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Abstract
Calcitonin receptor-like (CALCRL) is a G-protein-coupled neuropeptide receptor involved in the regulation of blood pressure, angiogenesis, cell proliferation and apoptosis, and is currently emerging as a novel target for the treatment of migraine. This study characterizes the role of CALCRL in acute myeloid leukemia (AML). We analyzed CALCRL expression in collectively more than 1500 well-characterized AML patients from five international cohorts (AMLCG, HOVON, TCGA, Leucegene, and UKM) and evaluated associations with survival. In the AMLCG analytic cohort, increasing transcript levels of CALCRL were associated with decreasing complete remission rates (71.5%, 53.7%, 49.6% for low, intermediate, high CALCRL expression), 5-year overall (43.1%, 26.2%, 7.1%), and event-free survival (29.9%, 15.8%, 4.7%) (all P < .001). CALCRL levels remained associated with all endpoints on multivariable regression analyses. The prognostic impact was confirmed in all validation sets. Genes highly expressed in CALCRLhigh AML were significantly enriched in leukemic stem cell signatures and CALCRL levels were positively linked to the engraftment capacity of primary patient samples in immunocompromised mice. CRISPR-Cas9-mediated knockout of CALCRL significantly impaired colony formation in human myeloid leukemia cell lines. Overall, our study demonstrates that CALCRL predicts outcome beyond existing risk factors and is a potential therapeutic target in AML. 


Introduction
The calcitonin receptor-like (CALCRL) gene, located on chromosome 2q32.1, encodes for a seven-transmembrane G-protein-coupled receptor that mediates the pleiotropic effects of calcitonin gene-related peptide (CGRP) and adrenomedullin (ADM), two structurally related neuropeptides originally described as potent vasodilators.1, 2 Beyond blood pressure regulation, CALCRL is involved in a variety of key biological processes, including cell proliferation, modulation of apoptosis, vascular biology, and inflammation,3-5 and is currently emerging as a novel target for the therapy of migraine.6, 7 In solid tumors, antibody-mediated inhibition of CALCRL signaling has been demonstrated to reduce tumor growth via disruption of angiogenesis or via direct antiproliferative effects on cancer cells.8-12 Interestingly, it was further shown that CALCRL is expressed in normal CD34+ hematopoietic progenitors and that CGRP and ADM directly act on CD34+ cells to promote colony formation in vitro, indicating a functional role of CALCRL in physiological myelopoiesis.13-16
However, the role of CALCRL in malignant hematopoiesis is unknown. Here, we comprehensively investigated the impact of CALCRL expression levels on clinical outcome in more than 1500 acute myeloid leukemia (AML) patients on transcript or protein level and provide biological insights that suggest targeting of the CALCRL pathway as a novel therapeutic strategy in AML.

Methods
Patients, samples and treatment
CALCRL gene expression was analyzed in diagnostic samples from 492 AML patients, who received intensive age-adapted chemotherapy within the AMLCG99 trial of the German AML Cooperative Group (analytic cohort; NCT00266136; Table 1).17 A Dutch-Belgian Hematology Oncology Cooperative Group (HOVON) cohort of intensively treated patients with de novo AML (n = 400),18, 19 The Cancer Genome Atlas (TCGA) AML cohort (n = 157, intensively treated subcohort n = 125),20 and a clinically annotated subcohort of the Canadian Leucegene 415 AML patients cohort (n = 263)21 served as validation sets (Supplementary Table 1 and 2). Apart from survival data, clinicopathological variables were not available from the Leucegene cohort. CALCRL protein expression was analyzed on tissue microarrays (TMA) of pretreatment bone marrow (BM) trephines from 190 AML patients receiving intensive chemotherapy at the University Hospital Münster (UKM; Supplementary Table 3). Patients with acute promyelocytic leukemia or myelodysplastic syndromes (except the former RAEB-t subtype) were excluded from all cohorts. A study profile is shown in Supplementary Fig. 1.
Procedures
Samples from the analytic cohort were analyzed using Affymetrix HG-U133 A, B, and Plus 2.0 microarrays (Affymetrix, Santa Clara, CA) as described (GSE37642; Supplementary Methods).22 Expression data from the HOVON cohort generated with Affymetrix HG-U133 Plus 2.0 chips was preprocessed as above and clinical annotations were provided by the authors (GSE6891).18 TCGA RNAseq and clinical data were downloaded from cBioPortal on July 25th, 2017.20 The Leucegene cohort and methodology for RNAseq have been described previously21 and survival data have been provided by the authors. Gene set enrichment analysis (GSEA) was performed using the “C2” collection of the Molecular Signatures Database (http://software.broadinstitute.org/gsea/msigdb/) consisting of 4731 gene sets curated from various sources.
CALCRL immunohistochemistry (IHC) was visually scored by two investigators using an H-score. Visual scores were then compared to semiautomatic digital scoring using TMARKER (v2.162), an application that uses machine learning for computer aided cell counting and staining estimation.23
CALCRL gene expression was determined in sorted normal human BM, cord blood, and peripheral blood cell populations as well as in samples of 56 AML patients with low, intermediate and high leukemia stem cell (LSC) frequencies, as determined by engraftment capacity in NSG mice.24
CRISPR-Cas9-mediated knockout of CALCRL was performed in human myeloid leukemia cell lines by lentiviral transduction with lentiCRISPR v2 containing sgRNAs targeting human CALCRL. After antibiotic selection, cells were cultured in methylcellulose and colonies were counted after 10 days.
Statistical analyses
Time-to-event and response variables were defined as described18, 20, 22 or followed the 2017 European LeukemiaNet (ELN) recommendations.25 Follow-up time was calculated by reverse Kaplan-Meier method. We used restricted cubic splines with three knots to delineate potential non-linear associations of CALCRL with outcome. In each cohort, the lowest CALCRL expression value was chosen as a reference category for calculation of the hazard (HR) and odds ratios (OR). Cox proportional hazards models were fitted to estimate the effect of an interquartile range increase in CALCRL expression as a continuous term on overall (OS) and event-free survival (EFS), as implemented in the rms package. Likewise, logistic regression models were fitted to assess associations with achievement of complete remission (CR). To visualize survival probabilities with the Kaplan-Meier estimator cohorts were trichotomized by CALCRL expression levels: low (Q1), intermediate (Q2/3), and high (Q4). Survival probabilities were compared using log-rank tests and are given at 5 years. Clinical and molecular baseline variables were compared between CALCRL expression groups using χ2 or Fisher`s exact test for categorical and the Kruskal-Wallis test for continuous variables. Potential heterogeneity of prognostic effects across subgroups was examined with Cox proportional hazards models and Wald test for interaction.
Multivariable Cox proportional hazards models were generated to assess statistical significance of prognostic factors with respect to OS and EFS, and multivariable logistic regression models to assess achievement of CR. Besides CALCRL expression, age, white blood cell (WBC) count, lactate dehydrogenase (LDH) activity, and cytogenetic and molecular risk factors were entered in the full multivariable models. Multicollinearity among predictors was examined using variance inflation factors (VIF). The proportional hazards assumption was verified for each variable individually by inspection of scaled Schoenfeld residuals and χ2 test for correlation of residuals with transformed survival time (all p>0.05). In addition, we used elastic net penalized regression with 100-fold repeated tenfold cross-validation to identify sparse prognostic models in the context of correlated predictor variables.26 Missing data were not imputed. Two-sided P values < .05 were considered significant. Analyses were performed using SAS for Windows, version 9.4 (SAS Institute, Cary, North Carolina, USA) and R software, version 3.5.1 (www.r-project.org).
Results
The median follow-up time for AMLCG patients was 8.7 years (IQR 7.3-10.5). In restricted cubic spline analyses the OR for achievement of CR decreased, whereas HRs for death or experiencing an event increased over the whole range of CALCRL expression values (Fig. 1 and Supplementary Fig. 2). An increase of CALCRL expression from the 25th to 75th percentile was associated with inferior OS (hazard ratio [HR], 1.60; 95% confidence interval [CI], 1.33-1.93; P < .0001), EFS (HR, 1.58; 95% CI, 1.33-1.89; P < .0001), and CR rate (odds ratio [OR], 0.57; 95% CI, 0.41-0.79; P < .0010). As a categorical variable, CALCRLlow cases showed a significantly higher CR rate compared with CALCRLint or CALCRLhigh patients (71.5%, 53.7%, and 49.6% for low, intermediate, and high CALCRL expression; P = .0007). Progressively higher CALCRL levels predicted poorer OS (43.1%, 26.2%, 7.1% for low, intermediate, and high CALCRL expression; P < .0001) and EFS (29.9%, 15.8%, 4.7%; P < .0001) (Fig. 1). When censoring at allogeneic HSCT, CALCRL levels remained significantly associated with OS and EFS (both P < .0001; Supplementary Fig. 3). 
Table 1 lists the baseline characteristics of the 492 patients from the AMLCG analytic cohort categorized by trichotomized CALCRL expression. Higher CALCRL transcript levels significantly associated with older age. CALCRLhigh expression significantly co-occurred with immature cytomorphology (FAB M0/1), and CALCRLlow expression with monocytic differentiation (M4/M5; P < .0001). Patients with CALCRLhigh AML had higher BM blast counts, but lower lactate dehydrogenase (LDH) levels. High CALCRL expression associated with complex karyotype, monosomal karyotype, inv(3)/t(3;3), -5/del(5q), -7, and -17/abn(17p) (Table 1; Supplementary Fig. 4). In contrast, core-binding factor (CBF) and 11q23 rearrangements were underrepresented among CALCRLhigh patients. There was no association between CALCRL expression and FLT3-ITD or NPM1 mutations when analyzed separately. However, in NPM1mut AML, lower CALCRL levels were associated with FLT3-ITDneg/low, whereas higher levels co-occurred with FLT3-ITDhigh status. CALCRLhigh AML more frequently harbored RUNX1 and TP53, but fewer biallelic CEBPA (biCEBPA) mutations. Taken together, CALCRLhigh expressers were more frequently classified in the adverse ELN 2017 risk group and CALCRLhigh status correlated with most of the individual alterations defining this category (except t(v;11q23) and ASXL1 mutations; t(6;9) and t(9;22) not evaluable due to low frequencies). In turn, more than half of the patients with CALCRLlow AML but only 13.3% of the CALCRLhigh expressers had a favorable risk profile.
In multivariable analyses, the likelihood of achieving a CR for CALCRLlow expressers was more than double that of CALCRLint or CALCRLhigh expressers (odds ratio [OR], 2.29; 95% confidence interval [CI], 1.30-4.05; P = .0052; Table 2). CALCRL levels predicted OS (P = .024) and EFS (P = .0091), after adjusting for established risk factors, that remained in the final model after backward elimination, including age and cytogenetic and molecular risk factors from the ELN 2017 criteria. CALCRLlow expressers had a one-third reduced risk of induction failure, relapse, or death (hazard ratio [HR] CALCRLlow vs CALCRLint, 0.66; 95% CI, 0.49-0.88; P = .0048). We found only low to moderate collinearity among predictors with a median VIF of 1.2 (range 1.1-1.7). In a second multivariable model using elastic net regression for selection of prognostic factors from 21 genetic and clinical risk factors, CALCRL expression consistently remained among the selected variables (Supplementary Fig. 5). 
In exploratory subgroup analyses, we found no significant heterogeneity of the prognostic effect of CALCRL expression on OS across the larger clinicopathological subgroups including age (<60 years versus ≥60 years) and ELN 2017 genetic risk categories (Supplementary Fig. 6). However, the hazard risk of death associated with high CALCRL expression seemed to be higher in younger than in older patients (HR 2.57 vs 1.79 for <60 vs ≥60 years; P = .13 for interaction) with a similar hazard risk of experiencing an event (2.59 vs 1.39 for <60 vs ≥60 years; P = .048 for interaction) (Supplementary Fig. 7). A more detailed analysis of CALCRL expression in subgroups by age can be found in Supplementary Table  4 and 5 and Supplementary Fig. 8. In smaller genetic subgroups, we identified significant heterogeneity of the prognostic effect of CALCRL expression on OS for patients with -7 (P = .011 for interaction) and monosomal karyotype (P = .030 for interaction). These interactions did not remain significant when analyzing subgroup effects on EFS (Supplementary Fig. 7).
To validate our findings, we investigated CALCRL gene expression in three independent cohorts. As a continuous variable and when trichotomized as above, higher CALCRL levels were consistently associated with an adverse outcome in the HOVON, TCGA (intensively treated subcohort), and Leucegene validation sets (Fig. 2). Again, CALCRL remained independently associated with OS and EFS in the HOVON (P = .014 and 0.041) and in the TCGA cohort (P = .014 and 0.0014) and consistently remained among the predictors in elastic net regression analyses (Supplementary Table 6 and 7; Supplementary Fig. 5). Variables other than OS were not available for the Leucegene dataset. 
CALCRL protein expression was higher in AML as compared to normal BM (P < .0001; Fig. 3A and 3C). The median follow-up for patients of the UKM cohort was 3.2 years (IQR 1.6-4.6). When modelled as a continuous variable or when trichotomized as above, visually assessed CALCRL H-scores were inversely correlated with CR rate (70.2%, 58.1%, 36.7%; P = .0034), OS (62.5%, 38.8%, 17.1%; P < .0001), and EFS (30.1%, 19.2%, 5.0%; P = .0002; Fig. 3B and 3D-E and Supplementary Fig. 10) and remained associated with all endpoints in multivariable analyses (Supplementary Table 8). CALCRL remained among the selected predictors in multivariable elastic net regression (Supplementary Fig. 5). Computer-assisted digital quantification of CALCRL expression was highly correlated to visual scoring (r=0.83; P < .0001; Supplementary Fig. 11) and digital H-scores produced comparable results in Cox regression models (Supplementary Table 9).
CALCRLhigh status was significantly (P < .0001) associated with the differential expression of 964 genes in the AMLCG cohort (193 up- and 771 downregulated). Fig. 4A shows a heatmap of the 200 most significantly regulated genes. Among others (Supplementary Table 10), we observed a positive correlation of CALCRL with MN1 and BAALC expression, which have been extensively characterized in the context of leukaemogenesis and prognosis in AML.27-32 In multivariable models including MN1, BAALC and CALCRL expression as covariables, however, only CALCRL retained prognostic significance for survival in the full AMLCG, HOVON, and TCGA cohorts, and in the CN-AML subcohorts (Supplementary Table 11 and 12), whereas MN1 and BAALC became uninformative (P > .05). CALCRL also correlated with BCAT1, an aminotransferase for branched-chain amino acids that contributes to the differentiation block in AML.33 Another gene, the transcription factor ZNF521, has been recently identified as a regulator of stem cell function and MLL-AF9 leukemogenesis.34 In turn, there was an inverse relationship of CALCRL expression with genes related to myeloid differentiation such as AZU1, MPO, ELANE, or CTSG. In GSEA, genes associated with CALCRLhigh AML were significantly enriched in HSC, LSC and cell adhesion signatures (Supplementary Table 13).
When analyzing normal hematopoietic cells, CALCRL expression was significantly increased in the CD34+ compartment, with higher expression in immature CD34+/CD45RA- cells compared with committed CD34+/CD33+ myeloid progenitors but was virtually absent in mature myeloid cells (Fig. 4B). In AML, when analyzing 56 patient-derived specimens, CALCRL levels were positively linked to a sample`s LSC frequency and leukemogenic potential in immunocompromised mice (Fig. 4C). CRISPR-Cas9-mediated knockout of CALCRL resulted in a significant reduction of colony formation capacity of three myeloid leukemia cell lines as compared to controls (Fig. 4D; Supplementary Fig. 13). Despite its correlation with LSC signatures, CALCRL remained associated with outcome after adjusting for the 17-gene stemness (LSC17) score (Supplementary Table 14).35 We found a significant interaction of low versus high CALCRL expression and the LSC17 score (P = .026 for interaction). CALCRL further stratified survival in LSC17-classified low risk patients, with 5-year OS rates differing by more than 40% between LSC17low/CALCRLlow and LSC17low/CALCRLhigh patients (Fig. 4E-G; Supplementary Fig. 14).

Discussion
We report a consistent relationship of increasing CALCRL expression levels with poor outcome across several independent cohorts of intensively treated AML patients and across different measurement platforms. Obviously, high CALCRL overlapped with unfavorable genetics, including complex and monosomal karyotypes, -5/del(5q), -7, -17/abn(17p), inv(3)/t(3;3), and RUNX1 and TP53 mutations, suggesting that CALCRL might be part of a shared network induced by diverse genetic events. In turn, low CALCRL expression associated with CBF cytogenetics, biCEBPA mutations and NPM1mut/FLT3-ITDneg/low status. However, the prognostic impact of CALCRL does not merely reflect its correlation with established risk factors since CALCRL predicted a poor prognosis, even when all criteria defined in the ELN 2017 risk stratification were included as covariables in the multivariable models. Furthermore, the prognostic impact of CALCRL was independent from BAALC and MN1 expression, which have been extensively described for their prognostic role in AML,27-32 and from the recently described 17-gene stemness score LSC17 (which does not contain CALCRL as a component).35
Allogeneic HSCT is usually recommended for transplant-eligible patients with intermediate- or adverse-risk genetics, whereas favorable-risk patients typically receive consolidation chemotherapy.25 We found no heterogeneity of the prognostic impact of CALCRL expression across subgroups defined by ELN 2017 genetic risk. CALCRL expression might be used to further stratify genetic risk. However, the exploratory nature of these subgroup analyses demands further validation. Given the limited number of allogeneic HSCTs performed in first CR in the AMLCG study (7.4%) and our gene expression subcohort (6.3%),17, 36 we were not able to evaluate the impact of transplantation in CALCRLhigh AML, much less in CALCRLhigh AML with favorable ELN risk. This should be evaluated within the framework of prospective trials incorporating risk-based stratification or randomization strategies. In any case, before quantitative measures of CALCRL expression can be used for clinical decision-making, standardization of the methods used to determine expression levels is necessary. Conventional immunohistochemistry and visual or digital assessment of CALCRL expression in BM sections as performed in this study may represent one option for clinical translation.
Indeed, CALCRL protein expression was highly prognostic in a fifth independent cohort, further underscoring a role for CALCRL in the pathophysiology of AML. However, it is unknown how it contributes to poor chemotherapy responsiveness and aggressive disease behavior. The CALCRL pathway has been characterized in diverse pathophysiological conditions, including migraine,6, 7 sepsis,37 vascular disease,38 and solid tumors, where autocrine and paracrine CALCRL signaling loops stimulate the growth of tumor and/or endothelial cells.3, 8-12, 39-41 In particular, CALCRL has been associated with stem cell functions across many tissues,42, 43 including normal hematopoiesis, where CGRP and ADM support colony formation of CALCRL+/CD34+ progenitors in vitro.13-16 In our study, high CALCRL expression correlated with immature cytomorphology, with HSC and LSC gene expression signatures, and with the in vivo repopulating capacity of primary AML samples in mice. In addition, CALCRL knockout significantly impaired the colony forming capacity of human myeloid leukemia cell lines, and CALCRL levels were higher in immature than in mature myeloid cells. Collectively, these findings point towards a role of CALCRL in HSCs and LSCs and suggest that high CALCRL expression indicates an AML phenotype at a more undifferentiated stage.
In addition, CALCRL has a role in malignancy-associated angiogenesis,9, 11, 12, 41 a process that is also involved in the pathophysiology of AML via reciprocal stimulation of leukemic and endothelial cells44, 45 and that provides a protective niche for LSCs.46 It has long been established that angiogenic mediators such as vascular endothelial growth factor, the angiopoietins, or, more recently, epithelial growth factor-like 7, not only act in a paracrine fashion on BM endothelial cells, but also in direct autocrine loops to support leukemic blasts.47-49 Indeed, the only report investigating the CALCRL axis in leukemia suggests that autocrine ADM signaling through CALCRL could be involved in the impaired differentiation of AML cells,50 whereas in multiple myeloma, a paracrine ADM-CALCRL pathway has been identified as a major driver of the myeloma-associated angiogenic switch.51 However, further studies will be necessary to clarify the mechanisms governing regulation of CALCRL expression, its downstream signaling pathways and biological function in the context of AML.
Importantly, the first antibody (erenumab)52 interfering with CALCRL signaling has recently been approved by the FDA and EMA for the preventive treatment of migraine and others are under investigation (galcanezumab, eptinezumab, and fremanezumab).6, 7 These antibodies have so far exhibited excellent tolerability without significant hematotoxicity, rendering them attractive potential add-ons for intensive chemotherapy in AML. Nonetheless, a better understanding of the relative vulnerabilities of LSCs and HSCs to CALCRL inhibition is required, both in the absence and presence of chemotherapy. Given that CALCRL can be activated through different ligands, it will be equally important to elucidate whether ADM or CGRP, or both, is primarily functional in leukemic as compared to normal hematopoiesis or whether one ligand is predominantly active in specific AML subtypes.
In conclusion, we identified the neuropeptide receptor CALCRL as a novel risk factor associated with stemness and poor survival in five independent AML cohorts. Further studies should more deeply characterize the functional role of CALCRL in leukemia and evaluate whether CALCRL-targeting drugs can be successfully repurposed into the context of AML.
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Tables
Table 2. Multivariable regression analyses in the AMLCG analytic cohort.
	Variables in final models
	OR/HR
	95% CI
	P value

	Complete remission
	
	
	

	   Age: ≥60 vs <60 years
	0.59
	0.38-0.92
	.021

	   Karyotype§:
	
	
	.0001

	      Favorable vs intermediate risk
	1.19
	0.56-2.51
	.041

	      Adverse vs intermediate risk
	0.31
	0.17-0.55
	<.0001

	   NPM1/FLT3-ITD mutation status‡:
	
	
	.051

	      Low vs intermediate risk
	1.71
	0.90-3.26
	.015

	      High vs intermediate risk
	0.41
	0.14-1.18
	.034

	   RUNX1: mutated vs wild type
	0.53
	0.29-0.99
	.045

	   CALCRL expression:
	
	
	.015

	      Low vs intermediate
	2.29
	1.30-4.05
	.0052

	      High vs intermediate
	1.07
	0.63-1.83
	.20

	Overall survival
	
	
	

	   Age: ≥60 vs <60 years
	1.80
	1.40-2.30
	<.0001

	   WBC: ≥50 vs <50 x 109/L
	1.33
	1.00-1.75
	.047

	   LDH: ≥700 vs <700 U/L
	1.41
	1.08-1.86
	.012

	   Karyotype§:
	
	
	.0003

	      Favorable vs intermediate risk
	0.38
	0.23-0.63
	.0002

	      Adverse vs intermediate risk
	1.15
	0.82-1.60
	.43

	   NPM1/FLT3-ITD mutation status‡:
	
	
	.0002

	      Low vs intermediate risk
	0.46
	0.32-0.67
	<.0001

	      High vs intermediate risk
	1.12
	0.66-1.92
	.67

	   CEPBA: double mutated vs wild type or single mutated
	0.51
	0.24-1.06
	.070

	   RUNX1: mutated vs wild type
	1.64
	1.18-2.29
	.0035

	   TP53: mutated vs wild type
	2.18
	1.41-3.36
	.0004

	   CALCRL expression:
	
	
	.024

	      Low vs intermediate
	0.71
	0.51-0.98
	.038

	      High vs intermediate
	1.16
	0.88-1.54
	.30

	Event-free survival
	
	
	

	   Age: ≥60 vs <60 years
	1.62
	1.28-2.05
	<.0001

	   WBC: ≥50 vs <50 x 109/L
	1.43
	1.12-1.82
	.0039

	   Type of AML:
	
	
	.024

	      s-AML vs de novo
	0.87
	0.58-1.31
	.51

	      t-AML vs de novo
	2.08
	1.20-3.61
	.0094

	   Karyotype§:
	
	
	<.0001

	      Favorable vs intermediate risk
	0.55
	0.36-0.84
	.0053

	      Adverse vs intermediate risk
	1.85
	1.33-2.58
	.0003

	   NPM1/FLT3-ITD mutation status‡:
	
	
	.0023

	      Low vs intermediate risk
	0.60
	0.43-0.84
	.0029

	      High vs intermediate risk
	1.52
	0.92-2.50
	.10

	   RUNX1: mutated vs wild type
	1.71
	1.24-2.34
	.0009

	   TP53: mutated vs wild type
	1.52
	0.98-2.36
	.060

	   CALCRL expression:
	
	
	.0091

	      Low vs intermediate
	0.66
	0.49-0.88
	.0048

	      High vs intermediate
	1.05
	0.79-1.38
	.75


Odds ratios (OR) greater or less than 1.0 indicate higher or lower CR rates, respectively, for the first category listed. Hazard ratios (HR) greater or less than 1.0 indicate an increased or decreased risk, respectively, of an event for the first category listed. Significant P values are marked in bold.
Variables considered in the models for CR, OS, and EFS were age (≥60 vs <60 years), WBC (≥50 vs <50 x 109/L), LDH (≥700 vs <700 U/L), type of AML (de novo vs s-AML vs t-AML), karyotype (favorable vs intermediate vs adverse risk)§, NPM1/FLT3-ITD mutation status (low vs intermediate vs high risk)‡, CEBPA (double mutated vs wild type or single mutated), RUNX1 (mutated vs wild type), ASXL1 (mutated vs wild type), TP53 (mutated vs wild type), and CALCRL (low vs intermediate vs high).
Abbreviations: AML, acute myeloid leukemia; s-AML, secondary AML; t-AML, therapy-related AML; WBC, white blood cell count; LDH, lactate dehydrogenase; NPM1, nucleophosmin-1; FLT3-ITD, internal tandem duplication of the FLT3 gene; CEPBA, CCAAT/enhancer binding protein α; RUNX1, Runt-related transcription factor 1; ASXL1, additional sex combs like 1; TP53, tumor protein p53; CALCRL, calcitonin-receptor like.
§Cytogenetic risk groups according to ELN 2017 definitions.
‡The low-risk group is defined as NPM1mut/FLT3-ITDneg/low, the intermediate-risk group is defined as NPM1mut/FLT3-ITDhigh or NPM1wt/FLT3-ITDneg/low, and the high-risk group is defined as NPM1wt/FLT3-ITDhigh, in accordance with ELN 2017 definitions.

	
	Table 1. Pretreatment characteristics of 492 AML patients of the AMLCG analytic cohort, categorized as CALCRLlow, CALCRLint and CALCRLhigh.

	Variables
	
	CALCRL
	

	
	Low
	Intermediate
	High
	P value

	N
	123
	246
	123
	

	Age, years
	
	
	
	<.0001§

	    Median (range)
	48 (19-83)
	58 (18-85)
	63 (20-79)
	

	Sex, no (%)
	
	
	
	.85¶

	    Male
	59 (48.0)
	125 (50.8)
	63 (51.2)
	

	    Female
	64 (52.0)
	121 (49.2)
	60 (48.8)
	

	AML type, no (%)
	
	
	
	.10¶

	    De novo
	111 (90.2)
	201 (81.7)
	105 (85.4)
	

	    s-AML
	6 (4.9)
	33 (13.4)
	10 (8.1)
	

	    t-AML
	6 (4.9)
	12 (4.9)
	8 (6.5)
	

	FAB, no (%)
	
	
	
	<.0001¶

	    M0
	2 (1.6)
	7 (2.9)
	12 (9.8)
	

	    M1
	19 (15.6)
	43 (17.6)
	45 (36.9)
	

	    M2
	41 (33.6)
	88 (36.1)
	30 (24.6)
	

	    M4
	35 (28.7)
	60 (24.6)
	21 (17.2)
	

	    M5
	23 (18.9)
	32 (13.1)
	7 (5.7)
	

	    M6
	2 (1.6)
	12 (4.9)
	6 (4.9)
	

	    M7
	0 (0.0)
	2 (0.8)
	1 (0.8)
	

	WBC, x 109/L 
	
	
	
	.16§

	    Median (range)
	24.4 (0.9-280.1)
	16.0 (0.1-666.0)
	21.8 (0.9-486.0)
	

	LDH level, U/L
	
	
	
	.0017§

	    Median (range)
	558 (127-4613)
	428 (76-3630)
	436 (87-4610)
	

	Hb, g/dl
	
	
	
	.024§

	    Median (range)
	9.4 (3.6-14.3)
	9.0 (3.5-14.2)
	8.8 (4.0-15.4)
	

	Platelets, x 109/L
	
	
	
	.53§

	    Median (range)
	44 (6-406)
	53 (0-1760)
	53 (4-670)
	

	BM blasts, %
	
	
	
	.036§

	    Median (range)
	80 (20-100)
	80 (13-100)
	85 (21-100)
	

	Cytogenetics*, no (%)
	
	
	
	

	    t(8;21)
	12 (9.8)
	16 (6.5)
	0 (0.0)
	.0032¶

	    inv(16)/t(16;16)
	15 (12.2)
	19 (7.7)
	3 (2.4)
	.015¶

	    normal
	49 (39.8)
	100 (40.7)
	56 (45.5)
	.60¶

	    t(9;11)
	11 (8.9)
	7 (2.9)
	1 (0.8)
	.0031‡

	    t(6;9)
	1 (0.8)
	3 (1.2)
	0 (0.0)
	.81‡

	    t(9;22)
	-
	-
	-
	

	    t(v;11q23)
	7 (5.7)
	6 (2.4)
	3 (2.4)
	.26‡

	    inv(3)/t(3;3)
	2 (1.6)
	3 (1.2)
	8 (6.5)
	.013‡

	    -5/del(5q)
	4 (3.3)
	21 (8.5)
	19 (15.5)
	.0035¶

	    -7
	4 (3.3)
	15 (6.1)
	14 (11.4)
	.034¶

	    -17/abn(17p)
	2 (1.6)
	8 (3.3)
	12 (9.8)
	.0036¶

	    complex
	8 (6.5)
	31 (12.6)
	27 (22.0)
	.0016¶

	    monosomal
	5 (4.1)
	19 (7.7)
	22 (17.9)
	.0005¶

	    other
	16 (13.0)
	49 (19.9)
	21 (17.1)
	.25¶

	FLT3-ITD, no (%)
	
	
	
	.18¶

	    Present
	24 (20.5)
	70 (29.7)
	31 (25.8)
	.021¶

	        High allelic ratio (≥0.5)
	10 (41.7)
	39 (54.9)
	24 (77.4)
	

	        Low allelic ratio (<0.5)
	14 (58.3)
	32 (45.1)
	7 (22.6)
	

	    Absent
	93 (79.5)
	166 (70.3)
	89 (74.2)
	

	NPM1, no (%)
	
	
	
	.51¶

	    Mutated
	35 (29.9)
	65 (27.5)
	28 (23.3)
	

	    Wild type
	82 (70.1)
	171 (72.5)
	92 (76.7)
	

	NPM1/FLT3-ITD, no (%)
	
	
	
	.0070¶

	    NPM1mut/FLT3-ITDneg/low
	28 (23.9)
	40 (17.0)
	9 (7.5)
	

	    NPM1mut/FLT3-ITDhigh
	7 (6.0)
	25 (10.6)
	19 (15.8)
	

	    NPM1wt/FLT3-ITDneg/low
	79 (67.5)
	157 (66.5)
	87 (72.5)
	

	    NPM1wt/FLT3-ITDhigh
	3 (2.6)
	14 (5.9)
	5 (4.2)
	

	CEBPA, no (%)
	
	
	
	.0029‡

	    Double mutated
	10 (9.9)
	3 (1.5)
	4 (4.0)
	

	    Wild type or single mutated
	91 (90.1)
	201 (98.5)
	95 (96.0)
	

	RUNX1, no (%)
	
	
	
	<.0001¶

	    Mutated
	12 (10.3)
	27 (11.4)
	33 (27.5)
	

	    Wild type
	105 (89.7)
	209 (88.6)
	87 (72.5)
	

	ASXL1, no (%)
	
	
	
	.57¶

	    Mutated
	10 (8.6)
	29 (12.3)
	14 (11.7)
	

	    Wild type
	107 (91.4)
	207 (87.7)
	106 (88.3)
	

	TP53, no (%)
	
	
	
	.0017¶

	    Mutated
	7 (6.0)
	23 (9.8)
	24 (20.0)
	

	    Wild type
	110 (94.0)
	213 (90.2)
	96 (80.0)
	

	Cytogenetic and molecular risk**, no (%)
	
	
	
	<.0001¶

	    Favorable
	65 (54.6)
	78 (32.2)
	16 (13.3)
	

	    Intermediate
	26 (21.9)
	67 (27.7)
	28 (23.3)
	

	    Adverse
	28 (23.5)
	97 (40.1)
	76 (63.3)
	


Abbreviations: AML, acute myeloid leukemia; s-AML, secondary AML; t-AML, therapy-related AML; FAB, French-American-British classification; WBC, white blood cell count; LDH, lactate dehydrogenase; Hb, hemoglobin; BM, bone marrow; FLT3-ITD, internal tandem duplication of the FLT3 gene; NPM1, nucleophosmin-1; CEPBA, CCAAT/enhancer binding protein α; RUNX1, Runt-related transcription factor 1; ASXL1, additional sex combs like 1; TP53, tumor protein p53; Significant P values are marked in bold.
*Patients may be counted more than once in cases with two or more coexisting cytogenetic abnormalities.
**According to European LeukemiaNet 2017 guidelines
§Kruskal-Wallis test; ‡Fisher’s exact test; ¶2 test.


Figure Legends
Fig. 1. CALCRL gene expression and survival in the AMLCG analytic cohort. Overall survival (A, C) and event-free survival (B, D) according to continuous (A, B) and trichotomized (C, D) microarray-based CALCRL expression levels. Splines (A, B) are shown with a 95% confidence interval. The horizontal dotted line indicates a hazard ratio of 1.
Fig. 2. CALCRL gene expression and survival in the HOVON, TCGA and Leucegene validation cohorts. Overall (A-F) and event-free survival (G-J) according to CALCRL transcript levels in the HOVON cohort (A, D, G, I), the intensively treated TCGA subcohort (B, E, H, J), and the Leucegene cohort (C, F). EFS data were not available for the Leucegene cohort. Splines (A, B, C, G, H) are shown with a 95% confidence interval. The horizontal dotted lines indicate a hazard ratio of 1.
Fig. 3. CALCRL protein expression and treatment outcome in the UKM cohort. (A) Representative IHC micrographs of CALCRL expression in pretherapeutic BM from an AML patient not achieving a CR (left), a patient achieving a CR (middle) and a non-leukemic donor (right). Scale bars are 25 µm. (B) Frequency of CALCRL H-scores divided into quartiles in patients achieving a CR (left) compared to patients not achieving a CR after induction therapy (right). (C) Comparison of CALCRL H-scores between AML and normal BM. Violin plots of H-scores including a boxplot with Tukey whiskers and 95% confidence interval (notch) of the median (white dot) are shown. ***P < .0001 (Welch’s t-test). A comparison of CALCRL transcript levels between AML and normal BM in an independent cohort can be found in the Supplementary Fig. 12. Overall (D) and event-free survival (E) in the UKM cohort according to trichotomized CALCRL H-scores.
Fig. 4. Biological insights. (A) Heat map of the CALCRL-associated gene expression signature in the AMLCG cohort. Color-coded expression values of the 200 genes with the strongest correlation with CALCRL are shown, with green indicating expression below and red indicating expression above the median value for the given gene. Rows represent probe sets and columns represent patients, ordered from left to right by CALCRL expression. Up- and down-regulated genes mentioned in the text are indicated. The complete list can be found in Supplementary Table 8. (B) CALCRL expression in human normal hematopoietic cell populations derived from sorted cord blood (CB), bone marrow (BM) or peripheral blood (PB) samples. (C) CALCRL expression in human AML samples with varying LSC frequencies. LSC frequencies were determined as described.24 *P < .05; **P < .005 (Welch’s t-test) (D) Impact of CRISPR-Cas9-mediated knockout of CALCRL on colony forming capacity in three human myeloid leukemia cell lines using two different sgRNAs (mean ± SD, all experiments performed in triplicates, *P < .05; **P < .005 (Welch’s t-test)). (E) Overall survival (OS) according to the LSC17 score35 in the AMLCG cohort. (F) OS according to CALCRL expression in LSC17low and (G) in LSC17high patients.
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