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Recent advances in cytometry have radically altered the fate of single-cell proteomics by

allowing a more accurate understanding of complex biological systems. Mass cytometry

(CyTOF) provides simultaneous single-cell measurements that are crucial to understand

cellular heterogeneity and identify novel cellular subsets. High-dimensional CyTOF data

were traditionally analyzed by gating on bivariate dot plots, which are not only laborious

given the quadratic increase of complexity with dimension but are also biased through

manual gating. This review aims to discuss the impact of new analysis techniques for

in-depths insights into the dynamics of immune regulation obtained from static snapshot

data and to provide tools to immunologists to address the high dimensionality of their

single-cell data.

Keywords: high-dimensional data analysis, CyTOF, single-cell profiling, single-cell genomics, visualization,
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THE CHALLENGE OF DIMENSIONALITY IN MANUAL GATING

Since the invention of the first fluorescence-based flow cytometer 50 years ago, immunologists
have widely adopted the technology to get a comprehensive understanding of heterogeneity among
immune cells, function, cellular differentiation, signaling pathways, and biomarker discovery (1).
A variation of flow cytometry, known as cytometry by time-of-flight (CyTOF) or mass cytometry,
was developed in 2009, which could query over 50 parameters per cell, in contrast to only limited
parameters in conventional flow cytometry. CyTOF utilizes antibodies labeled with rare earthmetal
isotopes instead of fluorescent dyes and the resulting abundances are detected using a time-of-flight
mass spectrometer (2, 3). The preferred high-throughput method for measuring cell surface or
intracellular protein abundances depends on certain characteristics that distinguish one technology
over the other (Table 1).

Analysis of high-dimensional single-cell cytometry data relies on technological advancements
and novel analytical methods that can efficiently incorporate the inherent multi-parametric
characteristics of such data sets. The most straightforward and traditional, albeit labor-intensive,
method for cytometry data analysis is by a process known as “gating,” which uses a series of
2D plots to identify regions of interest in a bivariate scatter plot of single cells (5). A series of
gates drawn in sequence can reveal information about cellular hierarchy and identify subsets of
interest from a population. Nevertheless, this approach has several drawbacks when compared to
automated strategies (Table 2). Data analysis can be handled in one of several ways as newmethods
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TABLE 1 | Toward higher dimensions with CyTOF.

Flow cytometry Mass cytometry

Spectral overlap between

fluorophores necessitates data

compensation and limits the number

of measured markers (4)

CyTOF uses heavy metal isotopes;

mitigates the issues associated with

spectral overlap and

auto-fluorescence

Can measure up to 20 parameters

per cell with conventional flow

cytometers

Queries over 50 markers per cell

simultaneously

Cells can be further sorted for

functional studies

Cells are destroyed during ionization

Highest throughput with tens of

thousands of cells per second at

relatively low operating costs

High dimension of parameter

measurement at a lower throughput

of hundreds of cells per second

TABLE 2 | The challenge of dimensionality in manual gating.

Manual gating Automated gating

Depends highly on the investigator’s

knowledge, adding a potential bias

Based on unsupervised clustering

and is therefore unbiased

Not easily scalable and data

interpretation gets confounded as

dimensionality increases

Can efficiently visualize distribution of

every possible marker with fewer

plots

High-dimensional data visualization

requires multiple biaxial plots, which

increase quadratically with number of

measured parameters (dimensionality

explosion).

Minimizes loss of relevant information

through rare event detection and

instantaneous assessment of all

markers included

are continuously emerging and the shortcomings of manual
gating can jeopardize the validity of an experimental finding.
A number of automated gating strategies were developed
for this purpose. They were designed for cell population
identification reproducing expert manual gating and also for
sample classification according to some external variables.
Several of these methods performed well statistically when
compared to manual gating and have been reviewed extensively
as part of the first FlowCAP challenge (http://flowcap.flowsite.
org/) (6).

Another rapidly evolving technology, which is taking
center stage, is single-cell RNA sequencing (scRNA-seq). It
can comprehensively profile the molecular information of
individual cells and provides transcriptomics as an additional
orthogonal modality, with almost full genomic coverage (7).
Despite potential challenges, rapid computational advancements
in single-cell analysis have significantly enabled systematic
investigations into cellular heterogeneity, dynamics as well as
regulatory mechanisms in an increasing number of tissues.

PAVING THE WAY FOR MORE
COMPLEX ANALYSES

This review aims to discuss newly emerged data analysis tools
for downsizing the above-mentioned drawbacks. Analyzing
complex high-dimensional single-cell data comes with its

own computational challenges and can be reduced to data
pre-processing, normalization, dimensionality reduction,
and clustering followed by cluster biomarker identification
(Figures 1A–C). Many analysis tools that exist for scRNA-seq
data can already be applied to cytometry studies with certain
parameters optimized accordingly. To enable transition from
experiment to data analysis, many algorithms have already
been deployed in the form of interactive visual tools for bench
scientists without a need of programming skills. This review
delivers a guide for cytometry data analysis by discussing some
of the available algorithms including, but not limited to, t-SNE
(8), diffusion maps (9), SPADE (10), and FlowSOM (11). For
the first time, we propose two single-cell trajectory inference
algorithms, diffusion pseudo-time (DPT) (12) to infer pseudo-
temporal ordering of cells and partition-based graph abstraction
(PAGA) (13) for generating network topologies according to
relative protein abundances from cytometry data (Table 3).
Originally proposed for the analysis of scRNA-seq, we believe
these algorithms hold great potential to uncover the immune
system’s cellular composition and differentiation trajectories in a
heuristic manner given the growth in dimensions.

VISUALIZING CELLULAR
HETEROGENEITY BY
DIMENSIONALITY REDUCTION

Flow cytometry represents one of the most powerful and
frequently used technologies in the immunologist’s toolbox.
Single-cell resolution has been a hallmark of immunological
data acquisition and analysis for decades. One of the goals of
performing differential analyses of cytometry data sets is cellular
sub-type classification. Clustering is one of the most challenging
steps as it forms a basis for all subsequent differential tests
on marker expression for biomarker discovery and population
abundance analysis. Identification of cell populations depends
on the number of features measured and cytometry has been
able to push the detection limit to over 50 parameters per
cell. However, increased dimensionality makes it difficult to
capture the underlying heterogeneity of the data. Dimensionality
reduction methods maximize the variance in the data and
reduce the number of variables by mapping it onto a lower-
dimensional space. Principal component analysis (PCA), a
linear dimensionality reduction method, represents the original
data in 2 or 3 dimensions by using a linear combination
of the original feature vectors and maps data points onto
orthogonal dimensions, which explain the maximum variance.
However, PCA fails to capture the non-linear nature of
single-cell data, which is better visualized using non-linear
dimensionality reduction techniques like t-SNE or uniform
manifold approximation and projection (UMAP) (14, 15)
(Box 1). t-SNE represents each cell in a lower dimensional
manifold that is computed using the Barnes-Hut implementation
of the t-stochastic neighbor embedding (t-SNE) algorithm (18). t-
SNE is currently one of themost popularmethods of representing
single-cell data.
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FIGURE 1 | Overview of high-dimensional flow cytometry data analysis. (A) FCS files are read as the input data matrix, followed by data compensation (if necessary),

transformation, concatenation (in case of multiple input files), and scaling. As an alternative to the standard log transformation method, logicle, and arcsinh

transformation can be applied. Scaling ensures that every marker in the matrix gets equal importance in further downstream analyses. (B) For subsequent analyses,

informative markers, such as lineage-specific markers, need to be selected. This can be accomplished via diagnostic plots for marker expression distribution across

all events or with prior knowledge. Dimensionality reduction using PCA, t-SNE, diffusion maps etc. for visualization follows after feature selection. These plots show

similarities between events, measured in an unsupervised manner, and provide information about differential expression between groups based on the intensity

measurements. This reveals cellular heterogeneity. (C) Detection of developmental trajectories is another common application of these analytical frameworks and

provides dynamic information on static snap shot data.

Briefly, t-SNE computes a pairwise similarity matrix between
all cells using a distance metric calculated from the feature
vectors in high dimensions. Next, it initializes each cell to a
random starting location in the 2 or 3 t-SNE dimensions and
computes a second lower dimensional similarity matrix. The
algorithm tries to iteratively minimize the difference between
the lower and higher dimensional similarity matrices thereby
updating the location of each cell in 2 or 3 dimensions. Thus,
the number of iterations is an important parameter that needs to

be sufficiently large in order to reach a stable configuration. The
second critical parameter is perplexity which, in simplified terms,
is a measure to weigh local similarities vs. global similarities
in the generation of the low-dimensional representation of
the high-dimensional space. While perplexity values between 5
and 50 have been suggested (17), adequacy needs to be tested
for the respective data-set (19). t-SNE optimization follows a
stochastic nature, therefore every compilation of the method
leads to slightly different lower manifold projections. It is
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TABLE 3 | Overview of some of the established single-cell analysis methods.

Class Methods Description

Linear dimensionality

reduction

PCA Cannot account for the smooth nature of single-cell data

Non-linear dimensionality

reduction

t-SNE More intuitive representation of high-dimensional data on a lower manifold

UMAP Scales better and improves global structure of the data compared to t-SNE

(see Box 1)

HSNE Scales better than conventional t-SNE

(see Box 1)

Diffusion maps Explores continuity through progression of cell differentiation

Clustering methods;

single-cell resolution is lost

SPADE Hierarchical branched tree representation (see Box 2)

FlowSOM Self-organizing maps trained to detect cell populations (see Box 3)

Trajectory inference and

graph abstraction

Diffusion pseudotime

(DPT)

Investigates continuous cellular differentiation trajectories from static snapshot

single-cell data (see Box 4)

Partition-based graph

abstraction (PAGA)

Reconstitutes topological information from complex differentiation single-cell data in

the form of cellular maps by applying strategies of clustering and trajectory inference

Box 1 | Non-linear dimensionality reduction methods scaling better than t-SNE

A recently introduced analysis technique for high-dimensional cytometry data known as HSNE or Hierarchical Stochastic Neighbor Embedding transcends the

scalability limit of conventional t-SNE (16). HSNE constructs a hierarchy of non-linear similarities between events that can be explored interactively up to single-cell

details. The utility of this technique is to identify rare cell types that might otherwise be missed during down-sampling. HSNE has been implemented by van Unen et

al. (16) as an integrated analysis tool in Cytosplore (17).

Another non-linear dimensionality reduction technique, which has garnered special attention is UMAP (14, 15). It is based on a novel manifold learning technique

and can preserve local neighborhood relationships, while it excels at retaining the global structure. Neighboring cells in the low-dimensional representation are also

closely related in the high-dimensional space, which is not necessarily the case for t-SNE. Also, it scales better than most t-SNE packages in embedding large

high-dimensional datasets while providing good resolution of rare cell types, such as those in transition, which makes UMAP a viable choice as a general-purpose

non-linear dimensionality reduction method.

advisable to run the method multiple times in order to achieve
a concise representation of the variability of the different results.
Furthermore, cells that are alike in higher dimensions are usually
clustered together in t-SNE space. However, the opposite is not
always true and thus this warrants caution with the analysis of
t-SNE plots (also see Box 1).

In order to explore the features of a t-SNE analysis, we
applied the Rtsne package in R on an original CyTOF data-set
(20). This data-set measures 40 surface markers in unstimulated
cells (“Trafficking Panel”) and a combination of surface and
intracellular targets following a brief ex vivo re-stimulation
(“Trafficking and Function Panel”) in healthy human T cells
from four lymphoid and four non-lymphoid tissues. Here, we
used a pre-gated CD4+ T cell sample from peripheral blood
mononuclear cells (PBMC) stained with the “Trafficking Panel”
which includes markers for the identification of major T cell
lineages and homing molecules. Our goal was to substantiate
whether t-SNE was capable of recovering the major T-cell
subtypes using a combination of surface markers and secreted
cytokines. t-SNE cannot conveniently process very large data-
sets and suffers from slow computation time. Since cytometry
allows high-resolution dissection of cellular parameters, it usually
measures a much larger number of cells, which can significantly

increase computational complexities of the analyses. Down-
sampling the data set usually overcomes such complexities.
Density-dependent down-sampling detects regions of density
within the data-set and then downsizes keeping the structure and
distribution consistent. This is beneficial for rare cell populations
to define their own clusters instead of being subsumed under
the highly abundant cell types. We performed density-dependent
down-sampling of the PBMC CyTOF dataset using the SPADE
(10) package. The algorithm was run using lineage markers
and default parameter settings. We observed that the surface
markers could delineate most of the different subsets. We could
define the different memory subsets within PBMC using marker
profiles thereby providing information about the potential for
cells to home andmigrate (Figures 2A,B).Moreover, overlapping
clusters suggest that CD4+ T cells are plastic and display the
ability to differentiate from one to another subtype. t-SNE has
been implemented in CRAN (http://www.r-project.org/) and it is
also available as a plugin in FlowJo as well as in Cytobank at www.
cytobank.org. Markers selected for t-SNE analyses may represent
proteins that delineate classic cellular lineages and differentiation
states. Different sequential t-SNE runs using identical numbers
of iterations and perplexity result in slightly different results due
to differing events sampling conditions. Despite of this, multiple
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FIGURE 2 | Dimensionality reduction using t-SNE shows cellular heterogeneity. (A) t-SNE plots for CD4+ PBMC (sample 1) from publicly available original CyTOF

data (20) generated using the default parameters of the Rtsne package and colored by selected marker intensities (median expression) from high (purple) to low

(yellow). (B) Identification of major immune subsets defined on the basis of lineage marker expression from (A). Clusters were identified using the Seurat R package

using the first eight principal components and a resolution of 0.6. Memory cells were then identified as CD45RA−CD45R0+ and further subset according to their

chemokine receptor profile, naïve cells as CD45RA+CCR7+, and regulatory T cells as CD25hiCD127lo.
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runs on the same dataset will produce highly similar results with
a preserved neighborhood structure.

Diffusion maps, similar to t-SNE, are mainly used for data
visualization in a non-linear fashion and can be a classic
tool to investigate continuity in single-cell data. They were
introduced by Coifman and Lafon (21) and are constructed using
eigenvalue decomposition of a random-walk based transition
matrix, which was recently adapted in Haghverdi et al. to the
single-cell setting (9). The method preserves the global relations
between cells and has been able to successfully capture the
developmental trajectories of differentiating cells, along with
branching events, enabling it to capture both abundant as well
as rare cell populations.

ORGANIZING SINGLE CELLS AS
CLUSTERS FOR SUB-TYPE
CLASSIFICATION

Many tools now exist that group cells into discrete sub-
populations based on feature space such as SPADE, FlowSOM
etc. and employ unsupervised techniques for visualization of
high-dimensional cytometry data. SPADE or spanning-tree
progression analysis of density-normalized events organizes
cellular populations into hierarchies based on similar phenotypes
(10). It provides an intuitive 2D depiction of multiple cell-types
in a branched tree structure (Box 2).

A typical SPADE tree is comprised of nodes representing
cell clusters, which are further connected through edges, which
represent relationships and provide information about the
underlying similarity of cell-types (22). Only the connections
between nodes via edges can be used to draw conclusions
about cluster similarities. The larger the distance between two
connected clusters, the more dissimilar are the features of the
events within those clusters. Additionally, a SPADE tree can
be colored using the expression level of any preferred marker
giving insights into the differential expression pattern between
the events from different clusters. We analyzed the performance
of SPADE using the CD4+ T cell CyTOF data set from PBMC
(20). The data was transformed using the hyperbolic arcsine
function. SPADE was applied to this dataset using all the
surface markers and default parameter settings except for the
number of clusters, which was set at 100 to better capture the
heterogeneity of the data. To explore the underlying structure
and heterogeneity in the data the SPADE trees were annotated

using median expression of different markers (Figure 3A). The
median marker intensities for CD45RA and CD45RO clearly
indicate the presence of a naïve and memory T cell compartment
in the peripheral blood. Additionally, by comparing expression of
markers CD25 and CD127 one could also identify and delineate
regulatory T cells from naïve and central memory T cells and
effector T cells. SPADE is implemented as an R package and is
also available from Cytobank and FlowJo.

A central challenge in visualizing larger datasets is to achieve
and maintain performance without compromising on speed. In
line with this, Van Gassen et al. (11) introduced FlowSOM, which
uses self-organizing maps (Box 3). In contrast to t-SNE and
SPADE analyses, several plots are not required to determine an
accurate cell-type classification of clusters and their boundaries
can be determined from a single heatmap of marker expression
intensities (Figure 3A) or star chart map.

We present results of FlowSOM clustering, which was applied
to an original CD4+ PBMC CyTOF data set and expected
to identify the known cell populations in the study (20).
The data was transformed using logicle transformation and
scaled. FlowSOM was applied using the standard parameter
settings and lineage markers for clustering, which we considered
could positively delineate subsets. Notably, the method was
able to detect both high as well as low frequency cell
populations (Figure 3B). Meta-clustering with 15 clusters was
able to identify the expected clusters associated with naive
(CD45RA+), memory (CD45RO+), Th1 (CXCR3+CCR4−), Th2
(CXCR3−CCR4+), Treg cells, follicular helper T cells (CXCR5+),
and Th17 (CCR6+CD161+). By averting down-sampling, it
could potentially identify low frequency clusters as well, such
as CD57+ and CD31+ cells (clusters 12 and 13 and cluster
7, respectively), giving FlowSOM an advantage in being able
to capture subtle differences between clusters based on their
differential marker profiles.

TRAJECTORY INFERENCE OF
DIFFERENTIATING CELLS AND
GRAPH ABSTRACTION

Cellular differentiation is a non-linear and continuous
phenomenon. Additional information can be gained from
aligning asynchronously differentiating cells according to
their inherent developmental state. Their temporal order can
be computed from expression profiles and measured using

Box 2 | Hierarchical tree representation of single-cells using SPADE

Typically, SPADE begins by performing a density-dependent down-sampling of the raw dataset followed by an unsupervised agglomerative hierarchical clustering to

identify distinct sub-populations. It then builds a minimum spanning tree representation to link the clusters beginning with a randomly chosen but already connected

subgraph and adding an edge to it iteratively. Finally, it performs up-sampling by assigning all cells in the initial dataset to the clusters identified (22).

Ideally, SPADE can recover cellular hierarchy corresponding to known biology from high-dimensional cytometry data-sets. However, performance is limited by a

number of user-defined factors such as the desired number of clusters, outlier density, and target density following down-sampling which can affect the detection of

rare cells. Furthermore, since SPADE is a non-deterministic method and the minimum-operation in the spanning-tree step is sensitive with respect to outliers, every

run would result in a distinctly different tree structure.
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FIGURE 3 | Subset classification of single cells by unsupervised clustering using SPADE and FlowSOM. (A) SPADE analysis with publicly available original CyTOF

data from CD4+ human PBMC (20). Nodes in SPADE trees were overlaid with CD45RA, CD45RO, CD25, and CD127 marker expression for characterization of naïve

(CD45RA+), memory (CD45RO+), as the two main branches, and regulatory T cell or Treg (CD25hiCD127lo) populations. Multiple SPADE runs result in slightly

differing trees, however, the cellular subtypes identified between runs with the same dataset are similar. The tree structure, as well as connectivity via edges, also give

information regarding the degree of similarity between cell populations. (B) FlowSOM clustering performed on the same data. Data was transformed using logicle

transformation. Median intensities of 21 markers were used for analysis. FlowSOM provides a concise representation of the potential number of cell types present in

the study. It can be used as a starting point for data exploration prior to biaxial gating. Meta-clustering with 15 clusters was able to identify the expected clusters.

Additionally, by not down-sampling the raw data, it could potentially identify low frequency clusters as well, such as CD57+ and CD31+cells, which gives FlowSOM

an advantage in being able to capture subtle differences between clusters based on their differential marker profiles.
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Box 3 | Self-organizing maps of single-cells

Self-organizing maps (SOMs) are a classical unsupervised dimensionality reduction and clustering technique, where continuous variables (e.g., expression values

or marker intensities) are used to produce discrete values. A “map” (an artificial neural network) is trained on this representation of the input space to produce a

low-dimensional embedding of the same. SOMs are designed to preserve the topological information of the original input space by mapping similar high-dimensional

data points to the same region in 2D space (23).

SOMs in FlowSOM are trained on the input matrix which performs the embedding of the higher dimensional space onto a rectangular grid. The resulting grid

of nodes already correspond to cells, clustered using nearest neighbors, and can be visualized as star charts using mean marker expressions. The nodes of the

self-organizing map are connected in a minimum-spanning tree for graphical representation, providing results comparable to SPADE visualizations. An additional

meta-clustering step is performed, which includes a much larger number of nodes than clusters to give a detailed overview of the data with subtle differences.

FlowSOM can be used alongside a manual gating analysis to easily compare the results in addition to examining events which are traditionally “gated out.” FlowSOM

clustering does not mandate a reduction of data points by subsetting or down-sampling because it scales easily. Thus, by visualizing all cells simultaneously,

annotating cell types become easier and the risk to lose novel cell populations is reduced.

Box 4 | Inferring cellular trajectories using diffusion pseudotime

The first method to quantitatively estimate the progress of a cell along some biological or developmental pathway was Monocle and termed it pseudotime (24). To

obtain a cell’s pseudotime, the DPT algorithm first computes a transition matrix from single-cell expression data by convolving Gaussian kernels centered at nearby

cells, i.e., “overlaying” the two Gaussian functions representing pairs of cells, effectively constructing a weighted nearest-neighbor graph of the data (9). Next, it

determines the probabilities for each cell to transition to each other cell in the data set using random walks of any length on this graph. These transition probabilities

correspond to edge weights. The random walks can be considered as a proxy for the cells’ probabilities of differentiating toward another cell. The probabilities for

each cell are stored in a vector, and the DPT between two cells is calculated as the Euclidean distance between their two vectors. The developmental progression

of each cell in the data set is then measured by computing its DPT with respect to a specified root cell (12).

a random-walk-based distance metric known as diffusion
pseudo time (DPT) (12) (Box 4). DPT identifies developmental
progression, branching points as well as differential expression
of key decision-making cell biomarkers on the single-cell level.
DPT has been used to analyze an InDrop single-cell RNAseq
data from Klein et al. (25), where it revealed differentiation and
transcription factor dynamics of mouse embryonic stem cells
after leukemia inhibitory factor withdrawal and identified major
clusters with different biological functions. Notably, the analysis
identified one cluster enriched for pluripotency factors that were
active during early pseudo-time (12).

This method reveals new biology from a variety of
experimental settings through robust computation of pseudo-
time and scalability. In comparison to previous algorithms for
pseudotemporal ordering, such as Wanderlust/Wishbone (23,
26) and Monocle (24), DPT’s random-walk-based formulation
has been shown to perform significantly better in ordering
cells according to pseudotime. Unlike DPT, Monocle utilizes an
only partially robust minimum spanning tree approach and is
unable to scale to high cell numbers. Wishbone, on the other
hand, computes pseudotime distance based on shortest paths on
graphs, which leads to a complicated and iterative computation to
account for branches (27). Since then many more algorithms for
trajectory inference have been proposed, especially for scRNAseq.
Saelens et al. (28) perform an extensive and comprehensive
assessment of 29 published trajectory inference methods on both
simulated as well as real datasets and provide a set of guidelines
for users.

We evaluated the performance of diffusion maps and DPT on
the CD4+ T cell CyTOF dataset (20) after following a density

dependent down-sampling and using logicle transformation
(Figures 4A,B). The root cell was chosen as the cell having the
minimum expression for CD45RO, based on the knowledge
that naïve T cells express CD45RA and that upon antigen
exposure they differentiate into central and effector memory
T cells gaining expression of CD45RO and losing expression
of CD45RA (Figure 4C). The ensemble of diffusion plots
clearly revealed the major T cell subsets, e.g., transition
from naïve to memory T cells with Treg cells and T
helper subsets originating toward the end of differentiation.
The heat-map orders cells by DPT and depicts protein
marker dynamics with cells transitioning from CD45RA+ to
CD45RO+ (Figure 4D).

Many unsupervised single-cell data analysis algorithms are
based on clustering approaches which label groups of cells
into discrete clusters with biologically distinct phenotypic and
functional characteristics. On the other hand, trajectory inference
algorithms assume that data lie on a connected manifold
and project cells on a so-called pseudotime by computing
paths between them using some distance metric along this
manifold. Partition-based graph abstraction (PAGA) combines
analysis strategies of both clustering as well as trajectory
modeling to compute an abstracted graph representing the
overall topology of a possibly disconnected manifold of cells
(13). It first computes a neighborhood graph of single cells
whose partitions represent groups of similar cells. From this,
it generates a simple abstracted graph whose nodes correspond
to these partitions and edges represent a confidence measure
for the connectivity between partitions. The method utilizes a
random-walk-based distance measure to generate a topology
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FIGURE 4 | Trajectory inference from static snapshot cytometry data. (A) Application of DPT to CD4+ PBMC using an original CyTOF dataset (20). Clustering based

on the tip cells identifies three major DPT groups. The root cell, with a high expression for CD45RA (naïve compartment), has the lowest pseudotime. (B) The three

DPT groups and their corresponding changes in pseudotime. (C) Heat-map of marker expression with cells ordered by DPT and depicts protein marker dynamics

with cells transitioning from CD45RA+ to CD45RO+ as seen in DPT group 2. (D) Diffusion maps of CyTOF data colored by selected lineage marker intensity profiles,

which identify major immune subsets aligned along internal developmental states of the data. The ensemble of diffusion plots clearly reveals the major T cell subsets,

e.g., cells differentiating from a naïve to a memory state with Treg cells, T helper subsets such as Th1 and Th2 cells populating the ends of the trajectory.

Frontiers in Immunology | www.frontiersin.org 9 July 2019 | Volume 10 | Article 1515

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Palit et al. High-Dimensional Data Analysis in Cytometry

FIGURE 5 | Partition-based graph abstraction of CyTOF data. (A) Shown is a data analysis of an original CyTOF data-set depicting CD4+ T cells derived from PBMC

(20). Louvain groups in a single-cell graph visualized using the Fruchtman-Reingold (FR) algorithm, which conserves continuous structure in data better than t-SNE.

Abstracted graph visualized using a simple tree-based graph drawing layout. (B) Identification of cluster phenotypes from marker expression distribution. In data-sets

with inherent continuous manifolds, PAGA constructs a tree-like lineage graph with disconnected clusters. Together, it explains the global topology of the data as well

as reconstructs differentiation processes.

preserving map of the underlying differentiation manifold from
single-cell measurements and is shown to be computationally
efficient (13).

We applied PAGA on the CD4+ T cell PBMC CyTOF dataset
using default settings and a resolution of 0.6 (Figure 5A)
(20). The abstracted graph was able to reconstruct the
major T cell subsets arising from CD4+ T helper cell
differentiation. Cluster 1, 2, 3, and 4 constituted the
memory compartment while cluster 0 and 5 represent
naïve subsets. Cluster phenotypes could be identified from
the marker expression distribution (Figure 5B). In datasets
with inherent continuous manifolds, PAGA constructs a
tree-like lineage graph with disconnected clusters. Together it

explains the global topology of the data and also reconstructs
differentiation processes.

CONSIDERATIONS FOR THE CHOICE OF
APPROPRIATE ALGORITHMS

The choice of the most informative type of analysis is dictated
by the respective question to be addressed. Among clustering
tools, FlowSOM currently achieves the top benchmarking
results for typical CyTOF analyses and falls behind only
slightly in the detection of rare cell populations (29). While
in general results from FlowSOM are robust in terms of
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reproducibility some caution needs to be taken of rare
“outlier runs.” The heatmap organization allows for a compact
overview of the entire marker set facilitating cluster annotation,
and of the distance of clusters based on equal-weighted
marker contributions.

Although computation-light, PCA as a linear dimensionality
reduction approach is typically less powerful than non-linear
dimensionality reduction methods when applied to CyTOF
data. In the latter category, UMAP has advantages over
SNE in preserving both local and global distances among
cells (14). Strikingly, this does not come at the cost of
greater computational load but is competitive also to the
latest benchmarked versions of SNE-based algorithms. UMAP
can recapitulate known developmental trajectories, e.g., in
haematopoeisis, yet more specialized approaches may be
preferred to infer (pseudo)temporal ordering in less well-defined
differentiation processes.

This additional layer of information can be extracted
from single-cell data through trajectory inference, which adds
dynamics to static snapshot data. The diffusion maps allow for
the detection of developmental trajectories without neglecting
rare populations and, through placing cells in a pseudotemporal
order, they allow for inference on differentiation stages. Even
though this method is more robust than t-SNE in coping with
noise, it was applied only for visualization purposes. To cover
that gap, DPT was developed with the capacity of measuring the
transitions between developmental stages to depict fate decisions
on a diffusion map. In addition, it can be scaled to higher cell
numbers, differently fromMonocle, without large computational
requirements as observed for Wanderlust and Wishbone. PAGA
is also very computationally efficient and has the advantage of
dealing well with cells disconnected in the pseudotime, thus
reflecting the absence of some intermediary developmental stages
in the sample.

CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

Single-cell technologies have become a ubiquitous tool as
researchers realize their untapped potential to uncover cellular
heterogeneity and functionality at a greater resolution than
with bulk analysis. The past few years have seen a significant
change in the ways cytometry datasets are being analyzed and
a wealth of novel computational tools is now available to mine
complex and high-dimensional data in an unbiased automated
manner. Depending on the biological question, one of several
computational methods can be incorporated to potentially
substantiate the findings of manual gating as well as deepen our
understanding of how the immune system functions in health
and disease.

Many integrated data analysis frameworks now exist to
facilitate a comprehensive interrogation of high-dimensional
single-cell data. Most of these have been originally developed for
scRNA-seq data. However, they can be extended for the purpose

of cytometry as well. Cytofkit, an integrated analysis pipeline,
is specially designed for mass cytometry data and is available
as a Bioconductor package (30). It also provides a graphical
user interface as well as a Shiny application for interactive
and effortless usage and visualization of results. Seurat, also
available as a Bioconductor package, contains implementations
of commonly applied analytical techniques for exploring single-
cell expression data (30). Scanpy, a Python frame-work, provides
computationally efficient and state-of-the-art methods to address
the statistical challenges associated with scRNA-seq data (31). All
of these packages incorporate both novel as well as established
methods to perform data pre-processing, feature selection, linear
and non-linear dimensionality reduction, standard unsupervised
clustering algorithms for automatic detection of cell subsets
and differential testing. Scanpy additionally integrates novel in-
house algorithms and performs trajectory inference. One of
the most productive research areas in future should be toward
developing and maintaining such integrated analysis pipelines
for cytometry data as well as bridging the gap with other
OMICS data analysis for a more comprehensive interpretation of
study models.

There are many more established algorithms for single-
cell analysis mostly developed for scRNA-seq that also allow
investigation of cytometry datasets, several of which have
been reviewed earlier (5, 32, 33); for a large-scale overview
please consider this list (34). However, we find that the
different methods vary significantly in terms of scalability,
speed and computational skill required to interpret results. We
discuss and demonstrate the feasibility and power of several
current computational tools to translate complex static snapshot
data obtained from high-dimensional single-cell datasets into
dynamic ontological and regulatory networks of the immune
system. A potential avenue for further development would be to
incorporate machine learning methods to infer developmental
trajectories directly from cytometry data, which currently
describes much less features to model the underlying manifold
and is, thus, a limitation. Ultimately, it depends on the experience
and requirement of the investigator to make an informed
decision about the choice of the data exploratory method.
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