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The behavior of a cell is determined 
by the interplay of its subcellular 

components. Thus, being able to simul-
taneously visualize several organelles 
inside cells within the natural context of 
a living organism could greatly enhance 
our understanding of developmental pro-
cesses. We have established a Gal4-based 
system for the simultaneous and cell type 
specific expression of multiple subcellular 
labels in transparent zebrafish embryos. 
This system offers the opportunity to fol-
low intracellular developmental processes 
in a live vertebrate organism using confo-
cal fluorescence time-lapse microscopy. 
Using this approach we recently showed 
that the centrosome neither persistently 
leads migration nor determines the site 
of axonogenesis in migrating neurons in 
the zebrafish cerebellum in vivo. Here we 
present additional in vivo findings about 
the centrosomal and microtubule dynam-
ics of neuroepithelial cells during mitotic 
cleavages at early neural tube stages.

The developmental events that shape 
an embryo involve complex interactions 
between cells, tissues and extracellular 
matrix, and so are ideally investigated 
within the context of a living organism.1 
Underlying many morphological changes 
are the movements of individual cells, 
which themselves are driven by the dynam-
ics of subcellular organelles. Thus, what 
happens intracellularly dictates the tempo-
ral and spatial orchestration of proliferation, 
apoptosis, migration, differentiation and 
morphological specialization, eventually 
leading to functional organs like the brain.
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In cells initiating mitosis, the micro-
tubule cytoskeleton undergoes major 
remodeling and the centrosomes relocate 
within the cell to form the spindle poles 
of the microtubule-based spindle appa-
ratus. Next, replicated chromosomes 
condense, the nuclear envelope breaks 
down and microtubules attach to kineto-
chores to pull sister chromatids apart. At 
the end of mitosis, cytokinesis separates 
the two daughter cells. Here, a contrac-
tile actomyosin ring drives constriction 
of the plasma membrane to form a nar-
row cytoplasmic bridge between the two 
reforming nuclei. Physical separation of 
the two daughter cells requires this bridge 
to be severed in a final step termed abscis-
sion. This cytoplasmic bridge consists of 
a thin tube of plasma membrane filled 
with two antiparallel bundles of microtu-
bules with their plus-ends interdigitating 
at the midbody. Live imaging of cells in 
culture reveals that the bridge can persist 
for several hours before abscission occurs, 
through a mechanism that remains largely 
unknown.2 A current model suggests that 
the two centrioles separate and the mother 
centriole translocates to the intercellular 
bridge, bringing proteins located at the 
centrosome together with their interaction 
partners located at the midbody, hereby 
initiating abscission.3-6

The ability to visualize organelles inside 
cells within a living organism could greatly 
enhance our understanding of develop-
mental events such as mitosis. Towards 
this goal, we have established a system 
for the expression of multiple subcellular 
labels in specific cells of a living zebrafish 
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stage and following by in vivo time-lapse 
recording the interplay of plasma mem-
brane, nucleus, microtubules and cen-
trosome in neuroepithelial cells, which 
divide at the midline in the zebrafish 
hindbrain and anterior spinal cord at 
early neural tube stages (Sup. Vid. 1).13-

16 The two centrioles of the centrosome 
are located at the apical membrane of 

during nucleokinesis. Further, we found 
that the centrosome does not by its prox-
imity determine the site of axonogenesis in 
these neurons.12

Here we have applied our multi-
organelle labeling approach by co-
injecting a Gal4 expression vector 
(pCSKalTA4)together with Medusa M1, 
M2 or M3 constructs12 at the one cell 

embryo. Owing to their transparency dur-
ing embryonic stages and their fast and 
external development, zebrafish are an 
ideal model organism for in vivo micros-
copy.7,8 Our labeling technique is based 
on the Gal4-UAS system, in which Gal4 
is a yeast-derived transcriptional activator 
that induces gene expression by binding to 
DNA binding sites called upstream acti-
vating sequences (UAS).

We have established so-called Medusa 
vectors (Fig. 1A), which contain UAS sites 
bidirectionally flanked by basal promoters 
driving expression of subcellularly targeted 
fluorescent proteins with distinct spectral 
properties. Thus, multiple organelles can 
be simultaneously demarcated for confo-
cal fluorescence microscopy. Moreover, 
by placing Gal4 expression under tissue 
specific control, as already achieved in 
many stable transgenic Gal4-driver lines, 
the expression of organelle labels can be 
restricted to cell types of interest.9-11

We recently performed Medusa vector 
labeling of the centrosome, nucleus and 
membrane in migrating tegmental hind-
brain nuclei neurons in the live zebraf-
ish cerebellum, and demonstrated that 
the centrosome and nucleus exhibit an 
unexpected sort of leapfrogging behavior 

Figure 1. Gal4 mediated subcellular labeling. (A) Schematic showing subcellular labeling strategy. A Medusa vector was constructed containing 
subcellular labels for the nucleus (H2B-mrFP, red), plasma membrane (memCFP-blue) and microtubules (GFP-dCX, green) all under the control of Gal4 
dnA binding sites (uAS). By flanking uAS sites with e1b minimal promoters and two expression cassettes (here H2B-mrFP and GFP-dCX), bidirectional 
expression can be achieved upon Gal4 binding. tissue specificity can be achieved by expressing Gal4 under control of tissue-specific regulatory ele-
ments. (B) dorsal view of a zebrafish embryo at neural rod to neural tube stages. Anterior is to the left. the red box depicts the area shown in (C) and in 
Figures 2 and 3. (C) neuroepthelial cells expressing Medusa vector M2 depicted in (A). Mitotic cleavages can be observed at the midline (white arrows). 
At 1120 s, daughter cells connected by a midbody can still be seen.

Figure 2. Cytokinesis. dorsal views of an early neural tube stage zebrafish embryo injected with 
pCSKaltA4 and Medusa vector M2. (A) neuroepithelial cell dividing at the midline. (B) Furrow 
ingression occurs from the basal side (white arrows in B–d). (C and d) the microtubules of the 
spindle apparatus bend towards the apical side. (e and F) the spindle pole (white arrow), carrying 
an intact microtubule cytoskeleton, moves along the plasma membrane towards the forming 
midbody, thereby changing the shape of the cell from round to apico-basally elongated.
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processes on a subcellular level in a liv-
ing organism.12 Our initial applications 
of these in vivo cell biology tools have 
already revealed significant differences 
from current models, promising that there 
is much new and exciting to discover deep 
within a zebrafish.
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Figure 3. Centrosomal movements during cytokinesis. dorsal views of an early neural tube stage zebrafish embryo expressing Medusa vector M1, 
which contains Centrin2-YFP (yellow centrosome), memmrFP (red membrane) and H2B-CFP (blue nucleus). After separation of the sister chromatids, 
the centrosome relocates from the spindle pole to the apical membrane. the centrioles of the centrosome (white arrow) remain together as they 
move towards the midbody of neuroepithelial cells.
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