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Type 2 diabetes (T2D) affects the health of millions of people worldwide. The identification of genetic 
determinants associated with changes in glycemia over time might illuminate biological features that 
precede the development of T2D. Here we conducted a genome-wide association study of longitudinal 
fasting glucose changes in up to 13,807 non-diabetic individuals of European descent from nine cohorts. 
Fasting glucose change over time was defined as the slope of the line defined by multiple fasting 
glucose measurements obtained over up to 14 years of observation. We tested for associations of 
genetic variants with inverse-normal transformed fasting glucose change over time adjusting for age 
at baseline, sex, and principal components of genetic variation. We found no genome-wide significant 
association (P < 5 × 10−8) with fasting glucose change over time. Seven loci previously associated 
with T2D, fasting glucose or HbA1c were nominally (P < 0.05) associated with fasting glucose change 
over time. Limited power influences unambiguous interpretation, but these data suggest that genetic 
effects on fasting glucose change over time are likely to be small. A public version of the data provides 
a genomic resource to combine with future studies to evaluate shared genetic links with T2D and other 
metabolic risk traits.

Type 2 diabetes mellitus (T2D), a disease characterized by persistent hyperglycemia, is a common and herit-
able complex disease affecting the health of millions of people worldwide1. Estimates from the World Health 
Organization indicate that 8.5% of the adult population had T2D in 2016, and this prevalence has been steadily 
increasing during the last three decades2.

Prospective epidemiological studies have demonstrated that the risk of T2D starts even in the normal fasting 
glucose range and exponentially increases in pre-diabetic ranges3–7. Relevant physiological perturbations produc-
ing a slow utilization of fasting glucose are likely to be present at stages of the disease as early as a decade before 
diagnosis8. The etiological causes of early glycemic perturbations are likely to be triggered by environmental 
and lifestyle factors9,10, but the precise biological mechanisms underpinning why people differently progress to 
hyperglycemia are unknown.

Recent large-scale genetic association meta-analyses have uncovered genetic variants cross-sectionally associ-
ated with T2D and related glycemic traits11–16. However, prospective data for genetic variant association discovery 
are scarce and findings have been inconsistent17–19. In this study, we conducted the largest genome-wide associa-
tion study (GWAS) to date to identify genetic variants associated with fasting glucose changes over up to 14 years 
in 13,807 non-diabetic participants of European descent from nine cohorts.
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Results
We included a total of 13,807 participants of European descent and free of diabetes at baseline and during the 
entire follow-up period with repeated fasting glucose levels measured at least at two time points over up to 14 
years from nine cohorts. Characteristics of the study sample and follow-up, phenotype, and genotype information 
are presented in Table S1. The participants’ average age at baseline for each cohort ranged from 41 to 70 years 
old. The follow-up time varied by cohort, on average ranging from 5 to 25 years. The slope of fasting glucose was 
calculated based on available fasting glucose measurements during the follow-up and then the slopes were inverse 
normal transformed within each cohort, for harmonization. We refer to this transformed slope as fasting glucose 
change over time. At baseline, cohort-specific average fasting glucose ranged from 4.9 to 6.2 mmol/L in men and 
4.8 to 5.9 mmol/L in women, respectively. Our primary analysis included all available participants. In an explora-
tory analysis, we investigated whether stratifying our sample by cohorts with long-term follow-up [≥10 years] or 
short-term follow-up [<10 years] identified pertinent signals.

In a genome-wide association meta-analysis we did not find evidence of genetic variants associated with 
fasting glucose change over time at genome-wide significance level (P < 5 × 10−8) (Supplemental Figs 1–3) 
nor evidence of inflated signals (Supplemental Figs 4–6) in the primary analysis including the entire sample or 
the sensitivity analysis. For the analysis with all samples, the most significant association with fasting glucose 
changes over time was an intronic variant at the ODZ4 locus (rs7114256; P = 8.78 × 10−7, Table 1, Fig. 1). There 
were five other suggestively associated (P < 5 × 10−6) variants for fasting glucose changes over time in three loci 
whose closest reference genes including ALLC (rs606243), NUDT12 (rs17496593, rs17496653, rs17562893) and 
ODZ4 (rs7103693) (Table 1, Supplemental Figs 7–8). In our exploratory analysis stratifying cohorts by follow-up 
time, there were a few suggestively associated variants with fasting glucose changes over time (Supplemental 

SNP Chr BPa EAb NEAb EAFb Beta SE P Directionc HetPVald N RefGene

rs7114256 11 78539553 A G 0.92 0.129 0.03 8.78E-07 +++++−?++ 0.74 13,003 ODZ4

rs606243 2 4487817 A G 0.74 −0.078 0.02 1.42E-06 −−−−−−??− 0.36 11,862 ALLC

rs17496593 5 104254353 A C 0.91 −0.111 0.02 2.12E-06 −−−−−+?−− 0.21 13,005 NUDT12

rs17496653 5 104255187 A G 0.09 0.110 0.02 2.58E-06 +++++−?++ 0.20 13,005 NUDT12

rs17562893 5 104266799 T G 0.09 0.108 0.02 3.78E-06 +++++−?++ 0.19 12,994 NUDT12

rs7103693 11 78535307 T C 0.08 −0.120 0.03 4.19E-06 −−−−−+?−− 0.79 13,003 ODZ4

Table 1. Genome-wide association results for genetic variants with an association p-value < 5 × 10−6. aPhysical 
Position (base pair) in build 36. bEA: effect allele, NEA: non-effect allele, EAF: effect allele frequency. cThe sign 
of EA effect and the order of Cohorts are BHS, COLAUS, DESIR, ERGO, FHS, HBCS, KORA, PREVEND, 
SARDIANA. dHetPVal: P-value for testing for heterogeneity. eRefGen: closest reference gene.

Figure 1. Regional association plot of rs7114256. Results from 500 kb regional associations for fasting glucose 
change over time, centered at rs7114256. The x axis denotes genomic position build 36 and the y axis denotes 
the −log(P-value) and recombination rate (blue line). The purple diamond symbol represents the most-
associated SNP within the region, rs7114256. The color of each symbol indicates the LD value with rs7114256 
based on the HapMap2 CEU sample.
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Tables 5–6). These included four loci whose closest reference genes were SNX16, BEGFA, GATA3 and CDKAL1 
from short follow-up analysis with sample size up to 8,195 and ten loci whose closest reference genes were 
HCRTR2, WRN, SEPT9, SLC35B3, FAM84A, GRM8, MPP6, BAMBI, SSB, and C8orf31 from long follow-up anal-
ysis with sample size up to 3,669.

Next, we investigated whether genetic variants available in our GWAS previously associated with T2D prev-
alence (82 SNPs)15 and cross-sectional glycemic traits based on our primary analysis with all available sample, 
including fasting glucose (32 SNPs)13, and HbA1c (58 SNPs)16, associated with fasting glucose change over 
time13,15,16. For T2D associated genetic variants15, we showed evidence of a nominal significant association 
between a variant at CDKN2A/B loci (rs10965248, P = 0.0192) and longitudinal fasting glucose change. In addi-
tion, two loci previously associated with cross-sectional FG in the latest GWAS13 for fasting glucose associated 
with longitudinal fasting glucose changes (GRB10; rs6943153, P = 0.0019 and PDX1; rs11619319, P = 0.0114), as 
well as five loci previously associated with HbA1c in the latest GWAS for HbA1c16 including TMC6 (rs2073285, 
P = 0.0019), CDH3 (rs4783565, P = 0.0057), ABO (rs579459, P = 0.0082), PDX1 (rs11619319, P = 0.0114), and 
HK1 (rs10823343, P = 0.0390) (Table 2, Supplemental Tables 2–4). After Bonferroni correction for conduct of 82, 
32, and 58 tests for T2D risk, fasting glucose, and HbA1c, respectively none of these signals remained significant.

We conducted a power analysis with a sample size of 13,807 at the genome-wide significant threshold 
(5 × 10−8) to detect a genetic variant explaining at least 0.05% to 0.5% of the variation in the fasting glucose 
change over time. The results showed that our study has 80% power to detect genetic variants, which explain at 

SNP Chr BPb Locus EAb NEAb EAFb Beta SE P Directionc HetPVald N HetISq

Fasting glucose loci

rs6943153 7 50759073 GRB10 T C 0.30 −0.044 0.01 0.002 −−−−−−−+− 0.4257 13,800 1

rs11619319 13 27385599 PDX1 A G 0.77 0.039 0.02 0.011 +++++−+++ 0.6785 13,807 0

Type 2 diabetes loci

rs10965248e 9 22122878 CDKN2A/B A G 0.18 −0.040 0.02 0.019 ?−−+−−+−− 0.06878 12,523 47

HbA1c loci

rs2073285 17 73628956 TMC6 T C 0.20 0.079 0.03 0.002 +?++?+?+? 0.05396 5,098 57

rs4783565 16 67307691 CDH3 A G 0.32 0.043 0.02 0.006 ?++++++?+ 0.4491 11,356 0

rs579459 9 135143989 ABO T C 0.78 −0.041 0.02 0.008 −−−−−−+−+ 0.2827 13,779 18

rs11619319 13 27385599 PDX1 A G 0.77 0.039 0.02 0.011 +++++−+++ 0.6785 13,807 0

rs10823343 10 70761019 HK1 A G 0.75 −0.037 0.02 0.039 −+−−−−−?? 0.3766 8,809 6.7

Table 2. Association results of the genetic variants showing a nominal significant signal for fasting glucose 
change (p < 0.05) in known T2D or glycemic trait locia. aScott et al.13, Scott et al.15, Wheeler et al.16. bBP:Physical 
Position (base pair) in build 36. EA: effect allele, NEA: non-effect allele, EAF: effect allele frequency. cThe sign 
of EA effect and the order of Cohorts are BHS, COLAUS, DESIR, ERGO, FHS, HBCS, KORA, PREVEND, 
SARDIANA. dHetPVal: P-value for testing for heterogeneity. eUsing proxy SNP rs10965250 (r2 = 0.97 with 
rs10965248).

Figure 2. Power analysis. The relationship between power and variation explained in the trait of interest by a 
genetic variant with a sample size of 13,807 at a significance level of 5 × 10−8. The y-axis represents the power 
and the x-axis the variance explained by a genetic variant. The horizontal red line represents the power of 80%. 
This Figure shows that we had 80% power to detect a genetic variant that explained at least 0.28% of variation in 
fasting glucose change over time.
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least 0.28% of variation in change of fasting glucose over time (Fig. 2). This is equivalent to detect the genetic 
variants with minor allele frequency of 0.05 or 0.25 whose minimum effect corresponds to 0.17 or 0.09 standard 
deviation unit difference in the change of fasting glucose over time, respectively.

Discussion
We tested whether common genetic variants were associated with fasting glucose change over time in a GWAS 
including 13,807 initially non-diabetic participants from nine cohorts of European descent with repeated fasting 
glucose measures over up to 14 years, We found three suggestive associated variants at sub genome significance 
level (near ODZ4, ALLC, and NUDT12), and eight nominally associated previously known T2D-glycemia GWAS 
loci (CDKN2A/B, GRB10, PDX1, TMC6, CDH3, ABO, PDX1, and HK1) but none reached genome-wide signif-
icance for association or survived adjustment for multiple testing. We have placed the GWAS results data sets 
from this analysis on line at the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) web-
site (https://www.magicinvestigators.org) and T2D knowledge portal (http://www.type2diabetesgenetics.org) to 
provide a genomic resource to further combine with futures studies and evaluate shared genetic links with T2D 
and other metabolic risk traits.

To date, more than 120 genetic loci have been identified to be associated with cross-sectional glycemic out-
comes in successive waves of large-scale genetic association studies12,14,15. These risk alleles are associated with 
glycemic phenotypes and predict incident T2D when aggregated into a genetic risk score12,20,21. However, find-
ings from our study do not support that single common risk alleles have a substantive impact on longitudinal 
fasting glucose changes. If there are effects on glucose changes, they are likely to be small. This observation is in 
agreement with evidence from other intermediate phenotypes such as genetic variants associated with deterio-
ration of lipid levels22–25, lung function26,27 or change in BMI28–31, where modest effects have been attributed to 
genetic factors on longitudinal trait changes, relative to single cross sectional trait measures. Regarding glycemic 
trajectories, no single genetic variants associated with glucose deterioration over time were detected in previous 
studies of European descent indivuals17 or in Han individuals19, although Han Chinese carrying a higher number 
of T2D increasing-risk variants showed a greater increase in FG over time compared with those carrying a lower 
number of T2D increasing-risk variants. One small single-cohort study identified five genomic regions associ-
ated at genome-wide significance with longitudinal change in fasting glucose (GCKR, G6PC2, GCK, SLC30A8, 
MTNR1B), but the study included diabetic individuals taking hypoglycemic medications, which almost certainly 
introduced confounding into genotype – glucose change associations18.

Our results may highlight the importance of environmental determinants of glycemic deterioration. 
Nevertheless, genetic determinants of changes in glycemia may remain relevant for people with rapid transition 
from pre-diabetes to diabetes, which the design of our study was not able to capture. A potential future strategy to 
identify these loci, if they exist, would be to focus on pre-diabetic individuals who progress to T2D and adjust for 
the effects of all known variants affecting cross-sectional blood glucose inter-individual variability32. A limitation 
to our study is that the meta-analysis only involved European participants, so the results may not be generalizable 
to other ancestry groups. The power of our study was relatively limited even though this is the largest existing 
meta-analysis of fasting glucose change. In addition, we identified challenges posed by phenotypic heterogeneity, 
e.g. different follow-up duration or different numbers of longitudinal data points. Larger sample sizes from new 
cohorts will be key to help confirm or refute the current findings. An alternative approach, if data are available in 
the future, would be to study longitudinal glycemia in large and homogeneous populations, with more homoge-
neous phenotypes especially with more consistent number of follow-up visits and similar follow-up duration to 
gain more statistical power.

In summary, a large GWAS did not identify common genetic variation genome-wide significantly associated 
with fasting glucose change over time. Such genetic effects, if present, are likely small. The data have been depos-
ited as a public genetic epidemiological resource to aid the hunt for genetic determinants of T2D and its relevant 
physiology.

Methods and Materials
Study sample. We recruited in total 13,807 individuals of European descent free from T2D at baseline and 
during the entire follow-up period with repeated fasting glucose measurements at two or more time points from 
nine cohorts representing three continents (America, Europe and Australia). The participating cohorts include 
the Bogalusa Heart Study (BHS), the CoLaus study (COLAUS), the Data from the Epidemiological Study on the 
Insulin Resistance Syndrome study (DESIR), the Erasmus Rotterdam Gezondheid Onderzoek study (ERGO), 
Framingham Heart Study (FHS), the Helsinki Birth Cohort Study (HBCS), Cooperative Health Research in the 
Region of Augsburg (KORA), Prevention of Renal and Vascular End-stage Disease study (PREVEND), and the 
National Institute on Aging (NIA) SardiNIA Study (SARDINIA). The ethnicity information for each individ-
ual was based on questionnaires or assessed using genetic data (principal component analysis). Ethnic outliers 
detected by principal component analysis for European ethnicity were excluded from further analysis. Diabetes 
was defined as a fasting glucose level >7 mmol/l, or use of glucose lowering medication. The study conformed 
to the Declaration of Helsinki guidelines. Institutional Review Board and/or oversight committees approved the 
study in each participating cohort and all participants provided written informed consent (See Supplemental 
Text).

Genotyping, imputation and quality control. Genotyping was conducted as specified in the Table S1. 
Each study imputed their genotype to ~2.5 million Phase 2 HapMap CEU SNPs with imputation software, either 
IMPUTE or MACH33,34. We applied a quality control filter by removing SNPs with a minor allele frequency less 
than 1% and those with an imputation quality threshold proper_info < 0.4 for cohorts using IMPUTE and r2 > 0.3 
for cohorts using MACH. We used imputed allelic dosage in our association analysis.
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Phenotype. To calculate longitudinal fasting glucose slopes we used repeated FG measurements available in 
the longitudinal cohort studies. To harmonize FG measures, FG measures obtained from whole blood were con-
verted to plasma levels by using a coefficient of 1.13 (FG in mmol/l). We then modelled the association for each 
individual between FG and duration of time between baseline measure and each follow-up measure. The resulting 
beta coefficients (slopes) were then pooled and inverse normal transformed. The transformed slopes were used as 
the trait ‘fasting glucose change’ for the genetic association analysis.

Association Analysis and Meta-analysis. For each participating cohort, we conducted genome-wide 
association analysis with transformed longitudinal fasting glucose changes adjusting for age at baseline, sex, and 
principal components of genetic variation to account for population stratification using linear regression with 
additive genetic effects for cohorts with unrelated samples. We performed mixed-effect model analysis with ran-
dom effect to account for sample relatedness for cohorts with related samples. We then conducted inverse vari-
ance weighted meta-analysis of cohort-specific association results using METAL35. In an exploratory analysis, we 
stratified our analyses by study follow-up time and classified each cohort as having a long follow-up time (≥10 
years) or a short follow-up time (<10 years). We applied genomic control correction to control type I error36. 
SNPs with a meta-analysis p-value ≤ 5 × 10−8 were considered to be genome-wide significant.

Interrogation of Published Loci for Type 2 Diabetes Related Traits. We tested the hypothesis that 
longitudinal fasting glucose slopes would be associated with previously-identified GWAS variants for T2D (128 
SNPs)15, fasting glucose (32 SNPs)13, and HbA1c (60 SNPs)16. If the previously reported most-associated SNP was 
unavailable in the present analysis, we used a proxy SNP (LD r2 > 0.8) if available. After proxy searches we evalu-
ated 172 loci, including 82 for T2D, 58 for HbA1c and 32 for FG. The Bonferroni corrected p-value threshold for 
these look-ups was set at 0.0003 (0.05/172).

Post-hoc power calculation. We conducted a post-hoc power analysis using Quanto software to inves-
tigate the power to detect 0.05% to 0.5% percent variation in phenotype explained by a genetic variant with a 
sample size of 13,807 at the genome-wide significant threshold (5 × 10−8).

Data Availability
We have publicly deposited the summary results statistics on line at the Meta-Analyses of Glucose and Insu-
lin-related traits Consortium (MAGIC) website (https://www.magicinvestigators.org) and T2D knowledge portal 
(http://www.type2diabetesgenetics.org).
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