
Bhattacharyya et al. Translational Psychiatry           (2019) 9:173 

https://doi.org/10.1038/s41398-019-0507-5 Translational Psychiatry

ART ICLE Open Ac ce s s

Metabolomic signature of exposure and
response to citalopram/escitalopram in
depressed outpatients
Sudeepa Bhattacharyya 1, Ahmed T. Ahmed2, Matthias Arnold 3,4, Duan Liu 5, Chunqiao Luo1, Hongjie Zhu6,
Siamak Mahmoudiandehkordi3, Drew Neavin5, Gregory Louie 3, Boadie W. Dunlop7, Mark A. Frye2, Liewei Wang5,
Richard M. Weinshilboum5, Ranga R. Krishnan8, A. John Rush3,9,10 and Rima Kaddurah-Daouk 3,11,12

Abstract
Metabolomics provides valuable tools for the study of drug effects, unraveling the mechanism of action and variation
in response due to treatment. In this study we used electrochemistry-based targeted metabolomics to gain insights
into the mechanisms of action of escitalopram/citalopram focusing on a set of 31 metabolites from neurotransmitter-
related pathways. Overall, 290 unipolar patients with major depressive disorder were profiled at baseline, after 4 and
8 weeks of drug treatment. The 17-item Hamilton Depression Rating Scale (HRSD17) scores gauged depressive
symptom severity. More significant metabolic changes were found after 8 weeks than 4 weeks post baseline. Within
the tryptophan pathway, we noted significant reductions in serotonin (5HT) and increases in indoles that are known to
be influenced by human gut microbial cometabolism. 5HT, 5-hydroxyindoleacetate (5HIAA), and the ratio of 5HIAA/
5HT showed significant correlations to temporal changes in HRSD17 scores. In the tyrosine pathway, changes were
observed in the end products of the catecholamines, 3-methoxy-4-hydroxyphenylethyleneglycol and vinylmandelic
acid. Furthermore, two phenolic acids, 4-hydroxyphenylacetic acid and 4-hydroxybenzoic acid, produced through
noncanconical pathways, were increased with drug exposure. In the purine pathway, significant reductions in
hypoxanthine and xanthine levels were observed. Examination of metabolite interactions through differential partial
correlation networks revealed changes in guanosine–homogentisic acid and methionine–tyrosine interactions
associated with HRSD17. Genetic association studies using the ratios of these interacting pairs of metabolites
highlighted two genetic loci harboring genes previously linked to depression, neurotransmission, or
neurodegeneration. Overall, exposure to escitalopram/citalopram results in shifts in metabolism through noncanonical
pathways, which suggest possible roles for the gut microbiome, oxidative stress, and inflammation-related
mechanisms.

Introduction
Major depressive disorder (MDD) is a common, often

disabling condition affecting over 300 million individuals

worldwide1. Selective serotonin reuptake inhibitors
(SSRIs) are common first-line treatments for MDD2,3.
They are believed to increase the extracellular availability
of the neurotransmitter serotonin by limiting its reab-
sorption into the presynaptic cell, so that serotonin levels
are increased in the synaptic cleft and available for
binding to postsynaptic receptors. Responses to anti-
depressant medications are modest. Only about half the
patients respond to the first medication; only one in three
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achieves symptom remission, which is the virtual absence
of symptoms and the aim of treatment4. Some patients do
well on a single medication, while others require medi-
cation combinations or alternative interventions. Clinical
symptoms are insufficient to guide appropriate treatment
selection5 and, presently, treatments are therefore selected
empirically relying on a “trial and error” approach6,7.
Metabolomics, a promising new approach to under-

standing depression and other neuropsychiatric dis-
orders8–11, could help inform treatment selection12,13.
Metabolomic profiles provide informative readouts on
pathways and biological networks implicated in various
diseases or their treatments. Metabolomic signatures
have been identified for several psychiatric disorders,
such as MDD14, bipolar disorder15,16, and schizo-
phrenia17–19. Most studies of mood disorders have
implicated tryptophan (TRP), tyrosine, and purine
metabolism, since historically, neurotransmission and
serotonergic signaling were key focus areas of investi-
gation14. The TRP pathway along with its three branches
of metabolism to serotonin/melatonin/5-hydro-
xyindoleacetate, kynurenine (KYN), and indole deriva-
tives, seems to be affected in the depressed state20–28.
The purine pathway, whose regulation seems to be
connected to TRP metabolism, has also been implicated
in depression and other psychiatric disorders29. Among
patients in remission from a major depressive episode, a
metabolomic signature that included methionine, glu-
tathione along with metabolites in the purine and TRP
pathways, has been identified30.
Pharmacometabolomics has also revealed that patients’

metabolomic profiles (metabotypes), both prior to and
early during treatment, can inform treatment out-
comes10,31. This approach has been applied to anti-
hypertensive32 and antiplatelet33 therapies. We have used
this approach to predict treatment outcomes and to
identify specific metabolomic pathways that were changed
in response to sertraline34,35 and to ketamine36, a pro-
mising agent for treatment-resistant depression. We have
also employed a “pharmacometabolomics-informed
pharmacogenomics” research strategy11 to investigate the
role of genetics in response to citalopram or escitalo-
pram37,38, thereby advancing the goal of precision medi-
cine for depression31. However, the acute and longer-term
effects of treatment with citalopram or escitalopram on
pathways, critical to the pathobiology or pharmacotherapy
of depression, and the relationship to clinical outcomes
have not been reported.
This report used metabolomic analyses with selected

metabolites in the tryptophan, tyrosine, purine, toco-
pherol, and the related pathways in a sample of non-
psychotic depressed outpatients who were treated for
8 weeks with citalopram or escitalopram to address the
following questions:

– The metabolomic signature of exposure to
escitalopram/citalopram: which metabolite changes
occurred from baseline to week 4, and from baseline
to week 8 of treatment?

– The metabolomic signature of response: which
metabolomic changes were related to changes in
depressive symptoms (HRSD-17), longitudinally, in
the overall population and also in responders versus
nonresponders?

– The interrelationships between metabolites: what are
the relationships among metabolites, both within
and between pathways, before and after treatment
with the drug?

Methods
Study design and participants
We used samples from the Mayo Clinic NIH-

Pharmacogenomics Research Network-Antidepressant
Pharmacogenomics Medication Study (PGRN-AMPS)
which recruited a total of 803 MDD patients39. Patient
selection, symptomatic evaluation, and blood sample
collection for the PGRN-AMPS clinical trial have been
described elsewhere24,38–40. Briefly, MDD patients were
required to have a baseline HRSD17 score ≥ 14, and all
patients who completed 8 weeks of treatment (n= 290)
were treated with one of the two SSRIs, citalopram or
escitalopram. Depressive symptoms were assessed with
HRSD17 at baseline, week 4, and week 8 of SSRI treat-
ment. Blood samples were collected at these same time
points.
The HRSD17 was used to ascribe “response”—defined as

at least 50% reduction in the total score from baseline to
exit; “remission” —an exit HRSD17 score of 7 or less; and
“complete-non-response”—less than 30% reduction in the
HRSD17 total score from baseline to exit39. Genome-wide
association studies for plasma concentrations of the SSRIs
and metabolite levels40 and for response41 in this trial
have been published previously. The trial was designed as
a parallel to the large National Institute of Mental Health
—funded “the Sequenced Treatment Alternatives to
Relieve Depression” (STAR*D) clinical trial42 for the
purpose of replication of the identified genetic markers.

Metabolomic profiling
A targeted, liquid chromatography–electrochemical

coulometric array (LCECA) metabolomics platform43 was
used to assay metabolites in plasma samples from the
three time points, baseline, 4 weeks, and 8 weeks. This
platform was used to identify and quantify 31
neurotransmitter-related metabolites (against standards)
primarily from the TRP, tyrosine, and tocopherol path-
ways, including serotonin. A list of the metabolites that
were quantitatively measured using this platform is pre-
sented in Table 1.
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Analysis method
The long-gradient LCECA method used for this analysis

can resolve compounds at picogram levels through elec-
trochemical detection (resulting from oxidation or
reduction reactions) including multiple markers of oxi-
dative stress and protection. This method utilizes a 120-
min gradient from (0%) organic modifier with an ion-
pairing agent (i.e., pentane sulfonic acid) to a highly
organic mobile phase with methanol (80%)/isopropanol
(10%)/acetonitrile (10%). An array of 16 serial coulometric
electrochemical detectors is set at incremental potentials
from 0 to 900mV, responding to oxidizable compounds
such as tocopherol in lower potential sensors and higher
oxidation potential compounds such as hypoxanthine in
the higher potential channels.

Analysis sequence and data output
At the time of preparation, a pool was created from

small aliquots of each sample in the study, which was then
treated identically to a sample. All of these assays were
executed in sequences that included mixed standard, five

samples, pool, five samples, mixed standard, and so on
and so forth. In this study, all sample run orders were
randomized. The sequences decreased possible analytical
artifacts during further data processing. Data were time
normalized to a pool at the midpoint of the study, aligning
major peaks to 0.5 s and minor peaks to 0.5–2 s. Details
on the LCECA methods are described in previously
published work35,41,44–50.

Data analysis
All data preprocessing and analysis were performed

with R (version 3.4.2) and Bioconductor (version 3.3)
statistical packages.

Preprocessing
This study’s data extraction protocol followed the

STORBE guidelines46. All metabolite data were first
checked for missing values (none were detected at >20%
missing abundances) and were subjected to imputation by
the k-nearest neighbor algorithm51. Data were then log2

Table 1 List of metabolites and pathways analyzed in the study

Metabolite by pathways Abbreviation Metabolite by pathways Abbreviation

Tryptophan Phenylalanine/tyrosine

3-Hydroxykynurenine 3OHKY 4-hydroxybenzoic acid 4HBAC

5-Hydroxyindoleacetic acid 5HIAA

5-Hydroxytryptophan 5HTP Purine

Indole-3-acetic acid I3AA Guanine G

Kynurenine KYN Guanosine GR

Serotonin 5HT Hypoxanthine HX

Tryptophan TRP Uric acid URIC

Xanthine XAN

Tyrosine Paraxanthine PXAN

4-Hydroxyphenylacetic acid 4HPAC Xanthosine XANTH

4-Hydroxyphenyllacetic acid 4HPLA

Homogentisic acid HGA 1 Carbon+ GSH

Homovanillic acid HVA Methionine MET

Methoxy-hydroxyphenyl glycol MHPG Cysteine CYS

Tyrosine TYR

Vanillylmandelic acid VMA Other

Salicylate SA

Tocopherol Alpha-Methyltryptophan AMTRP

Tocopherol-alpha ATOCO Indole-3-propionic acid I3PA

Tocopherol-delta DTOCO Theophylline Theophylline

Tocopherol-gamma GTOCO
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transformed and scaled to unit variance prior to statistical
analyses.

Univariate analysis
To define the effect of drug exposure over 4 weeks and

8 weeks of treatment, linear mixed effects models (using
the R package nlme52) were fitted on each metabolite
adjusting for age, gender, and HRSD17 scores at baseline
with subjects as random variable. Analyses were con-
ducted separately for 4 and 8 weeks. Linear mixed effects
models were also used to determine associations between
the changes in metabolites and changes in HRSD17 over
time, with age and gender as covariates, and using sub-
jects as random variable. All p-values were used to cal-
culate the false discovery rates by Benjamini–Hochberg
method53, and a cutoff point of 10% was used. A two-step
regression strategy was used to find metabolites with
significant temporal changes and significant differences
between responders and nonresponders using the
maSigPro library in R54. First, a least-squared technique
was employed to identify differential metabolites in a
global regression model, using dummy variables for
experimental groups. Second, stepwise regression was
applied to select variables that differed between the
experimental groups and find significantly different
metabolite profiles between the groups.

Partial correlation networks with cluster subgraph analysis
The relationship between metabolites in a complex

disease setting can be represented in terms of partial
correlation networks, where each node represents a
metabolite and each edge between two metabolites
represents that two variables are not independent after
conditioning on all variables in the dataset. These edges
have a weight, edge weights, which are the partial corre-
lation coefficients. Here, we estimated the partial corre-
lation matrix for all of the metabolites using the least
absolute shrinkage and selection parameter (LASSO) to
obtain the sparse inverse covariance matrix to avoid
overfitting and spurious correlations. Thus, it can be
reasonably expected that the regularized partial correla-
tion networks will provide accurate estimates of the
underlying relationships between the metabolites in
metabolic pathways and reactions. The LASSO regular-
ization parameter was set via EBIC or Extended Bayesian
Information criterion50. Finally, the walktrap algorithm,
which is based on random walks to capture cluster
structures in a network, is used to identify clusters of
strongly interacting metabolites45. The final network with
cluster subgraphs is formed by the median pairwise partial
correlations over 1000 bootstrap estimations and plotted
using the Fruchterman–Reingold layout. We further
included the HRSD17 scores in our partial correlation
network models to perform differential network analysis.

The overall statistical impact of HRSD17 scores on the
metabolite interactions was calculated based on measur-
ing structure invariance between two networks, high
HRSD17 and low HRSD17 networks, constructed using a
median split of the variable. Permutation tests were used
to determine the significance of structure and edge
invariances between the two networks55. The
metabolite–metabolite partial correlations that were of
differential strength between networks of high and low
HRSD17 networks were further validated for significant
interaction effects through linear regression analysis.

Candidate metabolic trait GWAS with HGA/GR and MET/TYR
ratios
For 288 of the 290 subjects in this study we had geno-

type data for the Illumina human 610-Quad BeadChips
(Illumina, San Diego, CA, USA) available, as described
previously38,41. Genotype QC using PLINK and imputa-
tion followed standard protocols. Briefly, raw genotype
data were filtered for variants with call rate <5%, minor
allele frequency (MAF) <5%, and Hardy–Weinberg equi-
librium HWE p < 1 × 10−549. The data was then subjected
to prephasing using SHAPEIT2 (ver. 2.12)48, followed by
imputation with IMPUTE2 (ver. 2.3.2)47 using 1000 gen-
omes phase 3 version 556 haplotypes as a reference. Post-
imputation QC included filtering variants for IMPUTE
info score < 0.5, call rate and MAF < 5%, and HWE p < 1 ×
10−5, resulting in a final set of 5.55 mio SNPs with 99.14%
genotyping rate. To remove any potential for spurious
associations due to population stratification, we used a set
of about 100,000 SNPs pruned for the LD structure and
retrieved the first five principal component eigenvectors
(PCs). Metabolite data for the HGA/GR and Met/TYR
ratios were log transformed, centered to zero mean, and
scaled to unit variance. In addition, for candidate GWAS,
we excluded values that were more than 4 standard
deviations from the mean. We then performed GWAS for
HGA/GR and MET/TYR at each time point while
adjusting for age, sex, and PCs 1–5. We reran the GWAS
additionally adjusting for HDRS17 scores at each time
point to eliminate the effects linked to depression severity.

Results
Patient characteristics
Plasma metabolite data were available from 290 MDD

patients. The average age of the patient cohort was 39.8
(±13.1) years. Females comprised of 66% of the study
cohort, while males were at 34%. The response rate to the
drug, based on HRSD17 scores, was 69.3% after 8 weeks,
compared with 30.7% who were classified as non-
responders for this study. The depressive status of the
patients, as determined by the HRSD17 scores, decreased
over time with the drug treatment, from an average of
21.9 (±4.9) at baseline to 11.6 (±6.4) at week 4 and 8.6
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(±5.5) at week 8. Demographic and clinical characteristics
are detailed in Supplemental Table 1.

Metabolite changes at weeks 4 and 8 compared with
baseline, in response to the drug
Several metabolites in the purine, tryptophan, and tyr-

osine pathways changed, following 4 weeks of drug ther-
apy. However, perturbations in the metabolite levels were
in general, greater and more significant after 8 weeks of
treatment (Supplemental Table 2). Figure 1 illustrates
changes within key pathways evaluated after 8 weeks of
treatment.

Tryptophan pathway
Dramatic changes were observed in serotonin (5HT)

and the ratio 5HIAA/5HT, both at week 4 and week 8. At
both time points, 5HT showed substantial decreases and
the 5HIAA/5HT ratio was significantly elevated. While
TRP itself did not show a notable change, its indole-
containing metabolite I3AA was significantly elevated, as
was the ratio of I3AA/TRP, possibly indicating a shift

away from the serotonergic pathway of TRP metabolism.
Interestingly, another indole-containing compound that is
known to be produced only by gut microbiota in humans,
I3PA, was also increased at 8 weeks (unadjusted p-value <
0.02). No statistically significant alterations were observed
in the KYN branch of TRP metabolism.

Tyrosine pathway
A similar trend of a shift to noncanonical branches of

tyrosine metabolism was also observed in this pathway.
MHPG, the major metabolite of the neurotransmitter
norepinephrine and the ratio MHPG/TYR showed sig-
nificant reductions in their blood levels at both 4 and
8 weeks while VMA, a norepinephrine end metabolite,
showed significant elevations at 8 weeks compared with
baseline. A phenolic acid, 4HPAC, and its ratio to TYR
(4HPAC/TYR) were significantly increased at both 4 and
8 weeks. Another phenolic derivative from the phenyla-
lanine/tyrosine pathway, 4-hydroxybenzoic acid
(4HBAC), was also significantly elevated at 8 weeks.

Fig. 1 Metabolic signature of drug exposure. a Shows the heatmap of metabolite changes at baseline, week 4, and week 8, normalized to baseline
levels. b–d Show changes within the purine, tryptophan, and tyrosine pathways
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Purine pathway
The purine metabolites HX and XAN and the ratio

XAN/XANTH were decreased significantly, while the
ratios PXAN/XAN and URIC/XAN were elevated at
8 weeks compared with baseline, indicating a similar
decline in the canonical pathway of purine metabolism, as
observed in the tryptophan and tyrosine pathways.
Other metabolites that showed significant changes,

albeit at unadjusted p values <0.05, were the purine
metabolites, G, PXAN, and XANTH; the TRP metabolite,
5HTP; the tyrosine metabolite, HGA; and other metabo-
lites, such as salicylic acid (SA).

Metabolomic changes associated with changes in
depressive symptoms (HRSD17)
Using linear mixed models, we examined the associa-

tion between temporal changes in metabolite levels
(across three time points, baseline, 4 weeks, and 8 weeks)
and the temporal changes in patients’ HRSD17 scores over

that period of time (see Fig. 2a–c and Supplemental Table
3). In the overall population, metabolites from the TRP
pathway were associated with changes in HRSD17 scores.
5HT, 5HIAA and the serotonin turnover marker 5HIAA/
5HT showed significant positive and negative associa-
tions, respectively, with decreases over time in HRSD17

scores (FDR-adjusted p values <0.01).
We further subcategorized the population based on

their HRSD17 scores after 8 weeks of treatment. If they
had at least a 50% reduction in their HRSD17 scores, from
baseline to exit, they were categorized as responders,
otherwise they were nonresponders. We examined whe-
ther the temporal associations between metabolite chan-
ges and HRSD17 scores significantly differed between
responders and nonresponders. The mean (±sd) HRSD17

scores in the responders and nonresponders were 21.86
(±5.17) and 22.03 (±4.28), respectively, at baseline, 10.10
(±5.77) and 15.03 (±6.58), respectively, at week 4, and 5.79
(±3.27) and 14.90 (±4.15), respectively, at week 8. 5HT

Fig. 2 Metabolite changes associated with HRSD17 scores. a 5HT (Serotonin), b 5HIAA/5HT ratio, and c 5HIAA (5-hydroxyindoleacetic acid).
Temporal changes in (d) HRSD17 scores, (e) 5HT, and (f) MHPG differed significantly between responders and nonresponders. The error bars represent
standard error of the mean
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temporal profiles significantly differed between the two
groups, with the levels being consistently higher in the
responders at baseline, week 4, and week 8, while the
decline in HRSD17 scores was significantly lower at both 4
and 8 weeks compared with baseline (Fig. 2d, e). Levels of
MHPG at baseline were significantly higher and the drop
in MHPG levels over time was significantly greater in
responders compared with nonresponders (Fig. 2f).

Relationships amongst metabolites at baseline and after
8 weeks of treatment
Biological systems are now increasingly viewed as

complex networks of interlinked entities, topological
analyses of which can reveal the underlying landscape of
biological functionalities. Gaussian graphical modeling
has been used to reconstruct pathway reactions in meta-
bolomics data57. Combining a partial correlation network
and genetic variation through GWAS has been shown to
provide an in-depth overview of the underlying mechan-
istic pathways58. Here, using regularized partial correla-
tion network analysis at baseline and also after week 8 of
drug exposure (Fig. 3), we assessed the
metabolite–metabolite interactions between tryptophan,
tyrosine, purine, and tocopherol pathways.
Regularized partial correlation networks of the meta-

bolites at baseline (Fig. 3a, b) and also at week 8 (Fig. 3c,
d) showed significant correlations between several meta-
bolites, both within and between pathways forming clus-
ters of interacting molecules. A list of statistically
significant partial correlations between metabolites at
baseline and week 8 are presented in Supplemental Table
4 A, B. Important observations through cluster subgraph
analysis showed that MET, TYR, and TRP formed a tight
cluster both at baseline and week 8. However, the strength
of interactions between MET and TYR was significantly
reduced at week 8, compared with baseline (~50%
reduction, permutation p value < 0.10). GR connection to
this cluster was significant at week 8 through interactions
with all three metabolites. HVA formed a significant
correlation with KYN at week 8 that was not observed at
baseline. Multiple other overlapping correlations in the
two networks were observed at both baseline and week 8,
suggesting that the majority of these interactions were a
result of housekeeping biological interactions and were
probably not entirely related to the drug effect.

Differential partial correlation networks associated with
HRSD17 scores at week 8
HRSD17 scores at week 8 indicated the depression status

of the patients post drug treatment. We compared two
partial correlation networks constructed with lower and
higher values of HRSD17 scores at week 8 (the outcome
status), using a median split, as a node. Our aim was to
examine if the associations between metabolites were

different between patients who responded to the drug
better than those who responded poorly. Several
metabolite–metabolite associations across the tyrosine,
tryptophan, and purine pathways were found to be
changed as a function of higher or lower outcome status
(Supplemental Table 5 A, B). At baseline, GR–MET,
TYR–MET, and KYN–URIC partial correlations were
most impacted, while at week 8, KYN–HVA,
KYN–3OHKY, 5HTP-G, and HGA–GR values were most
impacted by HRSD17 week 8 status (Fig. 3e, f). Two sets of
metabolite–metabolite interactions associated with the
outcome status, HGA–GR interactions at week 8 and
MET–TYR interactions at baseline, were further found to
be statistically significant in linear regression models
(highlighted in yellow in Fig. 3, e, f). The interaction plots
based on linear regression models are presented in Sup-
plemental Figs. 1 and 2. An interesting observation from
the differential analysis of networks at baseline was that
the partial correlations between metabolites that were
differential between the low versus high HRSD17 networks
involved several gut-microbe-related metabolites such as
HGA, I3AA, 5HIAA, 4HPLA, and 4HPAC amongst oth-
ers (Fig. 3e).

Genetic influences on ratios of interacting metabolite pairs
change during SSRI treatment
To identify potential modulators of significant

metabolite–metabolite interactions and their differential
interactions over time, we performed genome-wide
association studies with the pairwise ratios of HGA/GR
and MET/TYR in 288 subjects at each time point. To this
end, we computed additive genetic associations of the two
ratios with 5.55 mio autosomal SNPs at each time point,
while adjusting for age, sex, time point-specific HRSD17

score, the first five PCs to account for population strati-
fication. The strongest signal for the HGA/GR ratio was
for rs55933921 on chromosome 7 (baseline: P= 8.59 ×
10−7; week 4: P= 3.05 × 10−3; week 8: P= 1.14 × 10−3) in
a locus spanning two genes, TAC1 (protachykinin-1) and
ASNS (asparagine synthetase [glutamine-hydrolyzing]).
The strongest signal for the MET/TYR ratio was for
rs2701431 on chromosome 15 (baseline: P= 5.57 × 10−3;
week 4: P= 2.00 × 10−4; week 8: P= 8.48 × 10−8) in the
AGBL1 (ATP/GTP-binding protein like 1) locus (Fig. 4).
Of note, genetic associations between these loci and
metabolite ratios were the strongest at the time point that
showed insignificant metabolite–metabolite interactions
on the HRSD17 score.

Discussion
We have applied a “targeted” electrochemistry-based

metabolomics platform to quantitate the metabolomic
profiles in MDD patients before and after SSRI treatment.
Specifically, we assayed 31 neurotransmission-related
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Fig. 3 Partial correlation networks (PCN). a PCN at baseline; b PCN at baseline after 1000 bootstrap estimations; c PCN at week 8, and d PCN at
week 8 after 1000 bootstrap estimations. The different clusters representing communities of closely associated metabolites are shown in different
colors. Differential PCN as a function of high versus low HRSD17 week 8 scores at (e) baseline and (f) week 8. The edges between metabolites most
impacted by higher HRSD17 week 8 scores are bolded in green, while those by lower HRSD17 week 8 scores are bolded in red
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Fig. 4 Plots showing regional association plots generated with SNiPA61 for: a the HGA/GR ratio at baseline and b the MET/TYR ratio at week 8
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metabolites that might have some relevance to MDD
pathophysiology, based on published literature, including
compounds from the tryptophan, tyrosine, and purine
pathways, in plasma samples from 290 MDD patients at
baseline, 4-, and 8 weeks of escitalopram/citalopram
treatment. Metabolomic profiles were correlated with
treatment response, defined as 50% reduction from
baseline HRSD17 scores. We found that plasma 5HT
concentration was the most significantly decreased
metabolite among all of the 31 metabolites after the drug
treatment. Higher baseline 5HT levels were associated
with better response to SSRI treatment. The 5HT levels in
responders remained higher than that those in non-
responders all through the treatment period. Compared
with the baseline metabolic state, significant shifts of
metabolomic profiles to noncanonical branches of the
three major pathways after drug exposure were noted,
such as increase in the production of indoles in TRP
metabolism, phenolic acids in phenylalanine/tyrosine
metabolism, and the PXAN/XAN ratio in the purine
pathway. In addition, changes in the catecholamine
branch of tyrosine metabolism like increase in VMA and
decrease in MHPG, and changes in the end products of
purine pathway, such as decreases in XAN and HX, were
identified in the MDD patients after drug exposure.
Patients who had high MHPG at baseline responded
better to SSRI treatment and their MHPG levels
decreased more significantly than nonresponders. Tem-
poral change in serotonin and 5HIAA significantly cor-
related with changes in HRSD17 scores over time. Partial
correlation analysis between metabolites revealed that
MET, TYR, and TRP formed a tight cluster of interacting
molecules in these MDD patients. However, the strength
of interactions (partial correlations) varied significantly
pre- and post treatment. GR association with this cluster
was significant at week 8. GWAS for the HGA/GR ratio
identified two genetic loci that mapped to the TAC1 and
ASNS genes, which are known to be involved in depres-
sion and neurotransmission, while the ratio MET/TYR
identified the gene AGBL1 previously linked to neuro-
degeneration in mice.
Overall, significant perturbations within and between

the tryptophan, tyrosine, and purine pathways due to the
drug exposure, were noted. These findings are consistent
with our previous metabolomic study of sertraline,
another SSRI, in depressed patients35, where perturba-
tions in TRP, in particular, changes in methoxyindole
pathway and the ratio of KYN/TRP were correlated with
treatment outcomes. Interestingly, plasma concentrations
of the indoles synthesized from TRP, I3AA, and I3PA,
were found to be significantly increased in the MDD
patients in this study after the SSRI treatment. Plasma
concentrations for I3AA and I3PA are known to be
influenced by gut microbiota. Both I3AA and I3PA are

aryl hydrocarbon receptor (AHR) agonists59, which could
activate AHR transcriptional activity and modulate
inflammation in the gut60–63 and brain64,65.
Indole-3-propionic acid is a potent hydroxyl radical

scavenger produced exclusively by the commensal gut
bacteria Clostridium sporogenes66 and normally found in
the plasma and cerebrospinal fluid. I3AA, on the other
hand, has been found to correlate significantly with both
anxiety and depressive symptoms in chronic kidney dis-
ease patients (CKD)67. I3AA can be produced from indole
by gut microflora68 in the intestines, or metabolized in
tissues from tryptamine69 and other TRP derivatives. At
uremic concentrations, I3AA has been linked to oxidative
stress via AHR in CKD patients70. However, neither I3AA
nor I3PA changes were correlated to changes in HRSD17

scores in our findings.
The most notable change in metabolic profiles after

SSRI exposure occurred in the TRP metabolite, 5HT
concentrations, which was expected from the mechanism
of action of SSRI38. Plasma 5HT originates from the
enterochromaffin cells in the gut and gets actively
absorbed and stored by blood platelets, which highly
express the 5HT transporter SLC6A4. SSRIs target
SLC6A4 and inhibit 5HT uptake by platelets in blood.
Therefore, a dramatic decrease in plasma 5HT con-
centration after the SSRI treatment can be expected in
these patients. A higher concentration of plasma 5HT,
which was stored in platelets, may reflect an elevated
activity of the 5HT transporter, and, as a result, greater
sensitivity to SSRIs in those patients. This hypothetical
situation might explain why patients with higher plasma
5HT concentrations responded better to SSRIs.
Altered metabolic activity of the purine cycle has been

linked with several MDD-related systemic responses, such
as increased proinflammatory and oxidative processes35.
The end products of purine metabolism, uric acid, a
potent antioxidant, have been reported to be found in
decreased levels in MDD71–73, while lower cerebro-spinal
fluid (CSF) levels of hypoxanthine and xanthine, the two
metabolites preceding uric acid, have previously been
linked with depression74. Ali-Sisto et al., on the contrary,
reported increased levels of xanthine to be associated with
MDD75. In our study, we observed higher baseline levels
of xanthine and hypoxanthine that decreased with the
drug treatment. We did not detect increases in uric acid,
but we did observe significant increases in the ratios of
paraxanthine/xanthine and xanthosine/xanthine due to
the drug exposure. This may indicate a potential bene-
ficial effect of the drug through reducing oxidative stress
by direct or indirect inhibition of the xanthine oxidase
enzyme system. XO is known to generate vascular oxi-
dative stress through reactive oxygen species production
by catalyzing the hypoxanthine → xanthine → urate
synthesis76. On the other hand, we observed increased
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associations between uric acid with 4HPLA and also with
HGA at week 8 compared with baseline. Uric acid is
known to function as an antioxidant (primarily in plasma)
and pro-oxidant (primarily within the cell)77. Para-
xanthine showed strong correlations to theophylline at all
time points. It may also be possible that we were not able
to detect significant increases in the levels of the anti-
oxidant, uric acid, and the known psychostimulant para-
xanthine78 due to their increased turnover rates brought
about by the drug treatment.
In the tyrosine/phenylalanine pathway, 4HPAC and

4HBAC, the phenolic acid metabolites, were found to be
significantly increased in MDD patients after SSRI treat-
ment. Although these can potentially come from diets
rich in plant-based foods, evidence suggests that these
compounds can be produced through microbial fermen-
tation of aromatic amino acids (AAAs) in the colon79.
Although changes in the concentration of those metabo-
lites were not associated with SSRI response in MDD
patients, those changes possibly indicate alterations in gut
microbiome or gut metabolism after citalopram/escitalo-
pram treatment. 4HBAC is known for its antioxidant
properties, as effective scavengers of free radicals and
reactive nitrogen species, such as peroxynitrite80. 4HPAC
is also known for its antioxidant, antiinflammatory, and
anticancer activities79.
The strong interactions between MET–TYR–TRP,

observed through partial correlation networks at baseline
confirms the connection between folate-mediated
methionine formation, leading to methyl donation reac-
tions that form the monoamine neurotransmitters ser-
otonin, dopamine, and epinephrine81,82. In depression,
this balance is known to be perturbed83. With the drug
exposure, we see further alterations in this balance at
week 8. In addition, we see that GR significantly correlates
with MET and TRP at week 8 post treatment. This may be
indicative of changes in methylation status of the ser-
otonin transporter84 through epigenetic mechanisms, in
response to the SSRI treatment in these depression
patients. At week 8, KYN–3OHKY association decreased
significantly with concomitant increases in associations
between KYN and the dopamine degradation product,
HVA, and this association was comparitively stronger in
patients who did not respond well to the treatment.
Using the ratios of metabolites significantly interacting

as intermediate phenotypes leads us to rediscover loci
known to be involved in neurotransmission/depression
and neurodegeneration. The strongest association signals
for baseline GR/HGA were within a locus on chromo-
some 7 containing two central genes: TAC1 (protachy-
kinin-1) that has been linked to depression and anxiety85

and ASNS (asparagine synthetase [glutamine-hydrolyz-
ing]) that is an important enzyme, the deficiency of which
leads to substantial neurodevelopmental deficits86.

Interestingly, patients with this deficiency (it is an inborn
error of metabolism) also show modest changes in neu-
rotransmitters. The strongest signal for MET/TYR was
within a locus on chromosome 15 containing the gene
AGBL1 (ATP/GTP binding protein-like 1) that has a role
in controlling the length of the polyglutamate side chains
on tubulin. This process is critical for neuronal survival,
and the lack of such control has been reported to result in
neurodegeneration in mice87. These findings underscores
the utility of our “Pharmacometabolomics-Informs-
Pharmacogenomics” approach33 to identify candidate
genes for further functional studies. Using this strategy,
we have previously identified SNP signals in the DEFB1
and AHR genes that were associated with severity of
depressive symptoms in these MDD patients28. DEFB1 is
an antimicrobial peptide which is highly expressed and
active in the gut88, playing a potentially important role in
maintaining gut–microbiome homeostasis89. These
results fit within the broadening body of information in
support of important roles for the “microbiota–gut–brain
axis” and inflammation in MDD pathophysiology.
Several limitations of this study warrant consideration.

Compared with other MDD patients recruited in the
PGRN-AMPS trial, study participants were “selected”
because they were able to complete all three visits (i.e.,
baseline, 4, and 8 weeks) and provide blood samples,
which would reduce the number of patients in the final
sample who did poorly. In addition, only Caucasians were
included in this study, and thus, a given inherent limita-
tion was developed from analyzing a subset of MDD
patients. Furthermore, the LCECA platform captures
information on only redox-active compounds in the tyr-
osine, tryptophan, purine, and sulfur amino acid pathways
and several markers of vitamin status and oxidative pro-
cesses. The integration of data from lipidomics and mass
spectrometry-based metabolomics platforms in future
studies, as well as inclusion of several confounding vari-
ables, such as body mass index, diet, and lifestyle factors,
would definitely help to better unravel the mechanistic
aspect of the drug response.
In conclusion, we analyzed the metabolomic profile in

290 MDD patients before and after citalopram/escitalo-
pram treatment. Noncanonical metabolic pathways rela-
ted to TRP, tyrosine, and purine metabolism were found
to be activated after the drug exposure. There was
crosstalk among these pathways at baseline depression
levels, which was significantly impacted by the drug
exposure. Significant increases in gut–microbiota-related
metabolites, such as the indoles and the phenolic acids,
were observed in the overall population. Patients who
responded to the drug compared to those who did not,
had significant differences in baseline levels as well as in
the trajectories of several metabolites, including several
gut–microbiota related metabolites, suggesting that the
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drug exposure might be impacting gut-microbial ecology
differently in the two groups. Overall, amelioration of
oxidative stress and increases in anti-inflammatory pro-
cesses seem to be part of the mechanism involved in
response to citalopram/escitalopram treatment.
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