_{2.5}$, PM_{10} , and $PM_{2.5-10}$ data
- Mid-duration PM₁₀ and PM_{2.5-10} were significantly associated with methylation at three CpG sites, but associations did not replicate in an independent population
- The three PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular-disease related genes

- 1 Abstract
- 2

Background: DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤ 2.5 , ≤ 10 , and 2.5-10 µm in diameter (PM_{2.5}; PM₁₀;

- 6 PM_{2.5-10}).
- 7

8 Methods: We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-

9 stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in

10 Communities study (n = 8,397; mean age: 61.5 years; 83% female; 45% African American; 9%

11 Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean

12 PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured

13 leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at

14 approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects

15 models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-

16 weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not

17 heterogeneous across subpopulations ($P < 1.0 \times 10^{-7}$; $P_{Cochran's O} > 0.10$), we characterized associations

18 using publicly accessible genomic databases and attempted replication in the Cooperative Health

19 Research in the Region of Augsburg (KORA) study.

20

21 **Results**: Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day

22 mean PM_{10} was positively associated with DNAm at cg19004594 (chromosome 20; *MATN4*; P =

 3.33×10^{-8}). One-month mean PM₁₀ and PM_{2.5-10} were positively associated with DNAm at cg24102420

24 (chromosome 10; *ARPP21*; $P = 5.84 \times 10^{-8}$) and inversely associated with DNAm at cg12124767

25 (chromosome 7; *CFTR*; $P = 9.86 \times 10^{-8}$). The PM-sensitive CpG sites mapped to neurological, pulmonary,

26 endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with

27 gene expression in blood cells and did not replicate in KORA.

28

29 **Conclusions**: Ambient PM concentrations were associated with DNAm at genomic regions potentially

30 related to poor health among racially, ethnically and environmentally diverse populations of U.S. women

31 and men. Further investigation is warranted to uncover mechanisms through which PM-induced

32 epigenomic changes may cause disease.

1 Title: Methylome-wide association study provides evidence of particulate matter air pollution-associated

2 DNA methylation

4 Authors

3

1 2 3

4

5 6

7

8 9

10

11 12

13

14 15

16

17 18

19

20

21 22

23

25

26

31

32

33

37

- 5 Rahul Gondalia^a, Antoine Baldassari^a, Katelyn M Holliday^{a,b}, Anne E Justice^{a,c}, Raúl Méndez-Giráldez^a,
- 6 James D Stewart^a, Duanping Liao^d, Jeff D Yanosky^d, Kasey JM Brennan^e, Stephanie M Engel^a, Kristina
- 7 M Jordahl^f, Elizabeth Kennedy^g, Cavin K Ward-Caviness^h, Kathrin Wolfⁱ, Josef Cyrysjⁱ, Parveen Bhatti^f,
- 8 Steve Horvath^{i,k}, Themistocles L Assimes¹, James S Pankow^m, Ellen W Demerath^m, Weihua Guanⁿ,
- 9 Myriam Fornage^o, Jan Bressler^p Kari E North^{a,q}, Karen N Conneely^r, Yun Li^{s,t,u}, Lifang Hou^{v,w}, Andrea A
 10 Baccarelli^e, Eric A Whitsel^{a,x}
- 11

12 Affiliations

- 13 ^aDepartment of Epidemiology, Gillings School of Global Public Health, University of North Carolina,
- 14 Chapel Hill, NC, USA
- 24 15 ^bDepartment of Community and Family Medicine, Duke University School of Medicine, Durham, NC
 - 16 ^cGeisinger Health System, Danville, PA, USA
- ²⁷ 17 ^dDivision of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College
 ²⁸ 18 of Medicine, Hershey, PA, USA
- ²⁹
 ³⁰ ¹⁹ ^eLaboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and
 - 20 Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
 - 21 ^fDepartment of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- ³⁴ 22 ^gDepartment of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA,
 ³⁵ 23 USA
 - 24 ^hEnvironmental Public Health Division, National Health and Environmental Effects Research Laboratory,
- ³⁸
 ³⁹
 25 104 Mason Farm Rd, Chapel Hill, NC 27514
- 40 26 ⁱInstitute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg,
- 41 **27** Germany 85764
- 43 28 ^jHuman Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles,
- ⁴⁴ 29 CA, USA
- 46 30 ^kBiostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA, , USA
- ⁴⁷ 31 ¹Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- 48
 49
 32 ^mDivision of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
- ⁵⁰ 33 ⁿDivision of Biostatistics, University of Minnesota, Minneapolis, MN, USA
- 53 54

51 52

58			
59 60	34	ºInstitute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX,	
61	35	USA	
62 62	36	PHuman Genetics Center, School of Public Health, University of Texas Health Science Center at Houston	n,
63 64	37	Houston, TX, USA	
65	38	^q Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA	
66 67	39	Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA	
68	40	^s Department of Genetics, University of North Carolina, Chapel Hill, NC, USA	
69 70	41	^t Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina,	
71	42	Chapel Hill, NC, USA	
72 72	43	^u Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA	
73 74	44	^v Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago,	
75	45	Evanston, IL, USA	
76 77	46	^w Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of	
78	47	Medicine, Northwestern University Chicago, Evanston, IL, USA	
79 80	48	*Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA	
81	49		
82 83	50	Corresponding Author:	
84	51	Rahul Gondalia MPH	
85	52	123 W Franklin St	
86 87	53	Chapel Hill North Carolina 27516 USA	
88	54	Phone: 304-210-7823	
89 90	55	Fmail: rahgonda@unc.edu	
91	55	Linan. Tangonda(d/dift.cuu	
92 93			
94			
95			
96 97			
98			
99			
100			
101			
102			
103			
105			
106			
107			
108			
109			
110			~
112			2
114			

Abstract

Background: DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤ 2.5 , ≤ 10 , and 2.5-10 µm in diameter (PM_{2.5}; PM₁₀; PM_{2.5-10}).

Methods: We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in Communities study (n = 8,397; mean age: 61.5 years; 83% female; 45% African American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not heterogeneous across subpopulations ($P < 1.0 \times 10^{-7}$; $P_{Cochran's O} > 0.10$), we characterized associations using publicly accessible genomic databases and attempted replication in the Cooperative Health Research in the Region of Augsburg (KORA) study.

Results: Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day mean PM₁₀ was positively associated with DNAm at cg19004594 (chromosome 20; MATN4; P =3.33x10⁻⁸). One-month mean PM₁₀ and PM_{2.5-10} were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; $P = 5.84 \times 10^{-8}$) and inversely associated with DNAm at cg12124767 (chromosome 7; *CFTR*; $P = 9.86 \times 10^{-8}$). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with gene expression in blood cells and did not replicate in KORA.

Conclusions: Ambient PM concentrations were associated with DNAm at genomic regions potentially related to poor health among racially, ethnically and environmentally diverse populations of U.S. women and men. Further investigation is warranted to uncover mechanisms through which PM-induced epigenomic changes may cause disease.

169		
170	00	Konwards: particulate matter: DNA methylation: opigenatios: air pollution: opigename wide association
172	07	study
173	7U 01	Abbraviations: AA African American: AV annual visit: ABIC Athorogalorogic Bick in Communities:
175	71	Appreviations: AA, African American, AV, annual Visit, AKIC, Atheroscierosis Kisk in Communities,
176 177	92	ASS11, Anchary Study 311, AQS, Onned States Environmental Protection Agency All Quarty System,
178	93	BAA23, Broad Agency Award 23; CI, confidence interval; CpG, Cytosine-phosphate-Guanine; C1,
179 180	94	Clinical Irial; DNAm, deoxyribonucleic acid methylation; CVD, cardiovascular disease; EA, European
181	95	American; eFORGE, Functional element Overlap analysis of Regions; EMPC, Epigenetic Mechanisms of
182	96	PM-Mediated CVD Risk; FDR, false discovery rate; GTP, Grady Trauma Project; GWAS, genome-wide
183 184	97	association study; HLA, Hispanic/Latino American; KORA, Cooperative Health Research in the Region
185	98	Augsburg study; LLS, Long Life Study; LMM, linear mixed models; MESA, Multi-Ethnic Study of
186 197	99	Atherosclerosis ; MICE, multiple imputation by chained equations; MWAS, methylome-wide association
188	100	study; NAAQS, National Ambient Air Quality Standards; OS, Observational Study; PE, prediction error;
189	101	PM_{10} , $PM < 10 \ \mu m$ in diameter; $PM_{2.5}$, $PM < 2.5 \ \mu m$ in diameter; $PM_{2.5-10}$, $PM > 2.5$ and $< 10 \ \mu m$ in
190 191	102	diameter; QQ, quantile-quantine; RMSS, root mean square standardized; SD, standard deviation; SE,
192	103	standard error; SPE, standardized prediction error; WHI, Women's Health Initiative
193 104	104	
194	105	
196		
197 198		
199		
200		
201		
203		
204 205		
206		
207		
200		
210		
211 212		
213		
214		
215		
217		
218 219		
220		
221		
222 223		4
224		

1. Introduction

Ambient particulate matter (PM) air pollution is a modifiable exposure that has been consistently associated with morbidity and mortality (Cohen et al. 2017; Di et al. 2017; Miller et al. 2007) attributed to cardiovascular disease (Brook et al. 2004; Brook et al. 2010), respiratory disease (Dominici et al. 2006; Gan et al. 2013; Laumbach and Kipen 2012), and lung cancer (Pope et al. 2002; Raaschou-Nielsen et al. 2013). Despite the ubiquity of air pollution exposure and the continued population burden of PM (Cohen et al. 2017), the causal mechanisms underlying PM associations with poor health have not been adequately investigated.

One such mechanism could involve methylation of deoxyribonucleic acids (DNAm), conventionally measured at Cytosine-phosphate-Guanine (CpG) sites. DNAm is a heritable, but dynamic epigenetic modification that can influence gene expression without altering the DNA sequence (Clouaire and Stancheva 2008; Neidhart 2016) and may be central to mediation of PM-associated disease risk (Baccarelli et al. 2010; Bollati and Baccarelli 2010; Zhong et al. 2016). Indeed, PM exposure has been implicated in whole blood DNAm near candidate genes involved in inflammation, oxidative stress, coagulation and vasoconstriction (Bellavia et al. 2013; Chen et al. 2016; Chen et al. 2015; Tarantini et al. 2009: Tarantini et al. 2013), abnormalities of which have established associations with cardiovascular and respiratory disease. A few studies have agnostically evaluated DNAm associations with PM on a methylome-wide scale (de F.C. Lichtenfels et al. 2018; Panni et al. 2016; Plusquin et al. 2017), but none have done so in large, sociodemographically and environmentally diverse, well-characterized populations of adult women and men.

258
259
260127The present study therefore examined methylome-wide associations between DNAm and ambient
concentrations of $PM \le 2.5, \le 10$, and 2.5-10 µm in diameter ($PM_{2.5}, PM_{10}$, and $PM_{2.5-10}$) within the261
262
263129Women's Health Initiative (WHI) and the Atherosclerosis Risk in Communities study (ARIC) cohorts,
and their replication in subpopulations of the Cooperative Health Research in the Region Augsburg264131(KORA) study.

²⁸³ 284 **132 2. Methods**

285 133

2.1. Study design and populations

The study included 8,397 consenting participants from subpopulations within the WHI and ARICcohorts who had available peripheral blood leukocyte DNA.

The WHI is a multicenter prospective study of risk factors for cardiovascular disease (CVD), cancer, osteoporotic fractures, and other causes of morbidity and mortality among postmenopausal women (Anderson et al. 2003; NIH 1998). Between 1993 and 1998, women aged 50-79 years from forty WHI clinical centers throughout the United States (US) were enrolled in the Clinical Trials (CT) (n = (68,132) or Observational Study (OS) (n = 93,676). All WHI participants completed a screening visit (SV). CT participants also completed an annual visit (AV) at one, three, six, and nine years after randomization (AV1, AV3, AV6, AV9), and OS participants three years after enrollment (AV3). An additional visit of CT and OS participant subsets occurred between 2011 and 2012 (ranging from 14 to 19 years after enrollment) as part of the WHI Long Life Study (LLS) (Anderson and LaCroix).

For the current study, WHI participants were drawn from three ancillary studies: *Epigenetic* Mechanisms of PM-Mediated CVD Risk (WHI-EMPC) (Whitsel), Broad Agency Announcement 23 (WHI-BAA23) (Assimes et al.) and Ancillary Study 311 (WHI-AS311) (Jordahl et al. 2018). WHI-EMPC is a study of epigenetic mechanisms underlying associations between ambient PM air pollution and CVD within the WHI CT. From this population, DNAm was measured in 2,200 randomly selected participants (stage 1: SV, AV3, or AV6), remeasured in 200 participants at a second visit (stage 2: AV3 or AV6), and remeasured again in 43 participants at a third visit among those who participated in the WHI Long Life Study (stage 3: LLS), yielding 2,443 total observations. WHI-BAA23, also known as *Integrative* Genomics and Risk of CHD and Related Phenotypes in the Women's Health Initiative, is a case-control study of coronary heart disease within the WHI CT (n = 1,546) and OS (n = 442). By design, WHI-BAA23 oversampled African Americans and Hispanic/Latino Americans and required all participants to have undergone genome-wide genotyping and profiling of seven cardiovascular disease biomarkers. DNAm was measured in blood collected at the SV, before the incidence of coronary heart disease. WHI-AS311 is a matched case-control study of bladder cancer among women within the WHI CT (n = 405) and OS (n = 455). Bladder cancer cases were matched to controls based on enrollment year, age at enrollment, follow-up time, and DNAm extraction method. DNAm was measured in blood collected at the SV, before the incidence of bladder cancer.

329163ARIC is a community-based prospective study of atherosclerosis and its clinical outcomes in four330164US communities: Washington County, Maryland; Forsyth County, North Carolina; selected suburbs of331331332165Minneapolis, Minnesota; and Jackson, Mississippi (ARIC Investigators 1989). Enrollment in 1987-1989

- 339
340166(Visit 1) was followed by five subsequent visits (Visits 2-6) between 1990-2017. The present study
- 167 included all 2,796 African Americans from Forsyth County or Jackson (ARIC-AA) with DNA and 1,139
- European Americans from Forsyth County or Minneapolis (ARIC-EA) with cerebral magnetic resonance
 imaging data (Mosley et al. 2005), all at Visits 2 (1990-1992) or 3 (1993-1995).

Replication involved up to 2,176 participants from two studies of the population-based KORA
cohort: F3 (n = 464) and F4 (n = 1,712). KORA F3 (2004-2005) and F4 (2006-2008) are follow-up
studies of the KORA S3 and S4 cohort participants, including German nationals aged 25-74 years from
Augsburg, Germany (Holle et al. 2005; Wichmann et al. 2005).

175 2.2. Particulate matter exposure estimation

176The study focuses on three ambient particulate matter (PM) air pollutants, including two (PM2.5355356177and PM10) that are regulated under the Clean Air Act by the US Environmental Protection Agency (EPA)357178according to its National Ambient Air Quality Standards (NAAQS) (EPA 2017).

PM exposures were estimated at all geocoded WHI and ARIC participant addresses (Whitsel et al. 2006; Whitsel et al. 2004) in the contiguous US since the baseline examinations using two exposure modeling approaches, both based on US EPA Air Quality System (AQS) monitoring data for PM₁₀ (since 1987) and PM_{2.5} (since 1999). In the WHI, the median distance from geocoded participant addresses to PM₁₀ and PM_{2.5} EPA monitors was 7.8 and 7.6 kilometers. In ARIC, it was 4.8 and 7.2 kilometers. Geocoded address-specific daily mean PM_{10} concentrations ($\mu g/m^3$) were spatially estimated using national-scale, log-normal ordinary kriging. Exposure measurement error using kriging methods may yield misclassification and increase variance or bias associations (Alexeeff et al. 2014; Lee et al. 2012), therefore validity of the estimation was assessed, using standard cross-validation statistics: average prediction error (PE), standardized prediction error (SPE), root mean square standardized (RMSS), and standard error (SE). Observed values of PE and SPE near zero, RMSS near one, and RMS near SE have provided evidence of model validity (Liao et al. 2006; Liao et al. 2007).

Also, geocoded address-specific monthly mean concentrations ($\mu g/m^3$) were spatiotemporally estimated using generalized additive mixed models and geographic information system-based predictors. Because EPA AQS monitoring data for PM_{2.5} were not widely available until 1999, spatiotemporal estimation also involved the log-transformed ratio of PM2.5 to predicted PM10 between 1987 and 1999. A five- or ten-fold, out-of-sample cross-validation of the estimates in which the squared Pearson correlation between excluded monthly observations and model predictions ($R^2 = 0.68-0.77$) indicated that estimation models performed well (Yanosky et al. 2014).

 $\begin{array}{ccc} 386 \\ 387 \\ 388 \end{array} \begin{array}{c} 198 \\ 199 \end{array} \quad Daily mean concentrations of <math>PM_{10}$ were averaged over the 2-, 7-, 28-, and 365-day periods ending on (including) the examination day. Monthly mean concentrations of $PM_{2.5}$ and PM_{10} were

averaged over the 12-month period ending on (including) the calendar month of examination. Finally,
 coarse PM (PM_{2.5-10}) concentrations for each averaging duration were calculated as differences between
 PM₁₀ and PM_{2.5} concentrations.

2.3. DNA methylation

Peripheral blood leukocytes were isolated from visit-specific, fasting blood drawn from study participants. DNA was extracted from the peripheral blood leukocytes and then DNAm was measured on a methylome-wide scale at 485,577 CpG sites using the Illumina 450K Infinium Methylation BeadChip (Illumina Inc.; San Diego, CA, USA). Methylation was quantitatively represented by beta, the proportion of methylated cytosines over the sum of methylated and unmethylated cytosines across the same loci. The data from all studies were quality controlled (Table S1), Beta Mixture Quantile (BMIQ)-normalized to adjust for probe bias (Teschendorff et al. 2013), and in WHI-EMPC, ComBat-adjusted for stage and plate using empirical Bayes methods (Johnson et al. 2007). Otherwise, technical covariates (assay plate, chip, and row) were available to control for batch effects; and leukocyte proportions (CD8+ T cell, CD4+ T cell, B cell, natural killer cell, monocyte, and granulocyte) to account for leukocyte composition (Houseman et al. 2012). Among ARIC-AA participants, missing lymphocyte, monocyte, neutrophil, eosinophil, and basophil proportions were imputed based on measured proportions. Analyses excluded CpG sites at which DNAm distributions were multi-modal (Andrews et al. 2016) in at least one study.

219 2.4. Multiple imputation

To avoid potential for selection bias in complete-data analysis when data are missing at random (Hernan et al. 2004), multivariate imputation by chained equations (MICE) (Azur et al. 2011; Stuart et al. 2009) as implemented in SAS 9.3 (Cary, NC) was used to impute infrequently missing $PM_{2.5}$, PM_{10} , and $PM_{2.5-10}$ concentrations (missing range: 3.3%, 3.5%) and other covariates (missing range: 0%, 10.4%), excluding methylome-wide DNAm. Binary and categorical data were imputed using the logistic and discriminant functions whereas interval-scale data were imputed using predictive means matching with a k-nearest neighbor (k=5) approach.

228 2.5. Statistical analysis

All analyses were stratified by cohort and race/ethnicity (African-, European-, and Hispanic/Latino-American) and adjusted for age (years) at blood draw, education (high school education or lower, more than high school), smoking status (current, former, never), alcohol use (current, former, never), physical activity (metabolic equivalent of task [MET-hours/week]), body mass index (BMI, kg/m²), neighborhood socioeconomic status (Roux et al. 2001), mean temperature (°C), mean dew point

(°C), mean barometric pressure (kPa), season, and methylation-related variables, which included ten principal components (PCs) for genetic ancestry (when available), leukocyte proportions, and technical covariates. Analyses additionally controlled for cohort-specific covariates, including binary sex (male, female) in ARIC; randomly assigned treatment group (CT subpopulations of WHI-AS311, WHI-BAA23, WHI-EMPC); case-control status (WHI-AS311, WHI-BAA23); and control matching criteria (WHI-AS311). In each subpopulation, covariate-adjusted, multi-level, linear, mixed-effects models (LMMs) were used to estimate DNAm-PM associations. In WHI-EMPC, three-level, longitudinal models had a random intercept for examination at the participant level, a random intercept and slope for PM at the WHI center level, and a random intercept for chip, as given by $DNAm_{ijk} = \beta_0 + \beta_1 PM_{ijk} + \beta_2 Z_{ijk} + b_{0k}^{C} + b_{1k}^{C} PM_{ijk} + b_{0ik}^{P} + b_{0iik}^{E} + \varepsilon_{iik}^{E}.$ (1)In WHI-BAA23 CT & OS, and WHI-AS311 CT & OS, two-level cross-sectional models had a random intercept and slope for PM at the WHI center level and a random intercept for plate and chip, as given by $DNAm_{ik} = \beta_0 + \beta_1 PM_{ik} + \beta_2 Z_{ik} + b_{0k}^{C} + b_{1k}^{C} PM_{ik} + b_{0ik}^{E} + \varepsilon_{ik}^{E}.$ (2) In ARIC-AA and ARIC-EA, one-level cross-sectional models had a random intercept for plate and chip, as given by $DNAm_i = \beta_0 + \beta_1 PM_i + \beta_2 Z_i + b_{0i}^E + \varepsilon_i^E.$ (3) Above, *i*, *j* and *k* denote the i^{th} examination of the j^{th} participant in the k^{th} center; DNAm is the CpG site-specific beta value; β_0 is the intercept; PM is the 2-, 7-, 28-, 365-day, or 1- or 12-month mean of $PM_{2.5}$, PM_{10} , or $PM_{2.5-10}$; and Z is a vector of covariates. The terms $(b_0^C, b_1^C) \sim N(O,G)$ are a random intercept and a random slope for PM at the center level, $(b_0^P) \sim N(O,G)$ is a random intercept for examination at the participant level, $(b_0^E) \sim N(O,G)$ are random intercepts for technical covariates, and ε^E ~ ($0,\sigma^2$) is the random error at the examination level. Measures of association (β_1) and their 95% confidence intervals ($\beta_1 \pm 1.96 x$ standard error) were reported as an absolute percentage change in DNAm per 10 µg/m³ increase in PM.

Given the focus on fixed effects, LMMs were fit with maximum likelihood using the
Given the focus on fixed effects, LMMs were fit with maximum likelihood using the
MixedModels package (Bates 2017) in Julia v0.6 (Bezanson et al. 2017). Stratum-specific results were
combined using fixed-effects, inverse-variance weighted meta-analysis. Homogeneity of associations was
assessed using Cochran's Q test statistic (Cochran 1954). A P_{Cochran's Q} < 0.10 and Bonferroni-corrected

threshold of $P < 1 \ge 10^{-7}$ (i.e. assuming 500,000 independent CpG tests) were used to identify significant CpG associations. The threshold of suggestive significance was $P < 1 \ge 10^{-5}$.

Examination of stratified and meta-analyzed results included reviewing quantile-quantile (QQ) plots of the observed $-\log_{10}$ -transformed *P* values for each CpG site against the expected values from a theoretical χ^2 distribution and estimating the associated genomic inflation factor (λ), where λ is defined as the ratio of the observed to expected median $-\log_{10}P$ values (Devlin et al. 2001).

273 2.6. Technical validation

In a random subset of 200 WHI-EMPC participants, bisulfite pyrosequencing was used to validate the Illumina 450K measures of DNAm at ten PM_{10} - or $PM_{2.5}$ -sensitive CpG sites ($P < 1 \ge 10^{-5}$). CpG sites with poor next generation sequencing data or situated in CpG-rich, repetitive element, or low sequence complexity regions of the genome were not candidates for pyrosequencing. Site-specific comparisons of DNAm measures were based on mean Illumina 450K minus bisulfite pyrosequencing differences (Δ), Pearson correlation coefficients (r), and Deming regression estimates of their intercepts (α) and slopes (β) (Cornblect and Gochman 1979). When the two measures are nearly identical, Δ , r, α , and β approach values of 0, 1, 0, and 1, respectively.

283 2.7. Functional annotation

Published genotype-phenotype associations for variants annotated to or within 100 kilobases of genes containing statistically significant PM-sensitive CpG sites were identified in the National Human Genome Research Institute (NHGRI) Genome-Wide Association Study (GWAS) Catalog (Welter et al. 2014). Tissue-specific gene expression was assessed using the Genotype-Tissue Expression (GTEx) database (Lonsdale et al. 2013) and associations between DNAm and gene expression in human blood cells were obtained from a study of approximately 400,000 CpG sites and > 13,000 transcripts in the Multi-Ethnic Study of Atherosclerosis (MESA) and Grady Trauma Project (GTP) cohorts (Kennedy et al. 2018). PM-sensitive CpG sites ($P < 1 \ge 10^{-5}$) were functionally characterized using experimentally derived Functional element Overlap analysis of ReGions from EWAS (eFORGE) v2.0 (Breeze et al. 2016) with data from the Encyclopedia of DNA elements (ENCODE) (Consortium 2012), Roadmap Epigenomics Project (Bernstein et al. 2010), and BLUEPRINT (Stunnenberg et al. 2016). Overlap of CpG site-specific PM sensitivity, histone modification, and DNase I hypersensitivity were evaluated in eFORGE with a false discovery rate (FDR) threshold of 0.05.

298 2.8. Replication

561 562		
563	299	Significant CnG sites that were not beterogeneous across subnonulations ($P < 1.0 \times 10^{-7}$, $P_{controls}$
564	200	> 0.10 underwant replication and mate analyzes in KOPA E2 and E4. Pollutant, and every direction
566	300	> 0.10) under went represention and meta-anaryses in KOKA F5 and F4. Fondant- and averaging duration-
567	301	specific replication thresholds were Bonferroni-corrected by dividing the conventional alpha level (0.05)
568	302	by the number of CpG sites carried into replication.
569 570	303	
571		
572		
573 574		
575		
576		
577		
576 579		
580		
581		
582 583		
584		
585		
586		
588		
589		
590		
591 592		
593		
594		
595		
590 597		
598		
599		
600 601		
602		
603		
604 605		
606		
607		
608		
609 610		
611		
612		
613		
615		11
616		

3. Results

The study consisted of twelve ARIC and WHI subpopulations, collectively representing 8,397 participants, of whom 45.8% were African American, 8.4% were Hispanic/Latino American, and 83.0% were female (Table 1). Participants were on average 61.3 years of age and contributed methylation data at \geq 461,014 CpG sites. One-month mean concentrations of PM₁₀, PM_{2.5}, and PM_{2.5-10} were 20.9, 13.2, and 7.7 µg/m³; varied by subpopulation and race/ethnicity (Tables 1 and S2); and did not exceed NAAQS in place at the time of data collection. Between-pollutant Pearson correlation coefficients depended on size fraction and averaging duration (Table 2). Overall, the median (range) was 0.35 (-0.14, 0.79) and among 2-, 7-, 28, and 365-day mean PM₁₀ concentrations, it was 0.64 (0.43, 0.79). Correlations between PM₁₀ and PM_{2.5} concentrations were 0.73 and 0.64 when they were averaged over 1 and 12 months.

Table 1

~1

316 Character	istics of the stud	y participants, b	y subpopulation
---------------	--------------------	-------------------	-----------------

Subnonulation		Race /	n	%	% Age, yrs		PM (μg/m ³), 1 mo x ⁻ (SD)			
54	Suppopulation		ethnicity		female	x ~(SD)	CpGs	PM ₁₀	PM _{2.5}	PM _{2.5-10}
ARIC			AA	2,664	63%	56.6 (5.9)	463,431	20.5 (4.6)	13.2 (3.1)	7.3 (2.1)
			EA	1,100	58%	59.9 (5.4)	462,543	23.2 (5.3)	15.4 (4.3)	7.8 (3.5)
WHI	AS311	СТ	EA	351	100%	64.7 (7.1)	461,136	19.8 (6.6)	11.9 (3.82)	7.9 (4.6)
		OS	EA	395	100%	66.2 (6.9)	461,136	19.9 (5.7)	12.0 (3.9)	7.9 (4.1)
	BAA23	СТ	AA	371	100%	61.8 (6.3)	461,014	22.6 (6.2)	14.3 (4.2)	8.3 (3.8)
			EA	926	100%	67.8 (6.2)	461,014	19.7 (5.7)	11.7 (3.7)	8.0 (4.4)
			HLA	220	100%	60.7 (6.4)	461,014	21.4 (8.1)	10.3 (4.1)	11.1 (5.7)
		OS	AA	259	100%	62.8 (6.8)	461,014	22.3 (5.9)	14.0 (4.0)	8.3 (4.2)
			HLA	174	100%	62.8 (7.3)	461,014	23.0 (8.1)	11.0 (4.2)	11.9 (6.4)
	EMPC ^a		AA	553	100%	62.7 (6.9)	463,916	22.2 (6.2)	15.2 (5.1)	7.0 (4.7)
			EA	1,072	100%	64.6 (7.1)	463,916	19.4 (6.0)	13.0 (5.0)	6.4 (5.2)
			HLA	312	100%	61.5 (6.1)	463,916	21.9 (7.1)	12.8 (6.3)	9.1 (5.3)
All			AA (45.8%)							
			HLA (8.4%)	8,397	83%	61.3 (7.4)	463,916	20.9 (5.8)	13.2 (4.3)	7.7 (4.0)
			EA (45.8%)							

Abbreviations: AA, African American; ARIC, Atherosclerosis Risk in Communities; AS311, Ancillary Study 311; BAA23,

Broad Agency Award 23; CpG, Cytosine-phosphate-Guanine; CT, Clinical Trial; EA, European American; EMPC, Epigenetic

Mechanisms of PM-Mediated CVD Risk; HLA, Hispanic/Latino American; mo, month; OS, Observational Study; PM₁₀, PM <

 μ m in diameter; PM_{2.5}, PM < 2.5 μ m in diameter; PM_{2.5-10}, PM > 2.5 and < 10 μ m in diameter; SD, standard deviation; WHI,

Women's Health Initiative; x^{-} , mean

aAt the 1st visit. Methylation data also were available among 185 & 43 WHI-EMPC participants @ the 2nd & 3rd visits

324 Table 2

Particulate matter concentration ($\mu g/m^3$) means and Pearson correlations in the total population (n =

326 8,397)

		PM_{10}	PM_{10}	PM_{10}	PM_{10}	PM_{10}	PM_{10}	PM _{2.5}	PM _{2.5}	PM _{2.5-10}	PM _{2.5-10}
		2 d	7 d	28 d	365 d	1 mo	12 mo	1 mo	12 mo	1 mo	12 mo
	<i>x</i> ⁻	31.9	31.1	30.9	31.2	20.9	20.9	13.2	13.2	7.7	7.8
	(SD)	(12.1)	(9.2)	(7.1)	(5.1)	(5.8)	(4.0)	(4.3)	(3.0)	(4.0)	(3.1)
PM ₁₀	2 d	1.00									
PM_{10}	7 d	0.74	1.00								
PM_{10}	28 d	0.58	0.79	1.00							
PM_{10}	365 d	0.43	0.56	0.70	1.00						
PM_{10}	1 mo	0.39	0.48	0.54	0.27	1.00					
PM_{10}	12 mo	0.15	0.18	0.24	0.35	0.62	1.00				
PM _{2.5}	1 mo	0.29	0.36	0.41	0.17	0.73	0.39	1.00			
PM _{2.5}	12 mo	0.11	0.12	0.15	0.23	0.40	0.64	0.66	1.00		
PM _{2.5-10}	1 mo	0.25	0.31	0.35	0.21	0.67	0.48	-0.02	-0.13	1.00	
PM _{2.5-10}	12 mo	0.08	0.12	0.17	0.23	0.41	0.67	-0.14	-0.14	0.74	1.00

327 Abbreviations: d, day; mo, month; PM, particulate matter; PM_{10} , $PM < 10 \mu m$ in diameter; $PM_{2.5}$, $PM < 2.5 \mu m$ in diameter;

 $PM_{2.5-10}$, PM > 2.5 and $< 10 \mu m$ in diameter; SD, standard deviation; x, mean

330 QQ plots (Fig. 1) based on the trans-ethnic, fixed-effects, inverse variance-weighted meta-331 analyses provided little evidence of inflation across pollutants and averaging durations: median (range) λ 332 = 1.01, (0.89-1.07). Manhattan plots (Fig. 2) show three significant ($P < 1 \ge 10^{-7}$) and 55 suggestively 333 significant ($1 \ge 10^{-5} < P < 1 \ge 10^{-7}$) PM-sensitive CpG sites (Tables 3 and S3). The three significant CpG 334 sites (cg19004594; cg24102420; cg12124767) were neither within ten base pairs of single nucleotide 335 polymorphisms (minor allele frequency > 1%) nor previously identified as cross-reactive probes (Chen et 336 al. 2013).

Fig. 2. Manhattan plot of $-\log_{10} p$ -value vs. chromosomal position of each CpG site from trans-ethnic, fixed-effects meta-analyses of 2-, 7-, 28-, and 365-day PM₁₀ and 1- and 12-month PM₁₀ and PM_{2.5}. The red line references the methylome-wide significance threshold ($P < 1.0 \times 10^{-7}$).

347 Table 3

 Findings from trans-ethnic, fixed-effects meta-analyses ($P < 1 \ge 10^{-7}$, $P_{Cochran's O} > 0.10$).

Chr	Position ^a	CpG	Exposure	%Δ (95% CI) ^b	Р	n _{obs}	Gene
20	43926884	cg19004594	PM ₁₀ , 28 d	0.3 (0.2, 0.4)	3.33 x 10 ⁻⁸	8,622	MATN4
3	35785890	cg24102420	PM ₁₀ , 1 mo	-0.5 (-0.7, -0.3)	5.84 x 10 ⁻⁸	8,575	ARPP21 /
		-6	109	(,)		- ,	MIR128-2
7	117299297	cg12124767	PM _{2.5-10} , 1 mo	-0.5 (-0.7, -0.3)	9.96 x 10 ⁻⁸	8,577	CFTR

349Abbreviations: Δ , change; Chr, chromosome; CI, confidence interval; CpG, Cytosine-phosphate-Guanine; d, days; mo, month;350PM₁₀, PM < 10 µm in diameter; PM_{2.5}, PM < 2.5 µm in diameter; PM_{2.5-10}, PM > 2.5 and < 10 µm in diameter</td>351^aBuild 37

352 ^bAbsolute percentage point per 10 μ g/m³ increase in PM₁₀

On chromosome 20 within an exonic CpG island of *MATN4*, a 10 μ g/m³ increase in 28-day mean PM₁₀ was associated with a 0.3% (95% confidence interval [CI]: 0.2, 0.4) higher DNAm at cg19004594 (*P* = 3.33 x 10⁻⁸; Fig. 3A). On chromosome 3 intronic to *ARPP21*, a 10 μ g/m³ increase in 1-month mean

 PM_{10} was associated with a 0.5% (95% CI: 0.3, 0.7) lower DNAm at cg24102420 ($P = 5.84 \times 10^{-8}$; Fig. 3B). Cg24102420 is approximately 200 base pairs upstream from the transcriptional start site for microRNA 128-2 (*miR128-2*). On chromosome 7 intronic to CFTR, a 10 µg/m³ increase in 1-month mean $PM_{2.5-10}$ was associated with a 0.5% (95% CI: 0.3, 0.7) lower DNAm at cg12124767 ($P = 9.86 \times 10^{-8}$; Fig. 3C). Furthermore, PM associations with cg19004594, cg24102420, and cg12124767 were similar across race/ethnic strata (Fig. S1). Complete annotations for all PM-sensitive CpG sites ($P < 1 \times 10^{-7}$) are available in Excel Table S1.

Fig. 3. Forest plots of PM-CpG associations (95% confidence intervals) for A) cg19004594, B) cg2410240, and C) cg12124767 with a 10 µg/m³ increase in PM by subpopulation and overall after fixed-effects meta-analysis.

3.1. Technical validation

Overall, bisulfite pyrosequencing and Illumina 450K-based DNAm measures were similar (Table S4). The medians (interdecile ranges) of Δ , r, α and β were: 0.01 (-0.06, 0.07), 0.73 (0.20, 0.83), 0.04 (-0.27, 0.24), and 0.98 (0.09, 1.62). Corresponding estimates (95% CIs) for cg24102420 were -0.04 (-0.04, -0.03), 0.79 (0.73, 0.83), -0.16 (-0.38, 0.07) and 1.13 (0.88, 1.39). Cg19004594 and cg12124767 were not pyrosequenced.

3.2. Functional annotation

MATN4 is highly expressed in the pancreas, reproductive tract, and skin (Fig. S2), but variants of this gene have not been significantly associated ($P < 5 \ge 10^{-8}$) with any phenotypes in prior GWAS. *ARPP21* is primarily expressed in the brain (Fig. S3), is significantly associated with neuroticism and severe H1N1 influenza, and suggestively associated ($5 \ge 10^{-8} < P < 5 \ge 10^{-6}$) with entorhinal cortical thickness and childhood-onset asthma in prior GWAS. *CFTR* is expressed in various tissues, including the pancreas, colon, minor salivary gland, digestive tract, and lung (Fig. S4). *CFTR* polymorphisms are

897 898			
899	383	associated with cystic fibrosis (CF) Barrett's esophagus / esophageal carcinoma and coronary artery	
900 901	384	disease.	
902	385	Differential methylation at cg19004594 cg24102420 or cg12124767 was not associated with	
903 904	386	gene expression in blood cells at any of the > 13000 transcripts evaluated ($P > 10^{-5}$) in the MESA/GT	Р
905	387	cohorts Although genomic regions around PM-sensitive CpG sites were associated with tri-methylatic	on
906	388	of histore 3 at lysine 9 (H3K9me3) in natural killer cells derived mesenchymal stem cells the fetal	
907 908	389	adrenal gland fetal lung fibroblasts and foreskin fibroblasts (FDR < 0.05 Fig. 4) they were not	
909	390	associated with mono- or tri-methylation of histore 3 at lysine 4 27 or 36 (H3K4me1 H3K4me3	
910 911	391	H3K27me3 or H3K36me3) or DNase I hypersensitivity in any tissues catalogued by eFORGE	
912	392	Tisk2/mes, of Tisk5omes) of Divase Thypersensitivity in any dissues cautogated by efforce.	
913 914	302	3.3 Paplication	
915	204	The three statistically significant, non betarageneous PM sensitive CpC sites (ag10004504;	
916	205	224102420; $a=12124767$) did not replicate in KORA E2 / E4 (Table S5)	
917 918	375	cg24102420, $cg12124707$) and not replicate in KORA F37 F4 (Table S3).	
919	570		
920 921			
922			
923			
924 925			
926			
927			
928 929			
930			
931			
932			
934			
935			
936			
937 938			
939			
940			
941			
942 943			
944			
945			
946			
947 948			
949			
950			
951			17
90Z			

Fig. 4. Enrichment of PM-sensitive CpG sites in regions overlapping H3K9me3 using Roadmap data.

398 4. Discussion

This methylome-wide association study (MWAS) discovered three CpG sites at which higher levels of monthly mean ambient particulate matter air pollution concentrations were associated with DNAm. The DNAm-PM associations at all three CpG sites were homogeneous across the twelve subpopulations and each site was annotated to a neurological, pulmonary, endocrine, or cardiovascular disease-related gene (MATN4, ARPP21 or CFTR). Although a recent MWAS also implicated cigarette smoking in DNA methylation at ARPP21 and CFTR (Joehanes et al. 2016)—two genes that may underlie epigenetically mediated responses to inhalable environmental exposures-the CpG sites discovered herein are in different regions of ARPP21 and CFTR, suggesting varied responses to particulate exposures, and none of them were associated with gene expression of blood cells in MESA/GTP.

Methylation of cg19004594 (exon of MATN4) was positively associated with 28-day mean PM₁₀ concentrations. MATN4 encodes Matrilin 4, a von Willebrand factor A domain-containing protein, which contributes to cardiac remodeling (Barallobre-Barreiro et al. 2012) and inhibits the proliferation of hematopoietic stem cells at rest. Additionally, environmental stressors trigger expression of the CXCL12-encoded chemokine (SDF1) (Liberda et al. 2010) and activation of its G protein-coupled receptor (CXCR4), leading to inhibition of Matrilin 4 and subsequent expansion of hematopoietic stem cell pools (Uckelmann et al. 2016). SDF1-activated CXCR4 also inhibits beta-adrenergically activated calcium influx through myocardial L-type calcium ion channels (Pyo et al. 2006), a process that may affect PM_{10} -associated ventricular action potential and electrocardiographic QT interval duration (Gondalia et al. 2017). Methylation of MATN4 may therefore underlie commonly observed hematological and electrocardiographic of effects of PM₁₀.

Methylation at cg24102420 (intron of ARPP21) was positively associated with 1-month mean PM₁₀ concentrations. ARPP21 encodes a neuronal cAMP-regulated phosphoprotein, a regulator of calmodulin signaling (RCS) that is highly enriched in medium spiny neurons within the basal ganglia, cerebral cortex, and other regions of the brain (Rakhilin et al. 2004), with dual evidence of expression in cardiac tissues (Kahr et al. 2011; Kirchhof et al. 2011; Mathar et al. 2013). Variants of ARPP21 have been associated with entorhinal cortical thickness (Furney et al. 2010). Calmodulin signaling (O'Day et al. 2015), entorhinal cortical thickness (Velayudhan et al. 2013), and PM air pollution (Cacciottolo et al. 2017) are all associated with Alzheimer's disease progression, suggesting a potential epigenetic mechanism of PM₁₀-related neuropathology.

1057429Indeed, ARPP21 and miR128-2, a microRNA within ARPP21, are both regulators of dendritic1058430growth (Rehfeld et al. 2018). In a study of rats, exposure to ammonium sulfate, a major component of1059431PM2.5, was associated with diminished dendritic complexity in hippocampal neurons (Cheng et al. 2017).

Additionally, *miR128* expression in peripheral blood of steel plant workers increased with increases in PM exposure, as was confirmed by an *in vitro* study of PM-treated pulmonary tissue (Bollati et al. 2015). Additional roles of *miR128* include the inhibition of *ABCA1* and *ABCG1*, adenosine triphosphate-binding cassette (ABC) transporter genes also involved in homeostasis of cholesterol (Adlakha et al. 2013), an established risk factor for stroke, myocardial infarction, and other common forms of cardiovascular disease.

Methylation at cg12124767 (intron of *CFTR*) was inversely associated with 1-month mean $PM_{2.5}$ ¹⁰ concentrations. CFTR encodes a transmembrane conductance regulator; specifically, an ABC transporter of chloride and thiocyanate ions. The CFTR-encoded ABC transporter controls fluid secretion and absorption in epithelial tissues (Saint-Criq and Gray 2017). Its most common mutation impairs folding and trafficking of the encoded protein in pulmonary and pancreatic epithelia, causing CF and CF-related diabetes (Brennan et al. 2004). However, cigarette smoke and chronic inflammation also reduce *CFTR* chloride channel function (Rasmussen et al. 2014), a hypothesized molecular pathway underlying the development of chronic obstructive pulmonary disease (Rab et al. 2013). Furthermore, CFTR chloride channel currents in the myocardium shorten action potential and QT interval duration (Duan 2013). Their activation by cAMP protein kinase A (PKA), protein kinase C (PKC), or extracellular adenosine triphosphate (ATP) through purinergic receptors (al-Awgati 1995; Duan 2013) can be arrhythmogenic (Cacciapuoti et al. 1991; Engler and Yellon 1996; Leonard et al. 2017; Najeed et al. 2002; Yamazaki and Hume 1997). Hypomethylation of *CFTR* at this site therefore highlights another epigenetic mechanism that may underlie PM₁₀-related pulmonary and electrocardiographic manifestations of disease.

While the putative mechanisms described above are biologically plausible, analyses on which they are based are limited by their reliance on DNAm derived from leukocytes. Although other (e.g. heart, lung, nervous) tissues may be more appropriate for studying the role of DNAm on human disease, their collection is highly invasive (McCullough et al. 2017; Zhong et al. 2016); as such, leukocytes extracted from peripheral blood are widely used surrogate tissues (Zhong et al. 2016) with demonstrated consistency of DNAm patterns across relevant tissues types (Byun et al. 2009; Fan and Zhang 2009; Ma et al. 2014). Still, DNAm at cg19004594, cg24102420, cg12124767 was not associated with gene expression of blood cells in GTP/MESA (Kennedy et al. 2018). Unlike DNAm patterns though, gene expression is highly variable by tissue type (Aguet et al. 2017), and MATN4, ARPP21 and CFTR are primarily expressed in other tissues.

The inability to replicate associations in KORA F3 and F4 participants is noteworthy. Although independent from the discovery populations, KORA represents a population of white, European men and women living in Augsburg, Germany, one distinct from that of the environmentally diverse, multiracial/ethnic U.S. populations in the discovery. In addition, PM composition in ARIC and WHI (1990-

- 466 2012) may differ from that in Augsburg during KORA F3 and F4 (2004-2006). Furthermore, PM
 467 concentrations in KORA were measured at community monitors, while those in WHI and ARIC were
 468 spatially or spatiotemporally estimated at participant geocoded addresses from monitoring networks in the
 469 48 contiguous US states.
- DNAm associations with PM_{2.5} – potentially the driver for PM-associated disease (Brook et al.) – were not detected in this study. Inability to do so may be due to lower power to detect PM_{2.5} versus PM₁₀ associations with DNAm given lower-variance PM_{2.5} exposure estimates, lack of short-duration PM2.5 data before 1999 when EPA AQS started monitoring it, and / or induction of PM2.5 health effects that are not epigenetically mediated.

The analyses also were limited by predominantly cross-sectional data, high multiple testing burden, small effect sizes, and residual need for functional characterization. However, repeated measures of PM and DNAm over time were leveraged in WHI-EMPC to increase statistical power. Among-pollutant correlations also were moderate in this context, so the multiple comparisons made were not strictly independent. Similarly, the Bonferroni-corrected threshold used herein ($P < 1 \ge 10^{-7}$) is conservative because of methylome-wide correlations among CpG sites (Saffari et al. 2018; Tsai et al. 2012), decreasing the likelihood of false positives. Moreover, observed effect sizes were consistent with those seen in other epigenetic studies of particulate matter exposure (de F. C. Lichtenfels et al. 2018; Panni et al. 2016; Plusquin et al. 2017) and smoking (Joehanes et al. 2016). Further investigation is nonetheless needed to determine the clinical impact of CpG-specific changes in methylation although functional validation of epigenetic associations was outside the scope of presently funded work. Still, this is a well-powered study of geographically diverse, multi-racial/ethnic populations of women and men with methylome-wide DNAm and geocoded address-specific PM data, that leveraged multivariate imputation to minimize selection-related biases otherwise known to affect epidemiologic associations in complete data analyses.

491 5. Conclusions

492 1162

 Findings from this large, racially/ethnically and environmentally diverse methylome-wide
association study of women and men in EPA regions 1-10 suggest that ambient particulate matter air
pollution affects DNAm at regions of the genome potentially related to neurological, pulmonary,
endocrine, and cardiovascular disease. Although the discovered associations are biologically plausible,
functional characterization in relevant tissues or animal models remain necessary to validate associations
and elucidate putative epigenetic mechanisms of PM-associated disease.

1177	
1170	
1170	
1179	500
1180	
1181	
1182	
1102	
1103	
1184	
1185	
1186	
1187	
1107	
1100	
1189	
1190	
1191	
1192	
1102	
1193	
1194	
1195	
1196	
1197	
1100	
1190	
1199	
1200	
1201	
1202	
1202	
1203	
1204	
1205	
1206	
1207	
1207	
1200	
1209	
1210	
1211	
1212	
1012	
1213	
1214	
1215	
1216	
1217	
1210	
1210	
1219	
1220	
1221	
1222	
1222	
1004	
1224	
1225	
1226	
1227	
1228	
1220	
1229	
1230	
1231	
1232	

1233		
1234		
1235	501	Acknowledgements
1237	502	
1238	503	The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal
1239	504	funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of
1241	505	Health and Human Services (contract numbers HHSN2682017000011, HHSN2682017000021,
1242	506	HHSN268201700003I, HHSN268201700004I and HHSN268201700005I). The authors thank the staff
1243	507	and participants of the ARIC study for their important contributions. Funding was also supported by
1245	508	5PC2HI 102410 and P01NS087541. Data from the APIC study are available on request at
1246 1247	500	skc2112102419 and K0111508/541. Data from the AKIC study are available on request at
1248	509	The NHH and and and an an an and an an and an an and an an an and an
1249	510	The WHI program is funded by the NHLBI, U.S. Department of Health and Human Services,
1250	511	through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C,
1252	512	HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C. WHI-AS311 was supported
1253	513	by American Cancer Society award 125299-RSG-13-100-01-CCE. All contributors to WHI science are
1254 1255	514	listed at
1256	515	https://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Lon
1257	516	<u>g%20List.pdf</u> . Data from the WHI are available on request at
1258 1259	517	https://www.whi.org/researchers/SitePages/Write%20a%20Paper.aspx.
1260	518	The KORA study was initiated and financed by the Helmholtz Zentrum München – German
1261 1262	519	Research Center for Environmental Health, which is funded by the German Federal Ministry of Education
1263	520	and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within
1264 1265	521	the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of
1266	522	LMUinnovativ.
1267	523	This work was supported by NIEHS grant R01-ES020836 (LH, AB, EAW), NHLBI contract
1269	524	HHSN268201100046C (KC), NIEHS grant R01-ES017794 (EAW), NHLBI National Research Service
1270	525	Award T32-HL007055 (RG), NIEHS National Research Service Award T32-ES007018 (KH), and NCI
1271	526	grant R25-CA094880 (KJ).
1273	527	
1274	528	Conflicts of interest
1275	520	No authors have declared a notantial conflicts of interest
1277	JZ7	No autions have declared a potential conflicts of interest.
1278	530	
1279		
1281		
1282		
1283		
1284		
1285		
1286		
1287 1288		23
00		

References Adlakha, Y.K.; Khanna, S.; Singh, R.; Singh, V.P.; Agrawal, A.; Saini, N. Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXR α expression and cholesterol homeostasis. Cell Death & Disease 2013;4:e780 Aguet, F.; Brown, A.A.; Castel, S.E.; Davis, J.R.; He, Y.; Jo, B.; Mohammadi, P.; Park, Y.; Parsana, P.; Segrè, A.V.; Strober, B.J.; Zappala, Z.; Cummings, B.B.; Gelfand, E.T.; Hadley, K.; Huang, K.H.; Lek, M.; Li, X.; Nedzel, J.L.; Nguyen, D.Y.; Noble, M.S.; Sullivan, T.J.; Tukiainen, T.; MacArthur, D.G.; Getz, G.; Addington, A.; Guan, P.; Koester, S.; Little, A.R.; Lockhart, N.C.; Moore, H.M.; Rao, A.; Struewing, J.P.; Volpi, S.; Brigham, L.E.; Hasz, R.; Hunter, M.; Johns, C.; Johnson, M.; Kopen, G.; Leinweber, W.F.; Lonsdale, J.T.; McDonald, A.; Mestichelli, B.; Myer, K.; Roe, B.; Salvatore, M.; Shad, S.; Thomas, J.A.; Walters, G.; Washington, M.; Wheeler, J.; Bridge, J.; Foster, B.A.; Gillard, B.M.; Karasik, E.; Kumar, R.; Miklos, M.; Moser, M.T.; Jewell, S.D.; Montroy, R.G.; Rohrer, D.C.; Valley, D.; Mash, D.C.; Davis, D.A.; Sobin, L.; Barcus, M.E.; Branton, P.A.; Abell, N.S.; Balliu, B.; Delaneau, O.; Frésard, L.; Gamazon, E.R.; Garrido-Martín, D.; Gewirtz, A.D.H.; Gliner, G.; Gloudemans, M.J.; Han, B.; He, A.Z.; Hormozdiari, F.; Li, X.; Liu, B.; Kang, E.Y.; McDowell, I.C.; Ongen, H.; Palowitch, J.J.; Peterson, C.B.; Quon, G.; Ripke, S.; Saha, A.; Shabalin, A.A.; Shimko, T.C.; Sul, J.H.; Teran, N.A.; Tsang, E.K.; Zhang, H.; Zhou, Y.-H.; Bustamante, C.D.; Cox, N.J.; Guigó, R.; Kellis, M.; McCarthy, M.I.; Conrad, D.F.; Eskin, E.; Li, G.; Nobel, A.B.; Sabatti, C.; Stranger, B.E.; Wen, X.; Wright, F.A.; Ardlie, K.G.; Dermitzakis, E.T.; Lappalainen, T.; Aguet, F.; Ardlie, K.G.; Cummings, B.B.; Gelfand, E.T.; Getz, G.; Hadley, K.; Handsaker, R.E.; Huang, K.H.; Kashin, S.; Karczewski, K.J.; Lek, M.; Li, X.; MacArthur, D.G.; Nedzel, J.L.; Nguyen, D.T.; Noble, M.S.; Segrè, A.V.; Trowbridge, C.A.; Tukiainen, T.; Abell, N.S.; Balliu, B.; Barshir, R.; Basha, O.; Battle, A.; Bogu, G.K.; Brown, A.; Brown, C.D.; Castel, S.E.; Chen, L.S.; Chiang, C.; Conrad, D.F.; Cox, N.J.; Damani, F.N.; Davis, J.R.; Delaneau, O.; Dermitzakis, E.T.; Engelhardt, B.E.; Eskin, E.; Ferreira, P.G.; Frésard, L.; Gamazon, E.R.; Garrido-Martín, D.; Gewirtz, A.D.H.; Gliner, G.; Gloudemans, M.J.; Guigo, R.; Hall, I.M.; Han, B.; He, Y.; Hormozdiari, F.; Howald, C.; Kyung Im, H.; Jo, B.; Yong Kang, E.; Kim, Y.; Kim-Hellmuth, S.; Lappalainen, T.; Li, G.; Li, X.; Liu, B.; Mangul, S.; McCarthy, M.I.; McDowell, I.C.; Mohammadi, P.; Monlong, J.; Montgomery, S.B.; Muñoz-Aguirre, M.; Ndungu, A.W.; Nicolae, D.L.; Nobel, A.B.; Oliva, M.; Ongen, H.; Palowitch, J.J.; Panousis, N.; Papasaikas, P.; Park, Y.; Parsana, P.; Payne, A.J.; Peterson, C.B.; Quan, J.; Reverter, F.; Sabatti, C.; Saha, A.; Sammeth, M.; Scott, A.J.; Shabalin, A.A.; Sodaei, R.; Stephens, M.; Stranger, B.E.; Strober, B.J.; Sul, J.H.; Tsang, E.K.; Urbut, S.; van de Bunt, M.; Wang, G.; Wen, X.; Wright, F.A.; Xi, H.S.; Yeger-Lotem, E.; Zappala, Z.; Zaugg, J.B.; Zhou, Y.-H.; Akey, J.M.; Bates, D.; Chan, J.; Chen, L.S.; Claussnitzer, M.; Demanelis, K.; Diegel, M.; Doherty, J.A.; Feinberg, A.P.; Fernando, M.S.; Halow, J.; Hansen, K.D.; Haugen, E.; Hickey, P.F.; Hou, L.; Jasmine, F.; Jian, R.; Jiang, L.; Johnson, A.; Kaul, R.; Kellis, M.; Kibriya, M.G.; Lee, K.; Billy Li, J.; Li, Q.; Li, X.; Lin, J.; Lin, S.; Linder, S.; Linke, C.; Liu, Y.; Maurano, M.T.; Molinie, B.; Montgomery, S.B.; Nelson, J.; Neri, F.J.; Oliva, M.; Park, Y.; Pierce, B.L.; Rinaldi, N.J.; Rizzardi, L.F.; Sandstrom, R.; Skol, A.; Smith, K.S.; Snyder, M.P.; Stamatoyannopoulos, J.; Stranger, B.E.; Tang, H.; Tsang, E.K.; Wang, L.; Wang, M.; Van Wittenberghe, N.; Wu, F.; Zhang, R.; Nierras, C.R.; Branton, P.A.; Carithers, L.J.; Guan, P.; Moore, H.M.; Rao, A.; Vaught, J.B.; Gould, S.E.; Lockart, N.C.; Martin, C.; Struewing, J.P.; Volpi, S.; Addington, A.M.; Koester, S.E.; Little, A.R.; Brigham, L.E.; Hasz, R.; Hunter, M.; Johns, C.; Johnson, M.; Kopen, G.; Leinweber, W.F.; Lonsdale, J.T.; McDonald, A.; Mestichelli, B.; Mver, K.; Roe, B.; Salvatore, M.; Shad, S.; Thomas, J.A.; Walters, G.; Washington, M.; Wheeler, J.; Bridge, J.; Foster, B.A.; Gillard, B.M.; Karasik, E.; Kumar, R.; Miklos, M.; Moser, M.T.; Jewell, S.D.; Montroy, R.G.; Rohrer, D.C.; Valley, D.R.; Davis, D.A.; Mash, D.C.; Undale, A.H.; Smith, A.M.; Tabor, D.E.; Roche, N.V.; McLean, J.A.; Vatanian, N.; Robinson, K.L.; Sobin, L.; Barcus,

1345		
1346		
1347	581	M.E.; Valentino, K.M.; Oi, L.; Hunter, S.; Hariharan, P.; Singh, S.; Um, K.S.; Matose, T.;
1348	582	Tomaszewski, M.M.; Barker, L.K.; Mosavel, M.; Siminoff, L.A.; Traino, H.M.; Flicek, P.;
1349	583	Juettemann, T.; Ruffier, M.; Sheppard, D.; Taylor, K.; Trevanion, S.J.; Zerbino, D.R.; Craft, B.;
1350	584	Goldman, M.; Haeussler, M.; Kent, W.J.; Lee, C.M.; Paten, B.; Rosenbloom, K.R.; Vivian, J.;
1351	585	Zhu, J. Genetic effects on gene expression across human tissues. Nature 2017;550:204
1352		
1353	586	al-Awqati, Q. Regulation of ion channels by ABC transporters that secrete ATP. Science 1995;269:805-
1354	587	806
1355		
1356	588	Alexeeff, S.E.; Schwartz, J.; Kloog, I.; Chudnovsky, A.; Koutrakis, P.; Coull, B.A. Consequences of
1357	589	kriging and land use regression for PM2.5 predictions in epidemiologic analyses: insights into
1358	590	spatial variability using high-resolution satellite data. Journal Of Exposure Science And
1359	591	Environmental Epidemiology 2014;25:138
1360	500	Anderson C.I. : LeCrain A. W.G. Long Life Study (Long Life Study)
1361	392	Anderson, G.L., LaCroix, A. w64 - Long Life Study (Long Life Study).
1362	502	Anderson G.I. Manson, I. Wallace, R. Lund, R. Hall, D. Davis, S. Shumaker, S. Wang, C. V.
1363	59/	Stein E: Prentice R I Implementation of the Women's Health Initiative study design Annals of
1364	595	enidemiology 2003:13:85-817
1365	575	cpidemiology 2005,15.55-517
1366	596	Andrews SV · Ladd-Acosta C · Feinberg AP · Hansen KD · Fallin MD "Gan hunting" to
1367	597	characterize clustered probe signals in Illumina methylation array data Epigenetics & Chromatin
1368	598	2016:9:56
1369		
1370	599	ARIC. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC
1371	600	investigators. Am J Epidemiol 1989;129:687-702
1372		
1373	601	Assimes, T.; Tsao, P.; Absher, D.; Horvath, S. BA23 - Integrative genomics and risk of CHD and related
1374	602	phenotypes in the Women's Health Initiative.
1376	(00	
1370	603	Azur, M.J.; Stuart, E.A.; Frangakis, C.; Leaf, P.J. Multiple imputation by chained equations: what is it
1378	604	and how does it work? International journal of methods in psychiatric research 2011;20:40-49
1379	605	Pagagralli A · Dianstra M · Daniamin E I Cardiovascular Enigenetics Circulation: Cardiovascular
1380	606	Genetics 2010:3:567
1381	000	Genetics 2010, 5.507
1382	607	Barallobre-Barreiro J. Didangelos A. Schoendube F.A. Drozdov J. Yin X. Fernández-Caggiano
1383	608	M.: Willeit, P.: Puntmann, V.O.: Aldama-López, G.: Shah, A.M.: Doménech, N.: Mavr, M.
1384	609	Proteomics Analysis of Cardiac Extracellular Matrix Remodeling in a Porcine Model of
1385	610	Ischemia/Reperfusion Injury. Circulation 2012;125:789-802
1386		
1387	611	Bates, D. Mixed-effects models in Julia. GitHub; 2017
1388		
1389	612	Bellavia, A.; Urch, B.; Speck, M.; Brook, R.D.; Scott, J.A.; Albetti, B.; Behbod, B.; North, M.; Valeri, L.;
1390	613	Bertazzi, P.A.; Silverman, F.; Gold, D.; A. Baccarelli, A. DNA Hypomethylation, Ambient
1391	614	Particulate Matter, and Increased Blood Pressure: Findings From Controlled Human Exposure
1392	615	Experiments. Journal of the American Heart Association 2013;2
1393	[]]	Demetein D.F. Stemeterson encular I.A. Contalla I.F. Dav. D. Miller I. A. M. A.
1394	010	Bernstein, B.E.; Stamatoyannopoulos, J.A.; Costello, J.F.; Ken, B.; Milosavljevic, A.; Melssner, A.;
1395	01/	rems, M.; Marra, M.A.; Beaudet, A.L.; Ecker, J.K.; Farnnam, P.J.; Hirst, M.; Lander, E.S.;
1396		
1397		
1398		
1399		25
1400		

1401		
1402		
1403	618	Mikkelsen, T.S.: Thomson, J.A. The NIH Roadman Enigenomics Manning Consortium, Nature
1404	619	histechnology 2010:28:1045-1048
1405	017	010t00111010Bj 2010,20.10 10 10 10
1406	620	Bezanson J. Edelman A. Karpinski S. Shah V.B. Julia: A Fresh Approach to Numerical Computing
1407	621	SIAM Review 2017:59:65-98
1408	021	
1409	622	Bollati, V.; Angelici, L.; Rizzo, G.; Pergoli, L.; Rota, F.; Hoxha, M.; Nordio, F.; Bonzini, M.; Tarantini,
1410	623	L.; Cantone, L.; Pesatori, A.C.; Apostoli, P.; Baccarelli, A.A.; Bertazzi, P.A. Microvesicle-
1411	624	associated microRNA expression is altered upon particulate matter exposure in healthy workers
1412	625	and in A549 cells. Journal of Applied Toxicology 2015:35:59-67
1413		
1414	626	Bollati, V.; Baccarelli, A. Environmental epigenetics. Heredity 2010;105:105-112
1415		
1416	627	Breeze, Charles E.; Paul, Dirk S.; van Dongen, J.; Butcher, Lee M.; Ambrose, John C.; Barrett, James E.;
1417	628	Lowe, R.; Rakyan, Vardhman K.; Iotchkova, V.; Frontini, M.; Downes, K.; Ouwehand,
1418	629	Willem H.; Laperle, J.; Jacques, PÉ.; Bourque, G.; Bergmann, Anke K.; Siebert, R.; Vellenga,
1419	630	E.; Saeed, S.; Matarese, F.; Martens, Joost H.A.; Stunnenberg, Hendrik G.; Teschendorff,
1420	631	Andrew E.; Herrero, J.; Birney, E.; Dunham, I.; Beck, S. eFORGE: A Tool for Identifying Cell
1421	632	Type-Specific Signal in Epigenomic Data. Cell Reports 2016;17:2137-2150
1422		
1423	633	Brennan, A.L.; Geddes, D.M.; Gyi, K.M.; Baker, E.H. Clinical importance of cystic fibrosis-related
1424	634	diabetes. Journal of Cystic Fibrosis 2004;3:209-222
1425		
1426	635	Brook, R.D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.;
1427	636	Samet, J.; Smith, S.C.; Tager, I. Air Pollution and Cardiovascular Disease. Circulation
1428	637	2004;109:2655
1/20		
1/20	638	Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.;
1/31	639	Hong, Y.; Luepker, R.V.; Mittleman, M.A.; Peters, A.; Siscovick, D.; Smith, S.C.; Whitsel, L.;
1431	640	Kaufman, J.D. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation
1432	641	2010;121:2331
1433		
1434	642	Byun, HM.; Siegmund, K.D.; Pan, F.; Weisenberger, D.J.; Kanel, G.; Laird, P.W.; Yang, A.S.
1435	643	Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and
1430	644	individual-specific DNA methylation patterns. Human molecular genetics 2009;18:4808-4817
1437	115	Consistenti E. Suissie D. Disasti II. Louis D. Diasing M. Vernischie M. Effectionary of
1400	045	Cacciapuoli, F., Spiezia, K., Bianchi, U.; Lama, D.; D'Avino, M.; Varricchio, M. Effectiveness of
1439	040	gibenciamide on myocardial ischemic ventricular armythmias in non-insulin-dependent diabetes
1440	047	mennus. The American Journal of Cardiology 1991;67:843-847
1441	618	Cacciottala M · Wang V · Driscall I · Woodward N · Saffari A · Pavas I · Sarra M I · Vizueta W ·
1442	040 640	Caccionolo, M., Wang, A., Dilscon, I., Woodward, N., Sanan, A., Reyes, J., Sene, M.L., Vizuele, W., Sioutes, C.: Morgen, T.F.: Catz, M.: Chui, H.C.: Shumakar, S.A.: Besniak, S.M.: Espaland
1443	047 450	Sioulas, C., Morgan, T.E., Galz, M., Chui, H.C., Shumakei, S.A., Resnick, S.M., Espeland, M.A.: Finah, C.F.: Chan, I.C. Dartiaulata air pollutanta. ADOF allolas and thair contributions to
1444	650	M.A., Flich, C.E., Chell, J.C. Falticulate an pollutants, AFOE aneles and their contributions to
1445	652	Translational Psychiatry 2017:7:e1022
1446	υJΖ	Translational I Sychiatry 2017,7.01022
1447	653	Chen R·Meng X·Zhao A·Wang C·Vang C·Li H·Cai I·Zhao Z·Kan H DNA
1448	654	hypomethylation and its mediation in the effects of fine narticulate air nollution on cardiovascular
1449	655	high biomarkers. A randomized crossover trial Environment International 2016.94.614-619
1450	233	commenters. A fundamilier erosso for thus, information international 2010, 71.01 (01)
1451		
1452		
1453		
1454		
1455		26

1457 1458		
1450		
1460	656	Chen, R.; Qiao, L.; Li, H.; Zhao, Y.; Zhang, Y.; Xu, W.; Wang, C.; Wang, H.; Zhao, Z.; Xu, X.; Hu, H.;
1461	65/ (50	Kan, H. Fine Particulate Matter Constituents, Nitric Oxide Synthase DNA Methylation and
1462	058	Exhaled Nitric Oxide. Environmental Science & Technology 2015;49:11859-11865
1463	659	Chen V a · Lemire M · Choufani S · Butcher D T · Grafodatskava D · Zanke B W · Gallinger S ·
1464	660	Hudson T L Weksberg R Discovery of cross-reactive probes and polymorphic CpGs in the
1465	661	Illumina Infinium HumanMethylation450 microarray. Epigenetics 2013:8
1466		
1467	662	Cheng, L.; Lau, W.K.W.; Fung, T.K.H.; Lau, B.W.M.; Chau, B.K.H.; Liang, Y.; Wang, Z.; So, K.F.;
1468	663	Wang, T.; Chan, C.C.H.; Lee, T.M.C. PM2.5 Exposure Suppresses Dendritic Maturation in
1469	664	Subgranular Zone in Aged Rats. Neurotoxicity Research 2017;32:50-57
1470		
1471	665	Clouaire, T.; Stancheva, I. Methyl-CpG binding proteins: specialized transcriptional repressors or
1472	666	structural components of chromatin? Cellular and Molecular Life Sciences 2008;65:1509-1522
1473	//7	Cashran W.C. The Combination of Estimates from Different Europin ante, Diametrics 1054,10,101, 120
1474	00/	Coenran, w.G. The Combination of Estimates from Different Experiments. Biometrics 1954,10:101-129
1475	668	Cohen A I Brauer M Burnett R Anderson H R Frostad I Esten K Balakrishnan K
1470	669	Brunekreef B · Dandona L · Dandona R · Feigin V · Freedman G · Hubbell B · Jobling A ·
14//	670	Kan H. Knibbs L. Liu Y. Martin R. Morawska L. Pope C.A. III. Shin H. Straif K.
1478	671	Shaddick, G.: Thomas, M.: van Dingenen, R.: van Donkelaar, A.: Vos, T.: Murray, C.J.L.:
1479	672	Forouzanfar, M.H. Estimates and 25-year trends of the global burden of disease attributable to
1400	673	ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The
1401	674	Lancet 2017;389:1907-1918
1402		
1403	675	Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature
1404	676	2012;489:57-74
1405		
1487	677	Cornbleet, P.J.; Gochman, N. Incorrect least-squares regression coefficients in method-comparison
1488	678	analysis. Clinical Chemistry 1979;25:432-438
1489	(70	de E. C. Liebtenfele, A. L. ven der Bleet, D.A., de Jene, K., ven Diemen, C.C., Destrue, D.S., Nedelikervie
1490	680	L : von Duijn C M : Amin N : la Pastida van Gemert S : de Vries M : Word Coviness C K :
1491	681	Wolf K · Waldenberger M · Peters A · Stolk R P · Brunekreef R · Boezen H M · Vonk IM
1492	682	I ong-term Air Pollution Exposure Genome-wide DNA Methylation and Lung Function in the
1493	683	LifeLines Cohort Study Environ Health Perspect 2018:126:027004
1494	000	Enclines Conort Study. Environ neurin reispeet 2010,120.027001
1495	684	Devlin, B.; Roeder, K.; Wasserman, L. Genomic control, a new approach to genetic-based association
1496	685	studies. Theoretical population biology 2001;60:155-166
1497		
1498	686	Di, Q.; Wang, Y.; Zanobetti, A.; Wang, Y.; Koutrakis, P.; Choirat, C.; Dominici, F.; Schwartz, J.D. Air
1499	687	Pollution and Mortality in the Medicare Population. New England Journal of Medicine
1500	688	2017;376:2513-2522
1501		
1502	689	Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L. Fine particulate air pollution
1503	690	and hospital admission for cardiovascular and respiratory diseases. JAMA 2006;295
1504	601	Duan D.D. Phanamias of Cardias Chlorida Channels, Comprehensive Physicalogy, 2012
1505	041	Duan, D.D. Phenomics of Cardiac Chloride Channels. Comprehensive Physiology; 2013
1506	692	Engler R.I. Vellon D.M. Sulfonylures KATP Blockade in Type II Dispetes and Preconditioning in
1507	693	Cardiovascular Disease Time for Reconsideration 1996.94.7297-2301
1508	0,0	
1509		
1510		
1511		27
1512		

1513		
1514		
1516	694	EPA. What are the Air Quality Standards for PM? : U.S. Environmental Protection Agency; 2017
1517 1518 1519	695 696	Fan, S.; Zhang, X. CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochemical and Biophysical Research Communications 2009;383:421-425
1520	697	Furney, S.J.; Simmons, A.; Breen, G.; Pedroso, I.; Lunnon, K.; Proitsi, P.; Hodges, A.; Powell, J.;
1521	698	Wahlund, L.O.; Kloszewska, I.; Mecocci, P.; Soininen, H.; Tsolaki, M.; Vellas, B.; Spenger, C.;
1522	699	Lathrop, M.; Shen, L.; Kim, S.; Saykin, A.J.; Weiner, M.W.; Lovestone, S. Genome-wide
1523	700	association with MRI atrophy measures as a quantitative trait locus for Alzheimer's disease.
1524	/01	Molecular Psychiatry 2010;16:1130
1526	702	Gan WO · FitzGerald IM · Carlsten C · Sadatsafavi M · Brauer M Associations of Ambient Air
1527	703	Pollution with Chronic Obstructive Pulmonary Disease Hospitalization and Mortality American
1528	704	Journal of Respiratory and Critical Care Medicine 2013;187:721-727
1529		
1530	705	Gondalia, R.; Avery, C.L.; Napier, M.D.; Mendez-Giraldez, R.; Stewart, J.D.; Sitlani, C.M.; Li, Y.;
1531	706	Wilhelmsen, K.C.; Duan, Q.; Roach, J.; North, K.E.; Reiner, A.P.; Zhang, Z.M.; Tinker, L.F.;
1532	707	Yanosky, J.D.; Liao, D.; Whitsel, E.A. Genome-wide Association Study of Susceptibility to
1533	/08	Particulate Matter-Associated Q1 Prolongation. Environ Health Perspect 2017;125:06/002
1534	709	Hernan MA: Hernandez-Diaz S: Robins IM A structural approach to selection bias Enidemiology
1535	710	2004·15·615-625
1536		
1538	711	Holle, R.; Happich, M.; Löwel, H.; Wichmann, HE.; Group, n.f.t.M.K.S. KORA-a research platform for
1530	712	population based health research. Das Gesundheitswesen 2005;67:19-25
1540		
1541	713	Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.;
1542	714	Wiencke, J.K.; Kelsey, K.I. DNA methylation arrays as surrogate measures of cell mixture
1543	/15	distribution. BMC bioinformatics 2012,15.1
1544	716	Joehanes, R.; Just, A.C.; Marioni, R.E.; Pilling, L.C.; Revnolds, L.M.; Mandaviva, P.R.; Guan, W.; Xu,
1545	717	T.; Elks, C.E.; Aslibekyan, S.; Moreno-Macias, H.; Smith, J.A.; Brody, J.A.; Dhingra, R.;
1546	718	Yousefi, P.; Pankow, J.S.; Kunze, S.; Shah, S.; McRae, A.F.; Lohman, K.; Sha, J.; Absher, D.M.;
1547	719	Ferrucci, L.; Zhao, W.; Demerath, E.W.; Bressler, J.; Grove, M.L.; Huan, T.; Liu, C.; Mendelson,
1548	720	M.M.; Yao, C.; Kiel, D.P.; Peters, A.; Wang-Sattler, R.; Visscher, P.M.; Wray, N.R.; Starr, J.M.;
1549	721	Ding, J.; Rodriguez, C.J.; Wareham, N.J.; Irvin, M.R.; Zhi, D.; Barrdahl, M.; Vineis, P.;
1550	722	Ambatipudi, S.; Uitterlinden, A.G.; Hofman, A.; Schwartz, J.; Colicino, E.; Hou, L.; Vokonas,
1552	723	P.S., Hernandez, D.G., Singleton, A.B., Bandinelli, S., Turner, S.T., Ware, E.B., Smith, A.K., Klengel, T. Binder, F.B. Psaty, B.M. Taylor, K.D. Gharib, S.A. Swenson, B.R. Liang, I.
1553	724	DeMeo D L · Connor G T · Herceg 7 · Ressler K L · Conneely K N · Sotoodehnia N · Kardia
1554	726	SLR · Melzer D · Baccarelli A A · van Meurs JBJ · Romieu J · Arnett DK · Ong KK · Liu
1555	727	Y.; Waldenberger, M.; Deary, I.J.; Fornage, M.; Levy, D.; London, S.J. Epigenetic Signatures of
1556	728	Cigarette Smoking. Circulation: Cardiovascular Genetics 2016;
1557		
1558	729	Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using
1559	730	empirical Bayes methods. Biostatistics 2007;8:118-127
1560	701	Jordahl K.M. · Randolph T.W. · Song V. · Sother C.L. · Tinker I. E. · Dhinne, A.L. Veleou, V.T. · White
1561	732	F : Bhatti P Genome-Wide DNA Methylation in Prediagnostic Blood and Bladder Cancer Pisk
1562	733	in the Women's Health Initiative. Cancer Enidemiology Riomarkers & Prevention 2018.27.689
1563	, 50	in the strength freeden instantse. Cancer Epidemiology, Biomarkers & Frevention 2010,27.009
1504		
1566		
1567		28
		20

1569		
1570		
1571	734	Kahr, P.C.; Piccini, I.; Fabritz, L.; Greber, B.; Schöler, H.; Scheld, H.H.; Hoffmeier, A.; Brown, N.A.;
1572	735	Kirchhof, P. Systematic Analysis of Gene Expression Differences between Left and Right Atria
15/3	736	in Different Mouse Strains and in Human Atrial Tissue. PloS one 2011;6:e26389
1574		
1575	737	Kennedy, E.M.; Goehring, G.N.; Nichols, M.H.; Robins, C.; Mehta, D.; Klengel, T.; Eskin, E.; Smith,
1570	738	A.K.; Conneely, K.N. An integrated -omics analysis of the epigenetic landscape of gene
1577	739	expression in human blood cells. BMC Genomics 2018;19:476
1570	740	
1580	740	Kirchnof, P.; Kahr, P.U.; Kaese, S.; Piccini, I.; Voksni, I.; Scheid, HH.; Kotering, H.; Fortmueller, L.;
1581	741	Adult L aft Atrium and Paducing Dity2c Expression Promotes Atrial Fibrillation Inducibility and
1582	742	Complex Changes in Gene Expression, Circulation: Cardiovascular Genetics 2011:4:123-133
1583	745	Complex Changes in Gene Expression. Circulation. Cardiovascular Genetics 2011,4.125-155
1584	744	Laumbach R.J. Kipen H.M. Respiratory health effects of air pollution. Update on biomass smoke and
1585	745	traffic pollution. Journal of Allergy and Clinical Immunology 2012:129:3-11
1586		
1587	746	Lee, SJ.; Serre Marc, L.; van Donkelaar, A.; Martin Randall, V.; Burnett Richard, T.; Jerrett, M.
1588	747	Comparison of Geostatistical Interpolation and Remote Sensing Techniques for Estimating Long-
1589	748	Term Exposure to Ambient PM2.5 Concentrations across the Continental United States.
1590	749	Environmental Health Perspectives 2012;120:1727-1732
1591		
1592	750	Leonard, C.E.; Hennessy, S.; Han, X.; Siscovick, D.S.; Flory, J.H.; Deo, R. Pro- and Antiarrhythmic
1593	751	Actions of Sulfonylureas: Mechanistic and Clinical Evidence. Trends in Endocrinology &
1594	752	Metabolism 2017;28:561-586
1595	750	Line D. Douguet D. L. Duen, V. Whitsel, E.A. Dou, J. Smith B.L. Lin, H. M. Chen, J. C. Heise, G.
1596	753	CIS approaches for the estimation of residential level ambient DM concentrations. Environmental
1597	754	health perspectives 2006:1274, 1280
1598	/33	nearth perspectives 2000.1574-1580
1599	756	Liao D · Peuquet D J · Lin H - M · Duan Y · Whitsel E A · Smith R L · Heiss G National Kriging
1600	757	Exposure Estimation: Liao et al. Respond. Environmental Health Perspectives 2007:115:A338-
1601	758	A339
1602		
1603	759	Liberda, E.N.; Cuevas, A.K.; Gillespie, P.A.; Grunig, G.; Qu, Q.; Chen, L.C. Exposure to inhaled nickel
1604	760	nanoparticles causes a reduction in number and function of bone marrow endothelial progenitor
1605	761	cells. Inhalation Toxicology 2010;22:95-99
1606		
1607	762	Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.;
1608	763	Young, N.; Foster, B.; Moser, M.; Karasık, E.; Gillard, B.; Ramsey, K.; Sullivan, S.; Bridge, J.;
1609	704 775	Magazine, H.; Syron, J.; Fleming, J.; Siminoff, L.; Iraino, H.; Mosavel, M.; Barker, L.; Jewell, S.; Bahnan, D.; Maxim, D.; Eilleing, D.; Harbach, D.; Cartadilla, E.; Barahuia, D.; Turnan, I.;
1610	700 766	S., Konfer, D., Maxim, D., Flikins, D., Hardach, P., Cortadillo, E., Bergnuis, B., Turner, L., Hudson, E.: Econstro, V.: Sohin, I.: Pohl, I.: Pronton, D.: Vorzoniowski, G.: Shiyo, C.: Tohor
1011	767	D · Oi L · Groch K · Nampally S · Buja S · Zimmerman A · Smith A · Burges R · Robinson
1012	768	K · Valentino K · Bradbury D · Cosentino M · Diaz-Mayoral N · Kennedy M · Engel T ·
1617	769	Williams P · Frickson K · Ardlie K · Winckler W · Getz G · DeLuca D · MacArthur D ·
1615	770	Kellis M · Thomson A · Young T · Gelfand E · Donovan M · Meng Y · Grant G · Mash D ·
1616	771	Marcus, Y.; Basile, M.; Liu, J.; Zhu, J.; Tu, Z.; Cox, N.J.; Nicolae, D.L.; Gamazon, E.R.: Im.
1617	772	H.K.; Konkashbaev, A.; Pritchard, J.; Stevens, M.; Flutre, T.; Wen, X.; Dermitzakis, E.T.;
1618	773	Lappalainen, T.; Guigo, R.; Monlong, J.; Sammeth, M.; Koller, D.; Battle, A.; Mostafavi, S.;
1610	774	McCarthy, M.; Rivas, M.; Maller, J.; Rusyn, I.; Nobel, A.; Wright, F.; Shabalin, A.; Feolo, M.;
1620	775	Sharopova, N.; Sturcke, A.; Paschal, J.; Anderson, J.M.; Wilder, E.L.; Derr, L.K.; Green, E.D.;
1621		
1622		
1623		29
-		Z ,

1625		
1626 1627 1628 1629 1630	776 777 778 779	Struewing, J.P.; Temple, G.; Volpi, S.; Boyer, J.T.; Thomson, E.J.; Guyer, M.S.; Ng, C.; Abdallah, A.; Colantuoni, D.; Insel, T.R.; Koester, S.E.; Little, A.R.; Bender, P.K.; Lehner, T.; Yao, Y.; Compton, C.C.; Vaught, J.B.; Sawyer, S.; Lockhart, N.C.; Demchok, J.; Moore, H.F. The Genotype-Tissue Expression (GTEx) project. Nature genetics 2013:45:580
1631 1632 1633 1634 1635	780 781 782 783	Ma, B.; Wilker, E.H.; Willis-Owen, S.A.G.; Byun, HM.; Wong, K.C.C.; Motta, V.; Baccarelli, A.A.; Schwartz, J.; Cookson, W.O.C.M.; Khabbaz, K.; Mittleman, M.A.; Moffatt, M.F.; Liang, L. Predicting DNA methylation level across human tissues. Nucleic Acids Research 2014;42:3515- 3528
1636 1637 1638 1639 1640	784 785 786 787	Mathar, I.; Kecskes, M.; Van Der Mieren, G.; Jacobs, G.; Uhl, S.; Camacho Londoño, J.E.; Flockerzi, V.; Voets, T.; Freichel, M.; Nilius, B.; Herijgers, P.; Vennekens, R. Increased β-Adrenergic Inotropy in Ventricular Myocardium from Trpm4^{-/-} Mice. Circulation Research 2013;
1641 1642 1643 1644	788 789 790	McCullough, S.D.; Dhingra, R.; Fortin, M.C.; Diaz-Sanchez, D. Air Pollution and the Epigenome: A Model Relationship for the Exploration of Toxicoepigenetics. Current Opinion in Toxicology 2017;
1645 1646 1647 1648	791 792 793	Miller , K.A.; Siscovick , D.S.; Sheppard , L.; Shepherd , K.; Sullivan , J.H.; Anderson , G.L.; Kaufman , J.D. Long-Term Exposure to Air Pollution and Incidence of Cardiovascular Events in Women. New England Journal of Medicine 2007;356:447-458
1649 1650 1651 1652	794 795 796	Mosley, T.H.; Knopman, D.S.; Catellier, D.J.; Bryan, N.; Hutchinson, R.G.; Grothues, C.A.; Folsom, A.R.; Cooper, L.S.; Burke, G.L.; Liao, D.; Szklo, M. Cerebral MRI findings and cognitive functioning. Neurology 2005;64:2056
1653 1654 1655 1656	797 798 799	Najeed, S.A.; Khan, I.A.; Molnar, J.; Somberg, J.C. Differential effect of glyburide glibenclamide and metformin on qt dispersion: a potential adenosine triphosphate sensitive k+ channel effect. American Journal of Cardiology 2002;90:1103-1106
1657 1658	800	Neidhart, M. DNA methylation and complex human disease ed^eds. Amsterdam: Elsevier; 2016
1659 1660 1661	801 802	NIH. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control Clin Trials 1998;19:61-109
1662 1663 1664	803 804	O'Day, D.H.; Eshak, K.; Myre, M.A. Calmodulin Binding Proteins and Alzheimer's Disease. Journal of Alzheimer's Disease 2015;46:553-569
1665 1666 1667	805 806 807	Panni, T.; Mehta, A.J.; Schwartz, J.D.; Baccarelli, A.A.; Just, A.C.; Wolf, K. A Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study. Environ Health Perspect 2016;
1668 1669 1670 1671 1672 1673	808 809 810 811 812	 Plusquin, M.; Guida, F.; Polidoro, S.; Vermeulen, R.; Raaschou-Nielsen, O.; Campanella, G.; Hoek, G.; Kyrtopoulos, S.A.; Georgiadis, P.; Naccarati, A.; Sacerdote, C.; Krogh, V.; Bas Bueno-de-Mesquita, H.; Monique Verschuren, W.M.; Sayols-Baixeras, S.; Panni, T.; Peters, A.; Hebels, D.G.A.J.; Kleinjans, J.; Vineis, P.; Chadeau-Hyam, M. DNA methylation and exposure to ambient air pollution in two prospective cohorts. Environment International 2017;108:127-136
1674 1675 1676 1677		
1678 1679		30

- Pope, C.A., 3rd; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 2002;287:1132-1141 Pvo, R.T.; Sui, J.; Dhume, A.; Palomeque, J.; Blaxall, B.C.; Diaz, G.; Tunstead, J.; Logothetis, D.E.; Hajjar, R.J.; Schecter, A.D. CXCR4 modulates contractility in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology 2006;41:834-844 Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; Xun, W.W.; Katsouyanni, K.; Dimakopoulou, K.; Sommar, J.; Forsberg, B.; Modig, L.; Oudin, A.; Oftedal, B.; Schwarze, P.E.; Nafstad, P.; De Faire, U.; Pedersen, N.L.; Östenson, C.-G.; Fratiglioni, L.; Penell, J.; Korek, M.; Pershagen, G.; Eriksen, K.T.; Sørensen, M.; Tjønneland, A.; Ellermann, T.; Eeftens, M.; Peeters, P.H.; Meliefste, K.; Wang, M.; Bueno-de-Mesquita, B.; Key, T.J.; de Hoogh, K.; Concin, H.; Nagel, G.; Vilier, A.; Grioni, S.; Krogh, V.; Tsai, M.-Y.; Ricceri, F.; Sacerdote, C.; Galassi, C.; Migliore, E.; Ranzi, A.; Cesaroni, G.; Badaloni, C.; Forastiere, F.; Tamayo, I.; Amiano, P.; Dorronsoro, M.; Trichopoulou, A.; Bamia, C.; Vineis, P.; Hoek, G. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology 2013;14:813-822 Rab, A.; Rowe, S.M.; Raju, S.V.; Bebok, Z.; Matalon, S.; Collawn, J.F. Cigarette smoke and CFTR: implications in the pathogenesis of COPD. American Journal of Physiology-Lung Cellular and Molecular Physiology 2013;305:L530-L541 Rakhilin, S.V.; Olson, P.A.; Nishi, A.; Starkova, N.N.; Fienberg, A.A.; Nairn, A.C.; Surmeier, D.J.; Greengard, P. A Network of Control Mediated by Regulator of Calcium/Calmodulin-Dependent Signaling. Science 2004;306:698-701 Rasmussen, J.E.; Sheridan, J.T.; Polk, W.; Davies, C.M.; Tarran, R. Cigarette Smoke-induced Ca2+ Release Leads to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Dysfunction. Journal of Biological Chemistry 2014;289:7671-7681 Rehfeld, F.; Maticzka, D.; Grosser, S.; Knauff, P.; Eravci, M.; Vida, I.; Backofen, R.; Wulczyn, F.G. The RNA-binding protein ARPP21 controls dendritic branching by functionally opposing the miRNA it hosts. Nature Communications 2018;9:1235 Roux, A.V.D.; Merkin, S.S.; Arnett, D.; Chambless, L.; Massing, M.; Nieto, F.J.; Sorlie, P.; Szklo, M.; Tyroler, H.A.; Watson, R.L. Neighborhood of Residence and Incidence of Coronary Heart Disease. New England Journal of Medicine 2001;345:99-106 Saffari, A.; Silver, M.J.; Zavattari, P.; Moi, L.; Columbano, A.; Meaburn, E.L.; Dudbridge, F. Estimation of a significance threshold for epigenome-wide association studies. Genetic Epidemiology 2018;42:20-33 Saint-Criq, V.; Gray, M.A. Role of CFTR in epithelial physiology. Cellular and Molecular Life Sciences 2017:74:93-115 Stuart, E.A.; Azur, M.; Frangakis, C.; Leaf, P. Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative. Am J Epidemiol 2009;169:1133-1139

Stunnenberg, H.G.; Abrignani, S.; Adams, D.; de Almeida, M.; Altucci, L.; Amin, V.; Amit, I.; Antonarakis, S.E.; Aparicio, S.; Arima, T.; Arrigoni, L.; Arts, R.; Asnafi, V.; Esteller, M.; Bae, J.-B.; Bassler, K.; Beck, S.; Berkman, B.; Bernstein, B.E.; Bilenky, M.; Bird, A.; Bock, C.; Boehm, B.; Bourque, G.; Breeze, C.E.; Brors, B.; Bujold, D.; Burren, O.; Bussemakers, M.J.; Butterworth, A.; Campo, E.; Carrillo-de-Santa-Pau, E.; Chadwick, L.; Chan, K.M.; Chen, W.; Cheung, T.H.; Chiapperino, L.; Choi, N.H.; Chung, H.-R.; Clarke, L.; Connors, J.M.; Cronet, P.; Danesh, J.; Dermitzakis, M.; Drewes, G.; Durek, P.; Dyke, S.; Dylag, T.; Eaves, C.J.; Ebert, P.; Eils, R.; Eils, J.; Ennis, C.A.; Enver, T.; Feingold, E.A.; Felder, B.; Ferguson-Smith, A.; Fitzgibbon, J.; Flicek, P.; Foo, R.S.Y.; Fraser, P.; Frontini, M.; Furlong, E.; Gakkhar, S.; Gasparoni, N.; Gasparoni, G.; Geschwind, D.H.; Glažar, P.; Graf, T.; Grosveld, F.; Guan, X.-Y.; Guigo, R.; Gut, I.G.; Hamann, A.; Han, B.-G.; Harris, R.A.; Heath, S.; Helin, K.; Hengstler, J.G.; Heravi-Moussavi, A.; Herrup, K.; Hill, S.; Hilton, J.A.; Hitz, B.C.; Horsthemke, B.; Hu, M.; Hwang, J.-Y.; Ip, N.Y.; Ito, T.; Javierre, B.-M.; Jenko, S.; Jenuwein, T.; Joly, Y.; Jones, S.J.M.; Kanai, Y.; Kang, H.G.; Karsan, A.; Kiemer, A.K.; Kim, S.C.; Kim, B.-J.; Kim, H.-H.; Kimura, H.; Kinkley, S.; Klironomos, F.; Koh, I.-U.; Kostadima, M.; Kressler, C.; Kreuzhuber, R.; Kundaje, A.; Küppers, R.; Larabell, C.; Lasko, P.; Lathrop, M.; Lee, D.H.S.; Lee, S.; Lehrach, H.; Leitão, E.; Lengauer, T.; Lernmark, Å.; Leslie, R.D.; Leung, G.K.K.; Leung, D.; Loeffler, M.; Ma, Y.; Mai, A.; Manke, T.; Marcotte, E.R.; Marra, M.A.; Martens, J.H.A.; Martin-Subero, J.I.; Maschke, K.; Merten, C.; Milosavljevic, A.; Minucci, S.; Mitsuyama, T.; Moore, R.A.; Müller, F.; Mungall, A.J.; Netea, M.G.; Nordström, K.; Norstedt, I.; Okae, H.; Onuchic, V.; Ouellette, F.; Ouwehand, W.; Pagani, M.; Pancaldi, V.; Pap, T.; Pastinen, T.; Patel, R.; Paul, D.S.; Pazin, M.J.; Pelicci, P.G.; Phillips, A.G.; Polansky, J.; Porse, B.; Pospisilik, J.A.; Prabhakar, S.; Procaccini, D.C.; Radbruch, A.; Rajewsky, N.; Rakyan, V.; Reik, W.; Ren, B.; Richardson, D.; Richter, A.; Rico, D.; Roberts, D.J.; Rosenstiel, P.; Rothstein, M.; Salhab, A.; Sasaki, H.; Satterlee, J.S.; Sauer, S.; Schacht, C.; Schmidt, F.; Schmitz, G.; Schreiber, S.; Schröder, C.; Schübeler, D.; Schultze, J.L.; Schulyer, R.P.; Schulz, M.; Seifert, M.; Shirahige, K.; Siebert, R.; Sierocinski, T.; Siminoff, L.; Sinha, A.; Soranzo, N.; Spicuglia, S.; Spivakov, M.; Steidl, C.; Strattan, J.S.; Stratton, M.; Südbeck, P.; Sun, H.; Suzuki, N.; Suzuki, Y.; Tanay, A.; Torrents, D.; Tyson, F.L.; Ulas, T.; Ullrich, S.; Ushijima, T.; Valencia, A.; Vellenga, E.; Vingron, M.; Wallace, C.; Wallner, S.; Walter, J.; Wang, H.; Weber, S.; Weiler, N.; Weller, A.; Weng, A.; Wilder, S.; Wiseman, S.M.; Wu, A.R.; Wu, Z.; Xiong, J.; Yamashita, Y.; Yang, X.; Yap, D.Y.; Yip, K.Y.; Yip, S.; Yoo, J.-I.; Zerbino, D.; Zipprich, G.; Hirst, M. The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell 2016;167:1145-1149 Tarantini, L.; Bonzini, M.; Apostoli, P.; Pegoraro, V.; Bollati, V.; Marinelli, B.; Cantone, L.; Rizzo, G.; Hou, L.; Schwartz, J.; Bertazzi, P.A.; Baccarelli, A. Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation. Environmental Health Perspectives 2009:117:217-222 Tarantini, L.; Bonzini, M.; Tripodi, A.; Angelici, L.; Nordio, F.; Cantone, L.; Apostoli, P.; Bertazzi, P.A.; Baccarelli, A.A. Blood hypomethylation of inflammatory genes mediates the effects of metal-rich airborne pollutants on blood coagulation. Occup Environ Med 2013;70 Teschendorff, A.E.; Marabita, F.; Lechner, M.; Bartlett, T.; Tegner, J.; Gomez-Cabrero, D.; Beck, S. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013;29:189-196 Tsai, P.-C.; Spector, T.D.; Bell, J.T. Using epigenome-wide association scans of DNA methylation in age-related complex human traits. Epigenomics 2012;4:511-526

1793 1794		
1795 1796	897	Uckelmann, H.; Blaszkiewicz, S.; Nicolae, C.; Haas, S.; Schnell, A.; Wurzer, S.; Wagener, R.; Aszodi,
1797 1798	898 899	A.; Essers, M.A.G. Extracellular matrix protein Matrilin-4 regulates stress-induced HSC proliferation via CXCR4. The Journal of Experimental Medicine 2016;
1799 1800	900 901	Velayudhan, L.; Proitsi, P.; Westman, E.; Muehlboeck, J.S.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kloszewska, I.; Soininen, H.; Spenger, C.; Hodges, A.; Powell, I.; Lovestone, S.; Simmons, A.
1801 1802	902 903	Entorhinal cortex thickness predicts cognitive decline in Alzheimer's disease. Journal of Alzheimer's disease : JAD 2013;33:755-766
1803 1804	904	Walter D · MagArthur L · Morales L · Burdett T · Hall D · Jupking H · Klamm A · Fligak D · Manalia
1805 1806	904 905 906	T.; Hindorff, L.; Parkinson, H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research 2014;42:D1001-D1006
1807 1808	907	Whitsel, E.A. AS315 - Epigenetic Mechanisms of PM-mediated CVD Risk.
1809 1810	908	Whitsel, E.A.; Quibrera, P.M.; Smith, R.L.; Catellier, D.J.; Liao, D.; Henley, A.C.; Heiss, G. Accuracy of
1811 1812	909 910	commercial geocoding: assessment and implications. Epidemiologic perspectives & innovations : EP+I 2006;3:8
1813 1814 1815	911 912	Whitsel, E.A.; Rose, K.M.; Wood, J.L.; Henley, A.C.; Liao, D.; Heiss, G. Accuracy and repeatability of commercial geocoding. Am J Epidemiol 2004;160:1023-1029
1816	04.0	
1817	913 914	controls and a broad spectrum of disease phenotypes. Gesundheitswesen (Bundesverband der
1818 1819	915	Arzte des Offentlichen Gesundheitsdienstes (Germany)) 2005;67:S26
1820	916 017	Yamazaki, J.; Hume, J.R. Inhibitory Effects of Glibenclamide on Cystic Fibrosis Transmembrane
1822 1823	917 918	Myocytes. Circulation Research 1997;81:101-109
1824	919	Yanosky, J.D.; Paciorek, C.J.; Laden, F.; Hart, J.E.; Puett, R.C.; Liao, D.; Suh, H.H. Spatio-temporal
1826 1827	920 921	modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors. Environmental health : a global access science source 2014;13:63
1828	922	Zhong, J.; Agha, G.; Baccarelli, A.A. The Role of DNA Methylation in Cardiovascular Risk and Disease.
1829	923	Methodological Aspects, Study Design, and Data Analysis for Epidemiological Studies
1830	924	2016;118:119-131
1832	925	
1833		
1834		
1835		
1837		
1838		
1839		
1840		
1841		
1842		
1843		
1844		
1845		
1840 1847		00
		33

1 Title: Methylome-wide association study provides evidence of particulate matter air pollution-associated

- 2 DNA methylation
- 3

4 Authors

- 5 Rahul Gondalia^a, Antoine Baldassari^a, Katelyn M Holliday^{a,b}, Anne E Justice^{a,c}, Raúl Méndez-Giráldez^a,
- 6 James D Stewart^a, Duanping Liao^d, Jeff D Yanosky^d, Kasey JM Brennan^e, Stephanie M Engel^a, Kristina
- 7 M Jordahl^f, Elizabeth Kennedy^g, Cavin K Ward-Caviness^h, Kathrin Wolfⁱ, Josef Cyrysjⁱ, Parveen Bhatti^f,
- 8 Steve Horvath^{i,k}, Themistocles L Assimes¹, James S Pankow^m, Ellen W Demerath^m, Weihua Guanⁿ,
- 9 Myriam Fornage^o, Jan Bressler^p Kari E North^{a,q}, Karen N Conneely^r, Yun Li^{s,t,u}, Lifang Hou^{v,w}, Andrea A
- 10 Baccarelli^e, Eric A Whitsel^{a,x}
- 11

12 Affiliations

- 13 ^aDepartment of Epidemiology, Gillings School of Global Public Health, University of North Carolina,
- 14 Chapel Hill, NC, USA
- 15 ^bDepartment of Community and Family Medicine, Duke University School of Medicine, Durham, NC
- 16 ^cGeisinger Health System, Danville, PA, USA
- 17 ^dDivision of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College
- 18 of Medicine, Hershey, PA, USA
- 19 eLaboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and
- 20 Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- ¹ ^fDepartment of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- ²² ^gDepartment of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA,
- 23 USA
- ²⁴ ^hEnvironmental Public Health Division, National Health and Environmental Effects Research Laboratory,
- 25 104 Mason Farm Rd, Chapel Hill, NC 27514
- ²⁶ ⁱInstitute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg,
- 27 Germany 85764
- ^jHuman Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles,
- 29 CA, USA
- 30 ^kBiostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA, , USA
- 31 ¹Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- 32 ^mDivision of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
- 33 ⁿDivision of Biostatistics, University of Minnesota, Minneapolis, MN, USA

- ³⁴ ^oInstitute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX,
- 35 USA
- ³⁶ ^pHuman Genetics Center, School of Public Health, University of Texas Health Science Center at Houston,
- 37 Houston, TX, USA
- 38 ^qCarolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- 39 Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- 40 ^sDepartment of Genetics, University of North Carolina, Chapel Hill, NC, USA
- 41 ^tDepartment of Biostatistics, Gillings School of Global Public Health, University of North Carolina,
- 42 Chapel Hill, NC, USA
- 43 ^uDepartment of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- 44 ^vDepartment of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago,
- 45 Evanston, IL, USA
- 46 wCenter for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of
- 47 Medicine, Northwestern University Chicago, Evanston, IL, USA
- 48 *Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- 49

50 **Corresponding Author:**

- 51 Rahul Gondalia, MPH
- 52 123 W. Franklin St.
- 53 Chapel Hill, North Carolina 27516, USA
- 54 Phone: 304-210-7823
- 55 Email: rahgonda@unc.edu
- 56

57 Supplementary text

- 58 The Cooperative Health Research in the Region of Augsburg (KORA) study is a population-
- 59 based cohort from the region of Augsburg, Southern Germany. Replication analyses involved data from
- 60 the F3 (n = 3,006; 2004-2005) and F4 (n = 3,080; 2006-2008) follow-up studies of the KORA S3 and S4
- 61 participants (Rückert et al. 2011; Wichmann et al. 2005).
- 62 DNA methylation was analyzed from whole blood samples in 500 (F3) and 1799 (F4) participants
- using the Infinium HumanMethylation450 BeadChip Array (Illumina). Probes with signals from less than
- 64 three functional beads, a detection P value > 0.05 in > 1% of samples, or covered single nucleotide
- by polymorphisms (minor allele frequency in Europeans > 5%) were excluded. Sample exclusions included
- 66 participants with a detection P value > 0.05 for > 1% of probes and those with a gender mismatch. DNAm
- 67 measures were Beta Mixture Quantile (BMIQ)-normalized to adjust for probe bias (Teschendorff et al.
- 68 2013). DNAm at three CpG sites was analyzed: cg19004594, cg24102420, and cg12124767. Analyses
- 69 controlled for technical variation by adjusting for CD4 T-cells, plasmablasts, natural killer cells, CD8
- naive T-cells, monocytes, granulocytes, and a linear combination of CD8, CD45RA, and CD28 T-cells
- 71 (Horvath 2013). Analyses also controlled for plate and batch effects using 20 principal components
- calculated from the control probes. Moreover, analyses controlled for demographic and clinical variables
- collected via standardized questionnaires at each visit, as well as meteorological variables: age, sex, years
- of education, smoking status (current regular, current irregular, former, never), alcohol consumption
- 75 (alcohol usage, no alcohol usage), physical activity (active, inactive), body mass index (Rückert et al.
- 76 2011), mean temperature, mean barometric pressure, and mean relative humidity.
- Rückert, I.-M. *et al.* Association between Markers of Fatty Liver Disease and Impaired Glucose
 Regulation in Men and Women from the General Population: The KORA-F4-Study. *PLoS ONE* 6, e22932, doi:10.1371/journal.pone.0022932 (2011).
- Horvath, S. DNA methylation age of human tissues and cell types. *Genome biology* 14, R115 (2013).
- Bibikova, M. *et al.* High density DNA methylation array with single CpG site resolution.
 Genomics 98, 288-295, doi:10.1016/j.ygeno.2011.07.007 (2011).
- 84 4 Smyth, G. K. in *Bioinformatics and computational biology solutions using R and Bioconductor*85 397-420 (Springer, 2005).
- Teschendorff, A. E. *et al.* A beta-mixture quantile normalization method for correcting probe
 design bias in Illumina Infinium 450 k DNA methylation data. *Bioinformatics* 29, 189-196
 (2013).
- Pidsley, R. *et al.* A data-driven approach to preprocessing Illumina 450K methylation array data.
 BMC genomics 14, 293 (2013).
- 91
- 92
- 93
- 94

	Sample	e Exclusions	Probe Exclusions				
Study	N after	Detection	n CpGs after	CpGs after Detection		Pood Count	Non-
Study	exclusions ^a	p-value	exclusions ^b	p-value	Chr	Beau Count	$CpG \ CH_3$
WHI-EMPC c	1,937	$> 0.01 \text{ in} > 1\%^{d}$	463,916	$> 0.01 \text{ in} > 10\%^{e}$	Yes	No	No
WHI-BAA23	1,950	No	461,014	$> 0.01 \text{ in} > 10\%^{e}$	Yes	No	Yes
WHI-AS311	746	No	461,136	> 0.01 in $> 1\%^{e}$	Yes	$< 3 \text{ in} > 10\%^{e}$	Yes
ARIC-AA	2,664	$> 0.01 \text{ in} > 1\%^{d}$	463,431	$> 0.01 \text{ in} > 1\%^{\text{e}}$	No	$< 3 \text{ in} > 5\%^{e}$	No
ARIC-EA	1,100	$> 0.01 \text{ in} > 1\%^{d}$	462,543	> 0.01 in $> 5\%^{e}$	No	< 3 in >5% ^e	No

Table S1. Methylome-wide DNAm data exclusions in WHI and ARIC

97 ^aAdditional study-specific sample exclusions: gender mismatch or SNP discordance with previous genotyping, and / or outliers in

98 principal component analysis

99 ^bAdditional probe exclusion: CpG sites with multi-modal DNAm distributions in \geq 1 study

100 c185 participants had a second and 43 had a third DNAm measure at a subsequent visit (n observations = 2,165)

101 ^dOf probes

102 °Of samples

103

Table S2. Mean concentrations $(\mu g/m^3)$ of particulate matter (PM) by study

				P	M ₁₀			PM	I _{2.5}	PM	2.5-10
Study	Race / Ethnicity	2 d	7 d	28 days	365 d	1 mo	12 mo	1 mo	12 mo	1 mo	12 mo
	Lennerty	x ~(SD)	x ⁻ (SD)	x ⁻ (SD)	x ~(SD)	x ⁻ (SD)	x ~(SD)	x ⁻ (SD)	x ~(SD)	x ⁻ (SD)	x ⁻ (SD)
ARIC	AA	36.0 (12.3)	35.1 (9.1)	34.8 (6.3)	35.5 (3.3)	20.5 (4.6)	19.9 (1.69)	13.2 (3.1)	12.7 (1.3)	7.3 (2.1)	7.2 (0.8)
ARIC	EA	36.1 (11.5)	34.9 (8.2)	34.4 (5.8)	34.8 (3.0)	23.2 (5.3)	23.7 (2.4)	15.4 (4.3)	15.9 (2.1)	7.8 (3.5)	7.8 (1.4)
WHI-AS311a	EA	28.0 (11.0)	27.1 (7.9)	27.4 (6.5)	27.5 (4.1)	19.8 (6.6)	20.0 (4.8)	11.9 (3.82)	11.9 (2.7)	7.9 (4.6)	8.1 (3.8)
WHI-AS311b	EA	28.7 (11.1)	27.7 (8.9)	27.6 (6.6)	27.6 (4.2)	19.9 (5.7)	20.2 (4.5)	12.0 (3.9)	12.0 (2.6)	7.9 (4.1)	8.2 (3.5)
WHI-BAA23 ^a	AA	28.2 (12.2)	27.0 (7.5)	27.8 (5.6)	28.3 (2.8)	22.6 (6.2)	22.3 (3.7)	14.3 (4.2)	14.1 (2.2)	8.3 (3.8)	8.2 (2.6)
WHI-BAA23 ^a	EA	28.1 (10.7)	27.2 (8.4)	27.2 (6.4)	27.5 (4.0)	19.7 (5.7)	20.0 (4.5)	11.7 (3.7)	11.8 (2.5)	8.0 (4.4)	8.2 (3.7)
WHI-BAA23 ^a	HLA	28.9 (10.4)	29.3 (8.3)	29.3 (6.8)	29.2 (4.1)	21.4 (8.1)	21.5 (5.9)	10.3 (4.1)	10.3 (3.0)	11.1 (5.7)	11.2 (4.5)
WHI-BAA23 ^b	AA	28.8 (11.1)	28.8 (8.5)	28.1 (6.1)	28.1 (2.3)	22.3 (5.9)	22.6 (3.7)	14.0 (4.0)	14.1 (2.2)	8.3 (4.2)	8.5 (3.1)
WHI-BAA23 ^b	HLA	30.2 (10.7)	29.3 (8.6)	29.9 (7.2)	30.0 (4.7)	23.0 (8.1)	23.1 (6.1)	11.0 (4.2)	10.9 (3.2)	11.9 (6.4)	12.2 (5.2)
WHI-EMPC ^{a,c}	AA	29.2 (11.2)	27.9 (7.3)	27.7 (5.5)	28.1 (3.0)	22.2 (6.2)	22.4 (4.3)	15.2 (5.1)	15.1 (3.8)	7.0 (4.7)	7.3 (3.4)
WHI-EMPC ^{a,c}	EA	28.3 (11.5)	27.3 (8.1)	27.2 (6.4)	27.5 (3.8)	19.4 (6.0)	19.8 (5.8)	13.0 (5.0)	12.9 (3.6)	6.4 (5.2)	6.8 (4.1)
WHI-EMPC ^{a,c}	HLA	28.5 (9.8)	28.4 (8.3)	28.3 (6.2)	28.3 (4.2)	21.9 (7.1)	22.3 (6.1)	12.8 (6.3)	12.9 (5.4)	9.1 (5.3)	9.4 (4.9)
All		31.9 (12.1)	31.1 (9.2)	30.9 (7.1)	31.2 (5.1)	20.9 (5.8)	20.9 (4.0)	13.2 (4.3)	13.2 (3.0)	7.7 (4.0)	7.8 (3.1)

105 Abbreviations: AA, African American; ARIC, Atherosclerosis Risk in Communities; AS311, Ancillary Study 311; BAA23OS,

106 Broad Agency Award 23; CpG, Cytosine-phosphate-Guanine site; d, day; EA, European American; EMPC, Epigenetic

107 Mechanisms of PM-Mediated CVD Risk; HLA, Hispanic/Latino American; mo, month; PM, particulate matter; SD, standard

deviation; WHI, Women's Health Initiative

109 ^aWHI clinical trials participants

110 ^bWHI observational study participants

111 ^cData from the first visit are presented for WHI-EMPC; 185 participants had a second and 43 had a third DNAm measure from a

subsequent visit

Table S3. Findings from trans-ethnic, fixed-effects inverse variance-weighted meta-analyses ($P < 1 \ge 10^{-1}$)

115 5, $P_{Cochran's Q} > 0.10$) with Illumina 450K Infinium Methylation

116

117 [Please see ... Supplementary Table 3 uploaded separately due to large size]

118

119 Table S4. Comparison of DNA methylation measures from the Illumina 450K Infinium Methylation

120 BeadChip versus bisulfite pyrosequencing

Chr	Desition (D27)	C-C	Δ	r	α	β
Chr	Position (B37)	СрС	(95% CI)	(95% CI)	(95% CI)	(95% CI)
	8220847	ag01045624	0.07	0.83	0.17	0.76
4	8230847	Cg01943024	(0.06, 0.07)	(0.78, 0.87)	(0.14, 0.20)	(0.68, 0.83)
2	(4(8)))	~~01048201	0.02	0.71	0.04	0.91
2	04082230	cg01948201	(0.02, 0.02)	(0.63, 0.77)	(0.01, 0.08)	(0.78, 1.04)
22	20(20720	0721(212	-0.15	0.75	-0.58	1.52
22	30639730	cg0/316313	(-0.15, -0.14)	(0.68, 0.81)	(-0.74, -0.42)	(1.33, 1.72)
0	122282002	00721604	0.08	0.78	0.03	1.36
9	132383003	cg09731694	(0.08, 0.08)	(0.72, 0.83)	(0.01, 0.06)	(1.21, 1.51)
0	144700656		-0.03	0.86	-0.06	1.04
8	144/90656	CgU9/34349	(-0.04, -0.02)	(0.82, 0.90)	(-0.21, 0.09)	(0.85, 1.23)
C	1504((542	1 (1 0 0 0 0	0.04	0.61	-0.23	2.49
6	159400542	cg10180082	(0.04, 0.05)	(0.52, 0.69)	(-0.35, -0.12)	(1.90, 3.07)
7	1572(411	19590000	0.00	0.22	0.08	0.09
/	13/20411	cg18580296	(-0.01, 0.00)	(0.08, 0.34)	(0.08, 0.09)	(0.04, 0.15)
7	20(8505		-0.05	0.04	0.82	0.07
	2908393	Cg22989995	(-0.06, -0.05)	(-0.10, 0.18)	(0.60, 1.04)	(-0.17, 0.30)
2	25785800	24102420	-0.04	0.79	-0.16	1.13
3	33/83890	cg24102420	(-0.04, -0.03)	(0.73, 0.83)	(-0.38, 0.07)	(0.88, 1.39)
7	27225206	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.07	0.40	0.12	0.55
1	21223390	0874988733	(0.07, 0.08)	(0.27, 0.51)	(0.09, 0.15)	(0.27, 0.82)

121 Abbreviations: B37, build 37; Δ , mean Illumina 450K minus bisulfite pyrosequencing difference in DNAm; Chr,

chromosome; CI, confidence interval; CpG, cytosine-phosphate-guanine site; ICC, intra-class correlation; r, Pearsoncorrelation coefficient

124

125

126

128 Table S5

129 Findings from Cooperative Health Research in the Region Augsburg study (KORA)

Chr	Position ^a	CpG	Exposure	%Δ (95% CI) ^b	Р	n _{obs}	Gene
20	43926884	cg19004594	PM ₁₀ , 28 d	-0.1 (-0.3, 0.1)	0.42	2,168	MATN4
3	35785890	cg24102420	PM ₁₀ , 30 d	-0.2 (-0.6, 0.1)	0.13	2,176	ARPP21 / MIR128-2
7	117299297	cg12124767	PM _{2.5-10} , 30 d	0.4 (-0.2, 1.0)	0.21	2,036	CFTR

130 Abbreviations: Λ , change; Chr, chromosome; CI, confidence interval; CpG, Cytosine-phosphate-Guanine; d, days; PM₁₀, PM <

131 10 μ m in diameter; PM_{2.5}, PM < 2.5 μ m in diameter; PM_{2.5-10}, PM > 2.5 and < 10 μ m in diameter

132 ^aBuild 37

133 ^bAbsolute percentage point per 10 μ g/m³ increase in PM₁₀

134

135

Figure S1. Forest plots of PM-CpG associations (95% confidence intervals) for A) cg19004594, B)

137 cg2410240, and C) cg12124767 with a 10 μ g/m³ increase in PM by subpopulation and by race/ethnicity

and overall after fixed-effects meta-analysis.

Bibliography 148 149 150 Horvath S. 2013. DNA methylation age of human tissues and cell types. Genome biology 14:R115. 151 Rückert I-M, Heier M, Rathmann W, Baumeister SE, Döring A, Meisinger C. 2011. Association between 152 markers of fatty liver disease and impaired glucose regulation in men and women from the general population: The kora-f4-study. PLoS ONE 6:e22932. 153 154 Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. 2013. A betamixture quantile normalization method for correcting probe design bias in illumina infinium 450 k DNA 155 methylation data. Bioinformatics 29:189-196. 156 157 Wichmann HE, Gieger C, Illig T. 2005. Kora-gen--resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen (Bundesverband der Arzte des Offentlichen 158 Gesundheitsdienstes (Germany)) 67 Suppl 1:S26-30. 159