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Abstract: Purpose 
In soft tissue sarcomas (STS) patients systemic progression and survival 
remain comparably low despite low local recurrence rates. In this work, 
we investigated whether quantitative imaging features ("radiomics") of 
radiotherapy planning CT-scans carry a prognostic value for pre-
therapeutic risk assessment. 
 
Methods 
CT-scans, tumor grade, and clinical information were collected from three 
independent retrospective cohorts of 83 (TUM), 87 (UW) and 51 (McGill) 
STS patients, respectively. After manual segmentation and preprocessing, 
1358 radiomic features were extracted. Feature reduction and machine 
learning modeling for the prediction of grading, overall survival (OS), 
distant (DPFS) and local (LPFS)  progression free survival were performed 
followed by external validation.  
 
Results 
Radiomic models were able to differentiate grade 3 from non-grade 3 STS 
(area under the receiver operator characteristic curve (AUC): 0.64). The 
Radiomic models were able to predict OS (C-index: 0.73), DPFS (C-index: 
0.68) and LPFS (C-index: 0.77) in the validation cohort. A combined 
clinical-radiomics model showed the best prediction for OS (C-index: 
0.76). The radiomic scores were significantly associated in univariate 
and multivariate cox regression and allowed for significant risk 
stratification for all three endpoints.  
 
Conclusion 
This is the first report demonstrating a prognostic potential and tumor 
grading differentiation by CT-based radiomics. 
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Abstract 

Purpose 
In soft tissue sarcomas (STS) patients systemic progression and survival remain 

comparably low despite low local recurrence rates. In this work, we investigated 

whether quantitative imaging features ("radiomics") of radiotherapy planning CT-

scans carry a prognostic value for pre-therapeutic risk assessment. 

 

Methods 
CT-scans, tumor grade, and clinical information were collected from three 

independent retrospective cohorts of 83 (TUM), 87 (UW) and 51 (McGill) STS 

patients, respectively. After manual segmentation and preprocessing, 1358 radiomic 

features were extracted. Feature reduction and machine learning modeling for the 

prediction of grading, overall survival (OS), distant (DPFS) and local (LPFS)  

progression free survival were performed followed by external validation.  

 

Results 
Radiomic models were able to differentiate grade 3 from non-grade 3 STS (area 

under the receiver operator characteristic curve (AUC): 0.64). The Radiomic models 

were able to predict OS (C-index: 0.73), DPFS (C-index: 0.68) and LPFS (C-index: 

0.77) in the validation cohort. A combined clinical-radiomics model showed the best 

prediction for OS (C-index: 0.76). The radiomic scores were significantly associated 

in univariate and multivariate cox regression and allowed for significant risk 

stratification for all three endpoints.  

Conclusion 
This is the first report demonstrating a prognostic potential and tumor grading 

differentiation by CT-based radiomics. 
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Introduction 
 

Soft tissue sarcomas (STS) constitute an overall rare malignant entity comprising 1% 

of all cancers [1]. Treatment and outcome differ vastly between anatomic sites of 

occurrence [1,2]. Resection of high risk STS of the extremity is combined with 

neoadjuvant or adjuvant radiotherapy (RT) improving locoregional control (LC) and 

eventually survival [3,4]. Compared to adjuvant RT, neoadjuvant RT offers several 

advantages including lower total radiation doses, smaller target volumes, and 

reduced late toxicities, such as fibrosis[5,6]. There is also some evidence showing 

improved survival in favor to neoadjuvant RT [7,8]. In contrast to the high LC rates of 

up to 94%, current therapy regiments achieve comparably low systemic control rates 

and overall survival of 61% and 64%, respectively [9].  

 

There is an ongoing search for biomarkers as prognostic factors. Despite, large 

research efforts STS histologies or molecular aberrations have not yet been 

established as prognostic markers. Therapy decisions are still mostly made using 

basic clinical determinants such as TNM staging and grading.  

  

Imaging-based radiomics constitutes an alternative tool to characterize tissue. It is 

defined as an algorithm-based large-scale quantitative analysis of imaging features 

[10]. Radiomics has been associated with survival, tumor progression, and molecular 

changes including genetic mutations or expression profiles as shown in multiple 

malignant entities [11–14]. In contrast to pathology, radiomics has the principal 

advantage of analyzing the whole tumor before therapy rather than a focal biopsy. 

 

In this study we analyzed the prognostic capability of pre-RT planning CT-based 

radiomics machine learning (ML)-based prognostic models. A radiomic model was 

generated to predict French Fédération Nationale des Centres de Lutte Contre le 
Cancer (FNCLCC) grade as a biological correlate. The resulting models were tested 

on external validation cohorts. 
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Methods 

Patients 
Radiomic model training and validation were performed with three independent 

patient cohorts treated for STS at the Technical University of Munich (TUM), the 

University of Washington/Seattle Cancer Care Alliance (UW) and McGill University. 

Clinical information including age, TNM-staging and grading were assessed for all 

patients. All patients received neoadjuvant RT followed by tumor resection with or 

without chemotherapy. No patient received previous RT. The dataset from McGill 

University (McGill) published by Vallières et al. in the "The Cancer Imaging Archive" 

was added as additional validation and training set [15,16]. Exclusion criteria for all 

three datasets were osteosarcomas, Ewing sarcomas, endoprothesis-dependent CT 

artifacts, incomplete imaging and direct affection of bones (see Supplemental Figure 

1 for patient workflow).  

 

The overall survival (OS) was calculated from initial pathologic diagnosis to the time 

point of death or the time point of censoring. Distant progression free survival (DFPS) 

and local progression free survival (LPFS) were calculated from diagnosis to the first 

sign of progression, death, or time point of censoring. Approval from the ethic 

committees was received from both institution. Informed consent was given before 

therapy.  

Image acquisition and definition of volume of interests 
In the TUM and UW cohorts, each patient received a planning CT before RT as 

published previously [17]. In the McGill cohort, CT data were obtained from pre-

therapeutic PET/CT studies. See Supplemental Table 2 for acquisition parameters. 

Contrast agent was administered at TUM in 8 patients (9.6%) (70 ml Imeron 400 

MCT, Bracco Imaging, Germany), in 77 patients at UW (88.5%) (100ml Omnipaque 

300, GE Healthcare, USA) and 0 patients in the McGill data set (see supplemental 

data for imaging protocols). 

 

For segmentation, iplan RT 4.1.2 (Brainlab, Munich, Germany) and Eclipse 13.0 

(Varian Medical Systems, Palo Alto, USA) were used at TUM whereas MIM software 

(version 6.6, MIM Software Inc, Cleveland, USA) were used at UW. As volume of 

interest (VOI) the primary tumor was manually segmented by a radiation oncology 
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resident (JP), by adapting existing expert segmentations from RT treatment planning 

in the following ways: MRI-scans were considered if available, edematous changes 

were not included into the VOI, and bone structures were subtracted from the VOI.  

 

To reduce operator-dependent bias, multiple segmentations were performed for 20 

randomly selected patients in the TUM cohort by three radiation oncologists (JP, TA, 

MS) (see Figure 1). Dice coefficients (DC) were calculated by using the 

DiceComputation module of 3D Slicer (3D Slicer, Version 4.8 stable release) [18].  

Image preprocessing and radiomic feature extraction 
 
All preprocessing steps and radiomic feature extraction were performed using the 

pyradiomics package (Version 1.3) in Python (3.6.4) [19]. Preprocessing included 

image discretization with a fixed bin width of 10 (Supplemental Material 1 for a closer 

definition).  

 

Isotropic resampling was performed by Bspline interpolation to receive a voxel size of 

1x1x1 mm. Preprocessing included image discretization with a fixed bin width of 10 

(see Supplemental Material 1 for the equation). Besides the original images, image 

reconstructions were performed using Laplacian of Gaussian filtering (Sigma values 

1.0, 2.0, 3.0, 4.0, and 6.0) and wavelet filtering yielding 8 decompositions. Besides 

14 shape features, 1344 were extracted from original and filtered reconstructions of 

the images including intensity histogram (first-order) and texture features. Texture 

parameters included "Gray Level Co-occurrence Matrix" (GLCM) features, "Gray 

Level Size Zone Matrix" (GLSZM) features, "Gray Level Run Length Matrix" (GLRLM) 

features, "Neighbouring Gray Tone Difference Matrix" (NGTDM) features, and "Gray 

Level Dependence Matrix" (GLDM) features. See Supplemental Material 1 for a 

detailed listing of extracted features.  

Radiomics feature reduction  
We applied two steps of unsupervised feature reduction prior to training our models. 

First, we calculated the intraclass correlation coefficient ICC(3,1) for all 1358 

radiomics features based on the above-mentioned resegmentations (20 patients with 

three observations each) for the TUM data set in order to estimate how small 

differences in the image annotation influenced the selected features. We kept 

features with ICC(3,1) ≥ 0.8. Next, we removed inter-correlated features: for each 
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pair of features F1 and F2 we removed F2 if the values of both features had an 

absolute Pearson correlation coefficient of 0.9 or higher across all patients. 

Additionally, the following six clinical features were used as clinical input features: 

age, FNSSC tumor grading, T-Suffix, T-stage, M-stage, and N-stage. 

During training we standardized each feature by subtracting its median from its 

values and dividing the results by its interquartile range (IQR). This method is usually 

more robust against outliers than the default standardization (subtracting the mean 

and dividing by the standard deviation). Further, we tested supervised feature 

selection by ranking the features according to their predictive power and keeping only 

the best ten. The predictive power of a feature was estimated by removing all other 

features and using this feature alone to predict. 

Except for the two unsupervised feature set reductions, all other steps were 

performed during a five-fold cross-validation to prevent bias (cf. model training and 

validation). 

 

Machine learning model design  
We designed four different models for each of the three clinical endpoints: OS, DPFS 

and LPFS. Each model was based on gradient boosting with component-wise least 

squares as base learners designed for survival analysis [20]. 

The Radiomics model was trained on all radiomic features while the Clinical model 

used only the clinical features. In addition, there were two combination models: one 

was trained on the clinical features and the tumor volume (Combined-Volume 

model), the other used all radiomics and clinical features (Combined-Radiomics). 

We also trained two random forest models to predict FNSSC tumor grading: one 

using only the radiomics features, the other using only the clinical features. Due to 

the lack of patients with grading G1 in both, the TUM and McGill data set, we 

classified binary: grading G3 or not, i.e. G1 or G2. 

All models were built using Python (3.6.4) and the machine learning libraries scikit-

learn (0.19.2) and scikit-survival (0.6.0) [21–24]. A documentation can be found in the 

Supplemental Material 1. The models are provided online. Selected radiomic features 

and respective indices are provided in Supplemental Material 2.  
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Model training and validation 
In order to minimize bias and establish model validity on the TUM data set, we 

trained and tested all models within a nested cross-validation: five outer folds with 

five inner folds each. Feature selection and hyperparameter optimization via grid-

search was performed as part of the inner cross-validation. Prediction performance in 

the form of the concordance index (CI) or area under the receiver operating 

characteristic curve (AUC) was established on the outer cross-validation and 

averaged over the five folds. The 95-percent confidence intervals were estimated via 

bootstrapping (1000 iterations). 

The final models were trained on the whole TUM data set using the feature sets and 

parameters with the best average performance over all 25 inner cross-validation 

splits. Final performance was tested on the UW data set to get an unbiased estimate.  

The Radiomics model was also tested on the McGill cohort. In addition, we retrained 

the Radiomics model on the combined TUM and McGill data sets (Radiomics - 
Retrained model) to test the effect of more training samples (see Supplemental 

Figure 1(B) for patient workflow and Supplemental Table 3 for C-indices). Clinical 

parameters were not available for the McGill cohort for calculation of the other 

models. 

 

Comparison to single-predictor models 
We also compared the performance of our machine learning models for the clinical 

endpoints to simple single-predictor models. The Volume model used only the tumor 

volume, the AJCC model only the TNM staging system based on the 7th edition of 

the American joint committee on Cancer (AJCC) [25]. 

 

Difficult feature reduction 
The first feature reduction based on the ICC(3,1) threshold of at least 0.8 resulted in 

a set of 623 stable features (Supplemental Material 2). Removing all highly inter-

correlated features (R >= 0.9) yielded a final set of 127 non-correlated features. 

The supervised feature selection, i.e. keeping only the 10 most predictive features, 

resulted in rather different feature sets for each of the cross-validation folds. Due to 

this unstable behavior, most likely caused by the small data set size, we ultimately 

decided against it and trained the models on all 127 non-correlated features. 

Additionally, the random forest models for the grading prediction exhibited better 
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performance when trained on all 623 stable features, instead. See Supplemental 

Figures 2-3 for distribution of intensity and volume features. 

Influence of contrast-enhancement on feature values 
In order to assess the dependency of the selected features on the usage of contrast 

agent, we compared feature values between the patients that either received contrast 

agent or not. Of all non-correlated features, 28 were significantly different between 

both groups, however, no feature retained significance after adjustment for multiple 

testing (Supplemental Table 5).  

Statistics 
All statistical analyses were performed in R (version 3.4.0) (R core team, Vienna, 

Austria). Classified patient subgroups were analyzed with Kaplan-Meier survival 

curves using the "ggkm" package. Dichotomization was performed using the median 

of the respective predictor as cut-point. The log-rank test was used to assess 

statistical significance. Univariate and multivariate Cox proportional hazard models 

were used to assess prognostic significance of features using the "survival" package. 

Receiver operator characteristic curves (ROC) and respective area under the curve 

(AUC) values were calculated using the "survivalROC" package. Calibration curves 

were generated using the packages "rms" and "riskRegression". Bonferroni 

correction was performed in cases of multiple testing. A p-value below 0.05 was 

regarded as significant. 

Results 
The flowchart of the study is depicted in Figure 1.  
 

Patient characteristics and VOI definition 
Patient demographics, RT schedules, and histologies were similar between groups 

(see Table 1 and Supplemental Table 1). Chemotherapy was significantly more 

frequently given in the UW patient cohort (p<0.0001). Chemotherapy appeared to be 

a significant prognostic factor for OS (p=0.003) and DPFS (p=0.005) in the TUM 

cohort as well as for DPFS in the McGill cohort (p=0.0016). In contrast to TUM and 

UW, 10% of patients in the McGill cohort did not receive RT (p<0.0001). The TUM 

cohort had significantly more adverse features including 9 recurrent tumors (p=0.002) 

and higher AJCC stages (p<0.0001) (e.g. stage III TUM: 75.9%, UW: 43.7%). Median 

OS, DPFS and LPFS were non-significantly longer in the UW cohort. Similarity 
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between multiple delineation was overall high with a mean DC over all three 

operators of 0.91 (standard deviation 0.069).  

Training and validation of prognostic radiomic classifiers 
For the prediction task of OS, the Radiomic model achieved a predictive performance 

with a C-index of 0.72 (0.61-0.83) on the training set (see Supplemental Figure 1(A) 

for patient workflow, Supplemental Figures 4-6 for calibration curves, Figure 2 for 

ROC curves and Table 2 for C-indices). This performance was about 14% better than 

the AJCC staging system (C-index: 0.63 (0.56-0.60)) but about 5% worse than the 

Clinical model (C-index: 0.76 (0.68-0.81). Both differences marked tendencies that 

were statistically insignificant. Validation on the UW patient set successfully 

reproduced a stable performance of the Radiomics model with a C-index of 0.73 

(0.63-0.82). The Clinical model (C-index: 0.69 (0.57 - 0.80)) and the AJCC staging 

system (C-index: 0.68 (0.57 - 0.77)) performed worse in the validation set. Validation 

on the McGill cohort yielded a C-index of 0.59 (0.39-0.79).  

 

Radiomics-based prediction of DPFS yielded overall lower predictive performances 

with a C-index of 0.64 (0.47-0.70) in the training set. This was significantly better 

compared to the Clinical model (C-index: 0.46 (0.42-0.53)), although not significantly 

different from random. In the validation cohorts, predictive performances were similar 

among all groups (Radiomics: UW C-index: 0.68 (0.55-0.76), McGill C-index: 0.73 

(0.61-0.83); Clinical: C-index: 0.66 (0.55-0.77), AJCC: 0.66 (0.54-0.74)). 

 

For the prediction of LPFS the Clinical model (C-index: 0.68 (0.51-0.81) achieved a 

higher prediction compared the Radiomics model (C-index: 0.56 (0.40-0.71)) and the 

AJCC staging system (C-index: 0.57 (0.51-0.63)). In the validation set however, the 

Radiomics model significantly outperformed the Clinical model and the AJCC staging 

system with a C-index of 0.77 (0.66-0.87). Due to only one event in the McGill cohort, 

no meaningful outcome measure was calculated. 

 

Furthermore, we tested the prognostic power of tumor volume alone. Predicting OS 

and DPFS, Volume performed non-significantly worse compared to the radiomics 

model in the validation set (differences of C-index of -0.08 and -0.03, respectively). 

For LPFS, Volume did not show a significant predictive value.  
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To asses the incremental value of radiomics, joint models combining the radiomic 

features or volume with clinical features were developed. The Combined-Radiomics 

model performed similar to the Clinical model in the training set (C-index: 0.75 (0.70-

0.80)) but non-significantly worse compared to the Combined-Volume model (C-

index: 0.78 (0.74-0.84) predicting OS on the training set. However, both combined 

models significantly outperformed the AJCC staging system. In the test set (UW), the 

Combined-Radiomics model retained its predictive performance (C-index 0.76 (0.68-

0.81) in contrast to the Clinical and Combined-Volume model (C-index 0.72 (0.60-

0.83)). For DPFS prediction, both combined models performed similar to the 

Radiomics model. Predictive performance for LPFS was reduced for the Combined- 
Radiomics model compared to Radiomics alone. Combined-Volume did not predict 

LPFS significantly better than random. 

 

The Radiomics - Retrained model achieved overall lower predictive performances on 

the combined training set (see Supplemental Table 3 for C-indices). The resulting 

models achieved significant predictions for all three prediction tasks on the validation 

set with similar performances as described above.  

The radiomics score as a prognostic factor 
Univariate cox regression analysis in the training cohort identified the Radiomics 

score, Volume, age and M-stage as significant prognostic factors for OS (see Table 3 

for included variables hazard ratios and p-values). For DPFS and LPFS, the 

Radiomics scores were the only significant factors. In multivariate analysis, the 

Radiomics score for DPFS was the only significant predictors. In the validation 

cohort, the Radiomics scores were significantly associated with all three endpoints in 

univariate and multivariate analyses. Besides, Volume and grading were significantly 

associated with OS and DPFS. However, only grading retained significance in the 

multivariate analysis for DPFS. There was a significant association of the Radiomics 

score for DPFS in the McGill set. 

Patient risk stratification 
Radiomics model-based risk stratification of patients did show a significant 

separation of survival curves for OS (p=0.00214) and DPFS (p=.0277) in the TUM 

cohort (see Figure 3). On the UW cohort the models yielded significant risk 

stratification with separation of survival curves for patients' OS (p=0.0015), DPFS 

(p=0.0024) and LPFS (p=0.00268).  
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Feature importance 
The gradient boost predictor assigned feature coefficients during training. Dependent 

on the endpoint, 13 to 35 features were assigned with non-zero coefficients (see 

Supplemental Table 5). "GLRL_LowGrayLevelRunEmphasis" and 

"Firstorder_Skewness" were rated among the top four features for all prediction 

tasks. "Sphericity" appeared to be the most important feature for OS and LPFS 

prediction. 

A radiomic classifier significantly differentiates tumor grading 
The Radiomics classifier for tumor grading achieved a significant classification 

performance in the combined training cohort with an AUC of 0.65 (0.54 - 0.75). The 

classifier was successfully validated in the UW cohort with an AUC of 0.64 (0.52 - 

0.76). For comparison, a Clinical model trained on the TUM set did not predict 

grading significantly different from random (TUM-training: AUC 0.62 (0.48-0.75), UW-

testing: AUC 0.51 (0.38-0.63). See Supplemental Material 2 for feature importance 

and Supplemental Figure 7 for calibration curves. 

Discussion 
This is the first study to show a prognostic value for CT-based radiomic features in 

STS despite the low soft tissue contrast of CT. Our radiomic models showed 

predictive performances for patients' OS, DPFS and LPFS. Results were successfully 

reproduced in an external validation cohort. The radiomic scores were significantly 

associated with all three endpoints in univariate and multivariate cox regression and 

allowed for significant risk stratification for OS, DPFS and LPFS in the validation 

cohort. In comparison to a Clinical model, the Radiomics model showed more 

consistent results and a significantly better LPFS prediction on the validation set. 

Combining the clinical and radiomic features achieved the best overall performance 

for OS, however without a significant difference.  

 

Our radiomic grading model differentiated grade 3 from non-grade 3 tumors 

significantly better than random in both training and validation sets. With a maximum 

AUC of 0.65, however, the discriminative capacity would not be sufficient for a 

potential substitution of invasive biopsies and pathological work-up.  
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A recent study indicated that performances of radiomic models may often be caused 

by radiomic feature correlation to tumor volume [26]. We tried to eliminate volume-

correlated features by using feature inter-correlation for feature reduction. In direct 

comparison on the validation set, C-indices of Volume were non-significantly lower 

than the Radiomics model for OS or DPFS and significantly lower for LPFS. The 

Combined-Volume models also showed a non-significant lower performance for OS, 

significantly lower prediction for LPFS, but a non-significantly better performance for 

DPFS on the validation set compared to the Combined-Radiomics model. In addition, 

Volume did not retain significance in multivariate cox regression. These observations 

may indicate an incremental benefit of Radiomics above tumor volume alone for 

prediction of LPFS and potentially for OS.  

 

The AJCC staging system performed overall worse on both patient cohorts compared  

to the Clinical and Radiomics model. Over all endpoints it performed better on the 

UW cohort compared to the TUM cohort. The difference in prognostic performance 

could be explained by the composition of histological STS subtypes between both 

cohorts. In addition, AJCC stages were more widely distributed among patients of the 

UW cohort whereas the TUM cohort was dominated by patients of stage III (75% of 

patients).  

 

Regarding independent validation, the Combined-Radiomics model achieved the 

highest performances for prediction of OS, whereas the Radiomics model constituted 

the best performing model for LPFS. Such improved patient risk stratification may be 

utilized for personalized treatment. Current therapy regiments include resection and 

radiotherapy yielding good LC but low systemic control rates. Multiple studies 

analyzed the potential use of chemotherapy at different time points. For instance, a 

prospective trial administered a chemotherapy regiment including mesna, 

adriamycin, ifosfamide and dacarbazine (MAID) in addition to surgery and RT. Long 

term results showed an excellent 7y disease specific survival of 71%, but with the 

high toxicity rates [27]. Novel approaches, such as targeted therapies (e.g. 

angiogenesis or cell cycle inhibitors) would constitute further options for a systemic 

therapy escalation [28,29]. RT escalations by delivery of simultaneous integrated 

boosts may constitute a further alternative for therapy intensification [30]. High-risk 
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patients identified by a radiomic model could be administered to such additional 

systemic therapies whereas low-risk patients could be spared unnecessary toxicities.  

 

Immunotherapy may constitute an alternative novel treatment option. However, early 

data suggested that immunotherapy may not be effective in unselected STS patients 

[31–33]. Selected STS subgroups such as undifferentiated pleomorphic sarcoma 

(UPS) or dedifferentiated liposarcomas showed higher response rates [31]. In 

coherence, UPS were recently shown to  express higher levels of programmed cell 

death protein (PD-1) and programmed death-ligand 1 (PD-L1) as well as higher T-

cell infiltration [31,34]. Radiomics directed to predict the immunogenic phenotype 

may provide in alternative tool to define immune-responsive STS independent of 

histologies.  

 

Magnetic resonance imaging (MRI) allows for detailed imaging of soft tissues, 

making it the primary imaging modality in the management of STS and initial studies 

have explored the potential of MRI-based radiomics. Vallières et al. built a prognostic 

model by combining four textural features from fused FDG-PET/T1-weight and FDG-

PET/ T2-weight scans for the prediction of lung metastases in the McGill cohort used 

in this study [15]. Recently, Spraker et al demonstrated prognostic relevance of T1-

weight sequence-based radiomics parameters which was successfully validated on 

our patient cohort [35]. Spatial heterogeneity of FDG-PET uptake was also shown to 

be an independent prognostic predictor [36]. In this work we demonstrated the 

feasibility of radiomic-based prognostic risk assessment despite the inferior soft 

tissue resolution of CT. Further studies should evaluate a potential incremental 

benefit by combining radiomics features from CT, PET and MRI imaging.  

 

There are several limitations of the study. First of all, the retrospective nature of this 

study may be a reason for potential bias [37]. Secondly, available patient numbers 

were comparably low, especially in the patient training set. Consequently, large 

standard deviations of performance metrics made direct comparison between models 

difficult and impeded interpretability of multivariate models. Thirdly, the large 

technical variances in image acquisition, such as CT scanner type or the inverse rate 

of contrast agent usage between cohorts, may have affected prediction 

performances. Radiomic features are known to be sensitive to aspects of image 
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acquisition and reconstruction. The reduced predictive performance after retraining 

the ML models on the combined TUM and McGill cohort may have been caused by 

the variability between the three distinct CT scanners and imaging protocols  (two 

types of planning CTs and one hybrid PET/CT). However, the retention of 

significance in the validation dataset, which used different scanner hardware and 

protocols, may suggest at least some of the investigated image features are robust to 

variability for sarcoma CT imaging [38,39]. Generally, a future sufficiently sized 

prospective trial may overcome these limitations, however the data provide a 

valuable basis for further research in this field and underline the potential of 

radiomics and biomarkers in radiation oncology.  

Calibration of predictive models for OS and PFS generally showed good calibration in 

concordance with the respective discriminate capacities. For LPFS, however, the 

Radiomics model showed suboptimal calibration despite a good discrimination with a 

C-index of 0.77 in the validations et (Supplementary Figure 4F). The stability of the 

model may have been affected by the relatively low event number (n=15). 

Interestingly, by adding clinical information to the Combined Radiomics model an 

improved calibration was achieved (Supplemental Figure 6F). 

 

To conclude, for the first time we could demonstrate the prognostic potential of 

radiotherapy planning CT-based radiomic models. Radiomics models allowed 

significant patient stratification for OS, DPFS and LPFS. External validation was 

successful despite large technical variances.  
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Figure Legends 

Figure 1: The radiomics workflow. 

Abbreviations: ICC: intra class coefficient, KM: Kaplan-Meier, McGill: McGill 

University, n: number, ROC: Receiver Operating Characteristic, TUM: technical 

University of Munich, UW: University of Washington, Seattle, VOI: volume of interest.  

 

Figure 2: Radiomics, Clinical and Combined-Radiomics prognostic models 

predicting overall survival (OS), distant (DPFS) and local progression free 

survival (LPFS). 

Receiver operator characteristic curves (ROC) and area under the curve (AUC) 

values depicting the performance of the Radiomics models (black), the Clinical 

models (red)  and the Combined-Radiomics models (blue) on the training (A,B,C) 

and validation cohort (D,E,F) for OS (A,D), DPFS (B,E) and LPFS (C,F) dichotomized 

at two years, respectively.  

 

Figure 3: Patient risk stratification. 

Kaplan Meier survival curves for patients' overall survival (OS) (A,D), distant 

progression free survival (DPFS) (B,E) and local progression free survival (LPFS) 

(C,F) depicting classifications by the radiomic models on the training (TUM) (A,B,C) 

and validation cohort (UW) (D,E,F). The median was used as cut-off for 

dichotomization. Statistical significance of the separation of survival curves was 

tested using the log-rank test. 

 



Tables  
Table 1: Patient demographics, outcome and treatment specifics of included 
patients. 
 

Institution  TUM UW McGill p-
values1 

Accrual time  2007-2017 2007-2015 n/a  
Total Patients  83 p 87 p 42 p  
Available 
outcome data  

OS/LPFS 74 p 
(89.2%) 

87 p  
(100%) 

42 p  
(100%) 

 

 DPFS 76 p 
(91.6%) 

87 p  
(100%) 

42 p  
(100%) 

 

Clinical 
Situation 

Primary 74  
(89%) 

87 p  
(100%) 

42 p  
(100%) 

p=0.002 

 Recurrent 9 p  
(11%) 

0 p 
(0%) 

0 p 
(0%) 

 

Location Extremity or 
trunk 

76 p  
(92%) 

86 p  
(99%) 

42 p  
(100%) 

p=0.27 

 Abdomen/ 
retroperitoneal 

7 p  
(8%) 

1 p  
(1%) 

0 p 
(0%) 

 

Age  m 58  
(sd: 16) 

m 52.4 
(sd:15.8) 

m 58.8 
(sd:16.6) 

p=0.68 

Gender female 36 p 
(43.4%) 

35 p  
(40.2 %) 

24 p  
(57%) 

p=1 

 male 47 p 
(56.6%) 

52 p  
(59.8 %) 

18 p  
(43%) 

 

T-stadium2 1 10 p  
(12%) 

16 p  
(18.4 %) 

n/a p=0.50 

  2   73 p  
(88%) 

70 p  
(80.5 %) 

n/a  

 a 4 p  
(4.8 %) 

5 p  
(5.8%) 

n/a p=1 

 b 79 p  
(95.2 %)  

81 p 
(93.1%) 

n/a  

 unknown 0 p  
(0%) 

1 p   
(1.1 %) 

n/a  

M-stadium2          0 70 p  
(84.3 %) 

86 p 
(98.9%) 

n/a p=1 

                            1 3 p   
(3.6 %) 

0 p 
(0%) 

n/a  

                            X 10 p  
(12.0 %)  

1 p  
(1.1%) 

n/a  

N-stadium2        0 73 p  
(88.0 %) 

86 p 
(98.9%) 

n/a p=0.95 

                            1 3 p  
(3.6%) 

0 p 
(0%) 

n/a  

 X 7 p  
(8.4%) 

1 p  
(1.1%) 

n/a  

Grading3 1 4 p  
(4.8%) 

17 p 
(19.5%) 

4  
(10%) 

p=1 

 2 27 p 
(32.1%) 

28 p 
(32.2%) 

14  
(33%) 

 

Table



Abbreviations: m: median, McGill: McGill University, mo: months, p: patients, TUM: 
Technical University of Munich, UW: University of Washington, Seattle, sd: standard 
deviation.   
1Categorial variables: Fisher' exact test (2 cohorts) / Chi-square test (3 cohorts) and 
continuous/Rank variables: Wilcoxon rank sum test (2 cohorts) / Kruskal-Wallis test 
(3 cohorts), log-rank test for survival, with bonferroni correction for multiple testing 
2Following AJCC staging system version 7. 
3According to French Federation of Cancer Centers Sarcoma Group (FFCCS). 
 
 

 3 49 p 
(46.4%) 

42 p 
(48.3%) 

21  
(50%) 

 

 unclassified 3 p  
(3.6%) 

0 p  
(0%) 

3 p 
(7%) 

 

AJCC-Stage IA 0 p 
(0%) 

5 p  
(5.7%) 

n/a p<0.0001 

 IB 6 p  
(7.2%) 

12 p 
(13.8%) 

n/a  

 IIA 9 p  
(10.8%) 

11 p 
(12.6%) 

n/a  

 IIB 2 p  
(2.4%) 

20 p 
(23.0%) 

n/a  

 III 63 p 
(75.9%) 

38 p 
(43.7%) 

n/a  

 IV 3 p  
(3.6%) 

0 p 
(0%) 

n/a  

 unknown 0 p 
(0%) 

1 p   
(1.2%) 

n/a  

Prognosis   
Median OS   30.1 mo 39.7 mo 24.9 mo p=1 
Median DPFS   17.3 mo 31.5 mo  17.6 mo p=1 
Median LPFS  26.5 mo 31.7 mo 24.0 mo p=0.49 

Therapy information   
Margin-status positive 16 p 

(19.3%) 
13 p 

(15.8%) 
n/a p=1 

 negative 54 p 
(65.1%) 

69 p 
(84.1%) 

n/a  

 unknown 13 p  
(15.6%) 

5 p  
(5.7%) 

n/a  

Radiotherapy  83p 
(100%) 

87 p 
(100%) 

38 p 
(90%) 

p<0.0001 

Total Dose 

 
 m 50 Gy 

(sd: 5.6 Gy) 
m 50 Gy  

(sd: 0.4 Gy 
) 

n/a p=0.86 

Chemotherapy  12 p 
(14.5%) 

49 p 
(56.3%) 

16 p  
(38%) 

p<0.0001 



Table 2: Predictive performance metrices of radiomic and clinical models. 
 

Model  OS DPFS LPFS 

 TUM UW McGill TUM UW McGill TUM UW McGill 

Radiomic 
model 

0.72*  
(0.61-
0.83) 

0.73* 
(0.63-
0.82) 

0.59 
(0.39-
0.79) 

0.64 
(0.47-
0.70) 

0.68* 
(0.58-
0.77) 

0.73*  
(0.61-
0.83) 

0.56 
(0.40-
0.71) 

0.77* 
(0.66-
0.87) 

0.15 
(0.04-
0.29) 

Clinical 
model 

0.76* 
(0.68-
0.81) 

0.69* 
(0.57-
0.80) 

n/a 0.46 
(0.42-
0.53) 

0.66* 
(0.55-
0.76) 

n/a 0.68* 
(0.51-
0.81) 

0.57 
(0.43-
0.72) 

n/a 

Combined 
model 

0.75*  
(0.70 - 
0.80) 

0.76* 
(0.67-
0.84) 

n/a 0.60 
(0.49-
0.68) 

0.68* 
(0.55- 
0.77) 

n/a 0.62 
(0.47- 
0.79) 

0.71* 
(0.40- 
0.75) 

n/a 

AJCCa 
staging 

0.63* 
(0.56-
0.69) 

0.68* 
(0.57-
0.77) 

n/a 0.55 
(0.48-
0.61) 

0.66* 
(0.54-
0.74) 

n/a 0.57* 
(0.51-
0.63) 

0.61 
(0.48-
0.73) 

n/a 

Volume 0.69* 
(0.58-
0.79) 

0.65* 
(0.53- 
0.76) 

0.60 
(0.41-
0.78) 

0.59 
(0.49-
0.69) 

0.65* 
(0.54 
-0.75) 

0.67* 
(0.54-
0.80) 

0.61 
(0.45-
0.75) 

0.57 
(0.44-
0.71) 

0.34 
(0.19-
0.50) 

Clinical + 
volume 

0.78* 
(0.74-
0.84) 

0.72* 
(0.60-
0.83) 

n/a 0.51 
(0.42-
0.61) 

0.70* 
(0.59-
0.80) 

n/a 0.63 
(0.49-
0.75) 

0.58 
(0.40-
0.76) 

n/a 

Concordance index values for the prediction of overall survival (OS), distant (DPFS) 
and local progression free survival (LPFS). 95 % confidence intervals are shown in 
brackets. Predictions significantly different from random are marked with an *. 

 

Abbreviations: McGill: McGill University, TUM: Technical University of Munich, UW: 
University of Washington 

a AJCC (American Joint Committee on Cancer) staging manual 7th Edition [1].



Table 3: Cox regression for patients' overall survival and distant progression 
free survival. 
 

TUM - development patient data set 
 OS  

univariate 
OS  

multivariate 
DPFS  

univariate 
DPFS 

multivariate 
LPFS 

univariate 
LPFS 

multivariate 
 HR  

(95% 
CI) 

p-
value 

b 

HR   
(95% 
CI) 

p-
value 

b 

HR  
(95% 
CI) 

p-
value 

b 

HR  
(95% 
CI) 

p-
value 

b 

HR 
(95% 
CI)  

p-
value 

b 

HR 
(95% 
CI)  

p-
value 

b 
Radiomi
cs 
Score 

2.5 
(1.6-
3.7) 

0.000
2* 

3.61 
(1.29-
10.11
) 

0.12 2.5 
(1.6-
3.7) 

0.023
* 

2.66 
(1.51-
4.68) 

0.005
8* 

0.93 
(0.58-
1.5) 

1 1.4 
(0.67-
2.9) 

1 

Age 1.1  
(1-
1.1) 

0.002
2* 

1.04 
(1.00-
1.08) 

0.464 1 (1-
1) 

0.66 1 
(0.97-
1.03) 

1 1 (1-
1.1) 

0.1 1 
(0.99-
1.1) 

1 

Grad-
ing 

2.1 
(0.86-
5.3) 

0.8 0.85 
(0.3-
2.41) 

1 2 
(0.95-
4.4) 

0.55 1.28 
(0.54-
3.03) 

1 3.3 
(0.94-
11) 

0.5 3.5 
(0.76-
16) 

0.85 

T-stage 8.5e+
07  
(0-
Inf) 

1 
 

3440
751.5
8 
(0 - 
Inf) 

1 2 
(0.61-
6.5) 

1 1.59 
(0.33-
7.69) 

1 2.8 
(0.37-
21) 

1 1.9 
(0.21-
17) 

1 

T-suffix 
(a/b) 

2.6e+
07  
(0-
Inf) 

1 3782
697.7
9 
(0-
Inf) 

1 1.2 
(0.16-
8.6) 

1 0.57 
(0.07-
4.57) 

1 0.62 
(0.08
1-4.7) 

1 0.1 
(0.00
77-
1.3) 

0.66 

N-stage 3.5 
(1-
12) 

0.35 4.12 
(0.51-
33.4) 

01 1.7 
(0.4-
7.1) 

1 1.1e-
07 (0-
Inf) 

1 1.7 
(0.22-
13) 

1 3.2 
(0.34-
31) 

1 

M-stage 
 

9.8 
(2.1-
45) 

0.027
* 

2.73 
(0.4-
18.69
) 

1 1.1e-
07 (0-
Inf) 

1 3.9e-
08 (0-
Inf) 

1 1.1e-
07 (0-
Inf) 

1 1.7e-
08 (0-
Inf) 

1 

Volume 
(ml) 

1.001 
(1.00
0-
1.001
) 

0.000
6* 

1 1 1.001 
(1.0-
1.000
1) 

0.17 0.99 
(0.99-
1.00) 

1 1 
(0.99-
1.00) 

0.34 1 
(0.99-
1.000
1) 

1 

UW - validation patient data set 
Radio
mics 
Score 

1.9 
(1.4-
2.6) 

0.0
003
* 

1.3 
(1.1-
1.5) 

0.008
9* 

3.3 
(1.5-
7.7) 

0.027
* 

1.3 
(1.1-
1.6) 

0.004
2* 

1.4 
(1.1-
1.7) 

0.037
* 

1.4 
(1.1-
1.7) 

0.025
* 

Age 1 (1-
1.1) 

0.5
8 

1 (1-
1.1) 

0.62 1 
(0.99-
1) 

1 1 
(0.99-
1) 

1 1 
(0.98-
1) 

1 1 
(0.98-
1.1) 

1 

Gradin
g 

2.7 
(1.4-
5.5) 

0.0
4* 

2.3 
(1.2-
4.7) 

0.11 3 
(1.6-
5.9) 

0.009
6* 

2.6 
(1.3-
5.1) 

0.04* 1.1 
(0.55-
2.1) 

1 0.92 
(0.45-
1.8) 

1 

T-
stage 

2.3 
(0.55-
9.9) 

1 0.93 
(0.21-
4.1) 

1 1.6 
(0.55-
4.6) 

1 0.54 
(0.17-
1.7) 

1 3.5 
(0.45-
26) 

1 2.4 
(0.29-
20) 

1 

T-
suffix 
(a/b) 

2.7e+0
7 (0-Inf) 

1 2.1e+
07 (0-
Inf) 

1 7.4e+
07 (0-
Inf) 

1 9.6e+
07 (0-
Inf) 

1 7.4e+
07 (0-
Inf) 

1 3.8e+
07 (0-
Inf) 

1 

N-
stage 

n/a n/a  n/a n/a n/a n/a  n/a n/a n/a n/a 

M-
stage 

n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Volum
e (ml) 

1.001 
(1.0000
-
1.0001)

0.0
046
* 

1.000 
(0.99
99-
1.000

0.69 1.001 
(1.00
00-
1.000

0.008
8* 

1 
.0001
(0.99
99-

0.33 1 
.0001
(0.99
99-

1 1 
.0001
(0.99
99-

1 



1 (1-1) 1) 1) 1.000
1) 

1.000
1) 

1.000
1) 

McGill - validation patient set 
Radio
mics 
Score 

1.4 
(0.79-
2.6) 
 

0.4
8 

1.4 
(0.64-
3.2) 

0.76 1.8 
(1.1-
2.9) 

0.026
* 

1.3 
(0.83-
1.9) 

0.55 0.11 
(0.00
043-
27) 

0.86 0.19 
(0.00
01-
250) 

1 

Volum
e 

1.000 
(0.9999
-
1.0001) 

0.8
6 

1.000 
(0.99
99-
1.000
1) 

1 1.000 
(0.99
99-
1.000
1) 

0.86 1.000 
(0.99
99-
1.000
1) 

0.28 1 
(0.99-
1) 

1 1 
(0.99
99-
1.000
) 

1 

Univariate cox regression was performed for the radiomics score and all clinical 
features. Significant factors are marked by *.  
Abbreviations: CI: confidence interval, DPFS: distant progression free survival,  HR: 
hazard ratio, n/a: not available, McGill: McGill University, OS: overall survival, TUM: 
Technical University of Munich, UW: University of Washington. 
a In multivariate analysis all patient with non-0 M-status were excluded due to missing 
variables. 
b Bonferroni correction was performed for multiple testing. 
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Figures 
 
Figure 1: The radiomics workflow. 

 
  

Figure



CT-Radiomics is a prognostic factor for sarcoma patients 2 

Figure 2. Radiomics, Clinical  and Combined prognostic models predicting 
overall survival (OS), distant (DPFS) and local progression free survival (LPFS). 
 

  



CT-Radiomics is a prognostic factor for sarcoma patients 3 

Figure 3: Patient risk stratification. 
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Highlights 
 
 
1.) CT-based radiomic features have prognostic value in soft tissue 
sarcoma patients. 
2.) CT-based radiomic features differentiate grade 3 STS with moderate 
performance. 
3.) A CT-based radiomic phenotype enables significant patient 
stratification. 
4.) CT-based radiomic phenotypes predict systemic and local 
progression.  
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