
  

Abstract — Optoacoustic (photoacoustic) mesoscopy offers 

unique capabilities in skin imaging and resolves skin features 

associated with detection, diagnosis and management of disease. A 

critical first step in the quantitative analysis of clinical 

optoacoustic images is to identify the skin surface in a rapid, 

reliable and automated manner. Nevertheless, most common edge- 

and surface-detection algorithms cannot reliably detect the skin 

surface on 3D raster-scan optoacoustic mesoscopy (RSOM) 

images, due to discontinuities and diffuse interfaces in the image. 

We present herein a novel dynamic programming approach that 

extracts the skin boundary as a 2D surface in one single step, as 

opposed to consecutive extraction of several independent 1D 

contours. A domain-specific energy function is introduced, taking 

into account the properties of volumetric optoacoustic mesoscopy 

images. The accuracy of the proposed method is validated on scans 

of the volar forearm of 19 volunteers with different skin 

complexions, for which the skin surface has been traced manually 

to provide a reference. Additionally, the robustness and the 

limitations of the method are demonstrated on data where the skin 

boundaries are low-contrast or ill-defined. The automatic skin 

surface detection method can improve the speed and accuracy in 

the analysis of quantitative features seen on RSOM images and 

accelerate the clinical translation of the technique. Our method 

can likely be extended to identify other types of surfaces in RSOM 

and other imaging modalities.    

 
Index Terms—2D front propagation, optoacoustic imaging, skin 

extraction, surface segmentation 

 

I. INTRODUCTION 

ERMAL morphology has high diagnostic value [1, 2]. 

Changes in microvascular structure and in the appearance 
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and thickness of skin layers have been shown to be useful for 

assessing different pathologies, including skin and systemic 

diseases [3–9]. Optical imaging is widely used in dermatology 

for high-resolution visualization of skin features. However, 

optical imaging and microscopy come with penetration depths 

of tens to a few hundreds of microns and are therefore not well 

suited for assessing dermal biomarkers [10]. Optical coherence 

tomography (OCT), is an alternative method that visualizes 

photon scattering contrast in tissues and produces high-

resolution images at penetration depths of ~1 mm. However, 

OCT lacks sensitivity to tissue chromophores [11–13]. 

Ultrasonography  has greater penetration depth, but suffers 

from reduced contrast [14]. Optoacoustic (photoacoustic) 

imaging bridges the gap between optical and acoustic imaging 

modalities. It images tissue at high resolution and specificity 

from optical contrast, while penetrating deep into the sample 

[14]. Ultra-wideband raster-scan optoacoustic mesoscopy 

(RSOM) [15, 16] has recently demonstrated high-resolution 

skin imaging by revealing different skin layers and the structure 

of the microvasculature [17, 18]. The method has been used for 

in-depth visual examination of psoriasis [5] and analysis of 

vascularization of superficial tumors [19]. Previous work [19] 

showed that detecting an extended ultrasound bandwidth 

improves imaging of fine anatomical details such as small 

vessels and capillary loops.  

The rich, three-dimensional information contained in RSOM 

images can be employed to compute skin features and 

biomarkers such as the total blood volume, the thickness of the 

epidermis and the density and the diameter of the capillary 

loops, which can, for instance, help to assess disease 

progression and identify skin inflammation [5]. However, so 

far, assessment of these imaging biomarkers has been 
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performed manually [5]. To clearly separate skin layers from 

each other and assess the thickness and structure of 

microvasculature in each layer, knowledge of the exact skin 

location in the data is required, or alternatively volumes with 

flattened skin surfaces must be generated. Accurate 

determination of the skin surface is a key remaining limitation 

that hinders the automatic detection of skin features and their 

quantitative analysis. Currently, the skin boundary is 

approximated by manual tracings performed in a few slices of 

the scanned volume. The manually assigned points on the skin 

are then used to interpolate a complete surface extending over 

the entire scanned region. This type of manual procedure is 

tedious, time-consuming, and user-dependent. Furthermore, the 

accuracy of such annotations depends on the smoothness of the 

skin surface and the number of slices selected. RSOM images 

frequently contain an uneven or tilted surface, which 

compromises the segmentation accuracy. Therefore, 

automation and standardization of skin surface detection would 

increase the accuracy and speed of RSOM image processing 

and facilitate its clinical translation. 

RSOM is most often used to image hemoglobin, so the 

images depict primarily the network of subcutaneous vessel 

structures rather than the continuous surface of the stratum 

corneum. Therefore, RSOM does not provide a closed, 

continuous, well-defined interface. The 2D maximum intensity 

projections (MIPs) of RSOM volumes usually reveal the skin 

boundary, but within the volume itself, the boundary can suffer 

from local discontinuities and low-contrast interfaces. 

An initial approach for skin boundary detection has been 

proposed for optoacoustic microscopy [20], where the skin 

location is roughly estimated by analyzing the signal 

amplitudes of each A-line, followed by outlier removal using 

regression smoothing. The resulting estimated surface is 

subjected to low-pass filtering, generating a smooth 2D skin 

profile. However, multiple smoothing steps in the extraction 

process impair the accuracy of the detection and provide only 

an estimate of the skin location. Furthermore, the algorithm 

requires two local regression smoothing steps, which are 

computationally intensive.   

A more efficient segmentation method without additional 

smoothing steps was previously proposed [21] to segment the 

fibrous cap in OCT volumes. The segmentation framework is 

based on the dynamic programming (DP) strategy and uses 

front propagation to successfully determine boundaries, even in 

signal-poor regions with ill-defined and blurred interfaces. An 

expansion of the DP-based segmentation method to 3D 

volumes has been demonstrated with sequential magnetic 

resonance imaging (MRI) [22]. First, the volume is sliced in one 

direction and an initial round of 1D front propagation is 

performed on each slice. The propagated front is not used to 

directly extract the contours; instead, the cumulative cost values 

are used to generate cost values in preparation for a second 

propagation. Subsequently, a second round of 1D front 

propagations is performed on 2D slices of the cumulative costs 

across the orthogonal direction. Although this method manages 

to detect a surface even over discontinuities of the contour, it is 

strongly direction-dependent, as it usually produces different 

results depending on the first and second directions in which the 

volumes are sliced. 

For accurate skin boundary recognition in RSOM images, a 

3D segmentation method is needed that can extract smooth 

surfaces in a direction-independent manner despite 

discontinuities and interfaces with low contrast. This method 

should work reliably and accurately without computationally 

intensive smoothing steps in order to detect the skin surface in 

RSOM volumes. 

We hypothesized that if we extended DP-based segmentation 

methods to perform front propagation in two dimensions 

simultaneously and directly extracted a 2D surface, as opposed 

to two independent 1D front propagations, then we could 

extract the skin boundary in 3D optoacoustic mesoscopic 

volumes efficiently even over discontinuities in the skin 

contour without any smoothing steps. 

In this work, we introduce a DP-based segmentation method 

using 2D front propagation in combination with backtracking 

for surface extraction. The main contribution of this work is the 

ability to extract the entire 2D surface in one step.  In order to 

properly detect the skin surface displayed in RSOM volumes, 

an RSOM-specific energy function was developed that takes 

into consideration the occurrence of RSOM-specific surface-

like artifacts as well as the discontinuous, ill-defined interfaces. 

The accuracy of the method was validated on RSOM scans of 

healthy volunteers with different skin complexions based on 

Fitzpatrick skin phototypes [23]; the automatic segmentation by 

the algorithm was compared with manual tracings. Finally, the 

robustness and the limitations of the method were evaluated by 

testing the algorithm on data with low contrast and ill-defined 

interfaces.  

II. METHODS 

In the following sections, we first give a short overview of 

the imaging modality and the challenges that need to be faced 

when extracting the skin surface. Afterwards, the general 

surface detection algorithm is outlined, before each of its 

components is explained in detail. Subsequently, the RSOM-

specific volume energy computation is described. Finally, the 

method used to evaluate the performance of the surface 

detection is outlined. 

Throughout this work, volumes and 3D tensors are denoted 

as V (bold and italic). U*V represents the 3D convolution of 

two tensors, while U∙V denotes an elementwise multiplication 

of two tensors of the same size. 

 

A. Raster Scan Optoacoustic Mesoscopy (RSOM) 

RSOM [15, 16], acquired with the ultra-broadband imaging 

systems described in [5], provides images with high resolution 

and contrast similar to optical imaging systems while being able 

to penetrate the tissue as deep as a few millimeters. Examples 

of RSOM volumes showing the vasculature in the wrist and the 

arm of a volunteer can be seen in Fig. 1 (a) and (b). RSOM 

depicts very fine anatomical structures such as 

microvasculature in superficial tissue and is therefore 

particularly suitable for dermatological applications. Those 



applications mostly either require a flattened skin surface in the 

image or knowledge of the exact skin location. A simple skin 

segmentation on the 2D MIP, either automatically or manually, 

is fast but also prone to inaccuracies. In particular, tilts along 

the projected axis can cause substantial segmentation errors. At 

the same time, manually extracting the skin in a 3D volume 

slice-by-slice is generally tedious, time-consuming, and subject 

to inter- and intra-analyst variability. Hence, an automatic 

extraction of the skin surface in a 3D volume is necessary. Such 

an approach will enable automated analysis of large amounts of 

RSOM volumes and facilitate the usage of RSOM for several 

dermatological applications. 

However, RSOM volumes do not necessarily image the skin 

surface itself but rather visualize the vasculature in the skin as 

well as the melanin layer. Consequently, they do not contain a 

smooth skin surface that can easily be extracted. Thus, the main 

challenge is to estimate the location of the skin boundary based 

on the visualized vasculature and extract a smooth surface on 

top of these irregular structures and inconsistent contours (see 

ROI 1 in Fig. 1 (c)). Additionally, the structures of the 

uppermost layer, especially the capillary loops (visualized as 

small green dots in Fig. 1 (b)), can have a very low contrast (see 

ROI 2 in Fig. 1 (d)), making it difficult to distinguish them from 

the noise above the skin. Meanwhile, lower structures such as 

prominent vessels are highly absorbent and consequently have 

a very high contrast. Therefore, they are more likely to be 

falsely detected as skin surface when using purely contrast-

based approaches. In the following, we present a method that 

automatically estimates the location of the skin surface in the 

RSOM volumes, making use of RSOM-specific properties. 

 
Fig. 1. Challenges of skin segmentation in optoacoustic 

mesoscopy. Images are shown as maximum intensity projections 

(MIPs) or 2D slices. (a, b) The skin of a healthy volunteer was imaged 

(a) on the wrist or (b) in mid-arm. Arrows indicate hair. Regions of 

interest (ROIs) are shown at higher magnification in panels (c)-(d). (c) 

Zoomed-in view of ROI 1, showing inconsistent skin contours. (d) 

Zoomed-in view of ROI 2, showing low contrast in the uppermost skin 

layer. 

 

B. Surface Detection Algorithm 

The proposed method aims to extract a surface S in a 3D 

volume 𝑽  (of size 𝑚 × 𝑛 × 𝑜 ), that passes through every 

(𝑥, 𝑦)-column of 𝑽 at exactly one 𝑧-position. Regarding 𝑽 as a 

graph with every voxel representing a node and with the edges 

connecting a voxel to its neighborhood, the surface detection 

can be seen as a single-source shortest-path problem within a 

3D graph [24]. In order to solve this task efficiently, the 

problem is split into smaller subproblems according to the 

dynamic programming strategy [25, 26]. Subsequently, the 

shortest-path problem is solved with a matrix-based approach 

[24] in a sequential manner. This method extends the 2D 

contour segmentation method using front propagation [21] by 

incorporating an additional spatial dimension. In this algorithm, 

front propagation describes an interface or "front", which 

moves or expands through the volume in an attempt to solve the 

combinatorial analysis problem by computing a shortest path 

for each voxel based on the known immediate neighborhood. 

For each voxel across the propagation directions (x,y), the 

method estimates the optimal depth (z) of the surface that best 

describe the anatomical interface. This elegant solution enables 

extraction of the unique optimal solution among all others, with 

full reproducibility and without the need to explicitly check 

each potential solution. The boundary surface is extracted by 

taking both image features and shape constraints (such as 

smoothness) into consideration.  

The surface detection is performed by finding the surface in 

the volume 𝑽 with the minimum cumulative cost 𝑪. The cost 𝑪 

is built iteratively by traversing the volume from an initial seed 

node using 2D front propagation and accumulating the energies 

of all nodes and the cost of all edges passed. The energy of a 

node is inversely proportional to the probability of it belonging 

to the surface. The cost of the connecting edges is computed 

based on the energy of both adjacent nodes and enforces the 

predefined shape constraints such as surface smoothness. In 

each propagation step, performed by moving either along 𝑥 or 

𝑦, multiple choices along 𝑧 are evaluated. Once 𝑪 is built, the 

optimal surface can be extracted by performing backtracking. 

 

C. Cost Accumulation using 2D Front Propagation 

The surface is extracted by finding the surface with the 

minimum cumulative cost 𝑪. Based on the DP strategy, the 

accumulation process is performed using 2D front propagation. 

The proposed method expands on a previously presented 

approach for 1D contour segmentation using front propagation 

[21, 22], but in our method the front is propagated 

simultaneously in an additional dimension. 

For the 2D front propagation, the volume is traversed from 

left-to-right and from back-to-front, by increasing either 𝑥 or 𝑦 

in each step. 𝑽  is depicted as a graph and each voxel 

corresponds to a node; each node is characterized by a certain 

energy given by 𝑬, and adjacent nodes are connected by edges. 



 
Fig. 2 Steps of the proposed algorithm. (a) The volume traversal 

pattern in top view. (b) The cost accumulation process in the front 

propagation step (with d = 1). (c) Volume traversal during the 

backtracking process. Solid black points indicate nodes already 

computed. 

The cumulative cost 𝑪 for each node on the (𝑥𝑖 , 𝑦𝑖)-column 

is computed based on its parent nodes in the (𝑥𝑖−1, 𝑦𝑖)-column 

and the (𝑥𝑖 , 𝑦𝑖−1) -column (see (1)). As both parent nodes 

contribute equally to the cumulative cost, their contributions are 

averaged. For the initial nodes at depth z in the (𝑥0, 𝑦0)-column, 

the cumulative cost is set to 𝑬(𝑥0, 𝑦0 , z). For the border nodes 

that have only one parent node (either 𝑥 = 𝑥0 𝑎𝑛𝑑 𝑦 ≠ 𝑦0  or 

𝑦 = 𝑦0 𝑎𝑛𝑑 𝑥 ≠ 𝑥0) , the cumulative cost is fully computed 

based on this parent node. Fig. 2 (a) shows the volume traversal 

process schematically, while Fig. 2 (b) shows the nodes 

involved for the cost computation at a single position.  

While the energy takes the features of the volume into 

account, the accumulation function 𝑪  additionally constrains 

the shape of the extracted surface by penalizing steep transitions 

along 𝑧. The cost 𝑪 for a node is computed as the sum of the 

cost of its parent nodes and the cost of the connecting edges 

between the parent nodes and the current node (as specified in 

(1)). We define the energy of an edge as the average of the 

energies of the adjacent nodes ( 
𝟏

𝟐
(𝑬(𝑛𝑜𝑑𝑒 1) + 𝑬(𝑛𝑜𝑑𝑒 2)). The 

cost of passing an edge is determined as the energy of the edge 

weighted by the vertical offset. In this way, the weighting 

factors (1 + 𝛿 ∙ |𝑖|)  and (1 + 𝛿 ∙ |𝑗|)  control the smoothness of 

the extracted surface. The parameters 𝑖  and 𝑗  represent the 

vertical offsets of the surface. The neighborhood parameter 𝑑 

defines the adjacency of a node and, thus, limits the vertical 

offset. The positive parameter 𝛿 controls the smoothness of the 

overall surface. 

When processing a given node during the front propagation 

process, the two parent nodes (i.e. that minimize C) along the x 

and y directions are stored. 

 

D. Extraction of the Optimal Surface Using Backtracking 

Backtracking starts at the ending point of the front 

propagation, the (𝑥𝑚, 𝑦𝑛)-column, and traverses the volume 

along decreasing values of x and y. The node with the minimum 

cost in the (𝑥𝑚, 𝑦𝑛)-column is the starting point of the surface. 

Starting from that node, the surface is built iteratively: the 

volume is traversed using the stored parent information, as 

shown in Fig. 2 (c). For each position (𝑥𝑖 , 𝑦𝑗) in the (𝑥, 𝑦)-

plane, the surface node is determined by a weighted averaging 

by 𝑪 of the memorized parent node of the surface nodes in  

(𝑥𝑖+1, 𝑦𝑗) and  (𝑥𝑖 , 𝑦𝑗+1). 

 

 

E. Volume Energy  

The choice of the energy computation term is essential for 

the success of the method and should be adapted according to 

the task in hand. 

Based on the properties of RSOM, we have designed an 

energy function consisting of three components: a gradient 

energy 𝑬𝑮, a surface energy 𝑬𝑺 and a noise energy 𝑬𝑵. While 

the gradient energy gives the probability of a node of belonging 

to an anatomical interface, the surface energy computes its 

probability of belonging to the uppermost surface contained in 

the volume. Additionally, the noise energy helps to distinguish 

surface-like noise structures from the actual skin boundary. 

They are explained in detail in the following sections. The 

overall energy tensor 𝑬 is then computed as the weighted sum 

of the individual energies (see (2)).  

𝑬 = α𝑬𝑮  + β𝑬𝑺  + γ𝑬𝑵 (2) 

Each of the three energies 𝑬𝑮 , 𝑬𝑺 , and 𝑬𝑵  are linearly 

normalized to a range of [0,1] and weighted according to the 

properties of the dataset. Each node in 𝑬 then represents the 

energy of the corresponding node in 𝑽. Fig. 3 shows (a) a MIP 

and (b) a 2D slice of an RSOM volume 𝑽, as well as (c) the 

corresponding slice in 𝑬. 

𝐶(𝑥, 𝑦, 𝑧) =  

{
 
 
 
 

 
 
 
 

𝐸(𝑥, 𝑦, 𝑧) 𝑓𝑜𝑟 𝑥 = 𝑦 = 0

min
𝑖 ∈ −𝑑…0…𝑑

{𝑪(𝑥 − 1, 𝑦, 𝑧 + 𝑖) + 
1

2
(𝑬(𝑥 − 1, 𝑦, 𝑧 + 𝑖) + 𝑬(𝑥, 𝑦, 𝑧))(1 + 𝛿 ∙ |𝑖|)} 𝑓𝑜𝑟 𝑦 = 0

min
𝑗 ∈ −𝑑…0…𝑑

{ 𝑪(𝑥, 𝑦 − 1, 𝑧 + 𝑗) + 
1

2
(𝑬(𝑥, 𝑦 − 1, 𝑧 + 𝑗) + 𝑬(𝑥, 𝑦, 𝑧))(1 + 𝛿 ∙ |𝑗|)} 𝑓𝑜𝑟 𝑥 = 0

min
𝑖,𝑗 ∈ −𝑑…0…𝑑

{
1

2
𝑪(𝑥 − 1, 𝑦, 𝑧 + 𝑖) + 

1

4
(𝑬(𝑥 − 1, 𝑦, 𝑧 + 𝑖) + 𝑬(𝑥, 𝑦, 𝑧))(1 + 𝛿 ∙ |𝑖|)

+ 
1

2
𝑪(𝑥, 𝑦 − 1, 𝑧 + 𝑗) + 

1

4
(𝑬(𝑥, 𝑦 − 1, 𝑧 + 𝑗) + 𝑬(𝑥, 𝑦, 𝑧))(1 + 𝛿 ∙ |𝑗|)}

𝑒𝑙𝑠𝑒

 (1) 



 

1) Gradient Energy 𝑬𝑮 

Interfaces between anatomical structures manifest as regions 

with strong intensity changes in RSOM volumes. Those 

changes can be detected by filtering the volume (see (3)) with a 

Gaussian-weighted sign kernel 𝑷  of standard deviation 𝜎  as 

defined in (4). 𝜎 determines how much a voxel’s neighborhood 

influences the computation of its energy. Large values of 𝜎 help 

to detect boundaries better even over larger inconsistencies of 

the skin contour within an image plane, as multiple image slices 

can contribute to the gradient computation. At the same time, 

excessively large values of 𝜎 can cause smaller changes in the 

skin contour to be neglected. 

𝑬𝑮 = 𝑷 ∗ 𝑽 (3) 

𝑷𝒊,𝒋,𝒌 = −𝒔𝒈𝒏(𝒌)
𝟏

(𝟐𝝅𝝈𝟐)
𝟑
𝟐⁄
𝒆
−
𝒊𝟐+𝒋𝟐+𝒌𝟐

𝟐𝝈𝟐   with  

size of 𝑷 = 𝑁 × 𝑁 × 𝑁  and 𝑖, 𝑗, 𝑘 𝜖{− ⌊
𝑁

2
⌋ , … , ⌊

𝑁

2
⌋} 

 
 

(4) 

Fig. 3 (d) shows a 2D slice of the gradient energy 𝑬𝑮. The 

higher the changes in intensities are around a voxel, the lower 

is the energy in 𝑬𝑮, meaning greater probability that it lies on 

an anatomical interface. 

 

2) Surface Energy 𝑬𝑺 

The surface energy 𝑬𝑺 takes the depth of a node into account 

and is added to the overall energy term in order to compute the 

probability that a node lies on the uppermost surface. 

𝑬𝑺 = 𝑺 ∙ (1 + 𝑺 ∗ 𝑫) (5) 

𝑺(𝑥, 𝑦, 𝑧) =  ∑𝑽(𝑥, 𝑦, 𝑖)

𝑧

𝑖=1

 
 

(6) 

𝑫𝒌 = −𝑠𝑔𝑛(𝑘)  with  
size of 𝑫

= 1 × 1 ×𝑀 and 𝑘 𝜖 {− ⌊
𝑀

2
⌋ , … ,0, … , ⌊ 

𝑀

2
⌋} 

 

(7) 

The more structures can be found above a certain voxel, the 

smaller is its probability of being on the uppermost surface 

contained in the volume. Therefore, in 𝑺 the energy of each 

voxel 𝑣𝑖 is computed by summing up all positive values above 

that voxel position (see (6)). To lower the impact of noise in 

this computation, edge detection is performed on 𝑺 (using the 

kernel specified in (7)) and is added to the energy computation 

term of 𝑬𝑺 as described in (5). An example for a 2D slice of the 

surface energy can be seen in Fig. 3 (e) (with Fig. 3 (b) showing 

the corresponding slice in 𝑽) 

 

3) Noise Energy 𝑬𝑵 

Additionally, a noise term 𝐸𝑁 is added to the energy function 

representing the probability of a voxel of belonging to the 

RSOM-specific surface-like artifacts. Mostly occurring in 

regions of low signal, those artifacts emerge as flat, continuous, 

horizontal surfaces with homogeneous signal. The signal 

around the location of the skin, however, is not homogeneous. 

It is higher for regions encompassing vessels and lower for all 

other regions of the surface. 

𝑬𝑵 = (𝜎𝑦(𝑽) + 𝜎𝑥(𝑽))  ∗ 𝑫 (8) 

𝑬𝑵 is computed based on the sum of the standard deviation 

in both 𝑥- and 𝑦-directions for each voxel (see (8)). Artifacts as 

well as purely noisy regions show intensity variations that are 

much lower than in regions containing vasculature. Therefore, 

the surface in between those regions can be computed by 

filtering the sum of standard deviations with the sign filter 𝑫 

described before (see (7)). Consequently, the skin surface has a 

low energy in 𝑬𝑵 , whereas the surface-like artifacts have a 

higher energy and, therefore, are less likely to be detected as 

skin boundary. Fig. 3 (f) shows a slice of the 𝑬𝑵  for the 

corresponding RSOM volume 𝑽 as depicted in Fig. 3 (b). 

 
Fig. 3 Visualization of the energy computation term. (a) 

Maximum intensity projection (MIP) of a 3D optoacoustic mesoscopy 

volume 𝑽. (b) 2D slice of volume along the y-axis. (c) Slice in energy 

volume 𝑬. (d) Gradient energy 𝑬𝑮. (e) Surface penalty 𝑬𝑺. (f) Noise 

𝑬𝑵. 

 

F. Performance Evaluation 

We evaluate our method using in vivo RSOM measurements, 

even though no real ground truth is available for such 

measurements. Simulated phantoms possess a ground truth but 

only depict a highly simplified scenario, and so cannot reflect 

the overall complexity of the underlying task. Generating 

realistic simulations would require extensive modeling of the 

imaging system and is out of the scope of the present work. 

Physical phantoms give a more realistic view of the problem 

but also lack a ground truth, as pressure applied to the surface 

of the phantom during scanning deforms the original skin 

boundary. Therefore, to explore the potential of our method in 

clinical settings, we chose in vivo measurements. 

RSOM scans of 19 healthy volunteers of different skin 

complexion (with Fitzpatrick skin phototypes ranging from II 

to V) were used to evaluate the performance of the surface 

detection method. All data were acquired with the volunteers’ 



consent and with approval by the Domain Specific Review 

Board (DSRB) of the National Health Group, Singapore 

(2017/00932). Each volunteer was scanned at three predefined 

positions (wrist, midarm and elbow), resulting in 57 RSOM 

volumes altogether. Two data sets had to be excluded from the 

study after visual inspection showed the skin surface to be 

corrupted and only partially visible. The final test data sets 

contained 55 volumes. 

For 11 volumes in the test data set, even manual 

segmentation was difficult, mainly due to large discontinuities 

and low contrast in the skin layer, making it difficult to 

distinguish the vascular structures in the upper skin layers from 

noise above. Nevertheless, these data were retained, classified 

as "difficult cases", in order to demonstrate the performance of 

the algorithm compared to manual segmentation. The 

remaining 44 volumes were classified as "standard cases". 

Hair in the imaged region could potentially complicate or 

even obstruct the detection process. Another factor that may 

have an impact on the detection accuracy of the algorithm are 

highly tilted skin surfaces. In order to assess the robustness and 

the limitations of the proposed method, data with hair and with 

tilted surfaces were included in the study. 

Of the 44 "standard" data sets, 12 contained hair, 11 had tilted 

surfaces and 2 contained both types of features. Of the 11 data 

sets considered "difficult", 2 contained hair, 5 had tilted 

surfaces and 2 contained both types of features.  

Each volume had a size of 125×75×250 voxels with a 

definition of 40×40×8 μm.  

1) Manual Ground Truth Generation 

There is no established method to estimate the skin position 

in RSOM volumes. Therefore, we used manual tracings of the 

skin boundary as the gold standard to evaluate the performance 

of our method. For each volume 𝑽, three 2D image slices in the 

𝑥-direction and three slices in the 𝑦-direction were randomly 

selected. In each image slice, the reference contour was 

generated to fit the skin contour by an experienced analyst. The 

manual task consisted of sequentially positioning control points 

to build a piecewise-interpolated polynomial. 

2) Automatic Segmentation 

The surface detection algorithm was applied to the RSOM 

volumes using a fixed set of empirically determined parameters. 

The neighborhood parameter 𝑑 = 3  and the smoothness 

parameter 𝛿 = 0.2  were fixed for all volumes, as the 

smoothness constraints for all surfaces in the datasets were the 

same.  The parameters for the energy computation should be 

chosen based on the quality and the information content in the 

data. They can either be tuned for each data set to get the best 

possible output, or be fixed a priori based on a small set of 

representative training data. Since tuning parameters can be 

difficult and time-consuming, especially in clinics, we chose to 

focus on a fixed set of weights. For the given data, we 

empirically determined the weighting parameters (α = 3, β = 2, 

γ = 1) while giving the gradient energy the greatest importance 

and the noise energy the least. A standard deviation 𝜎 = 3 was 

defined for the Gaussian in the gradient energy computation.  

In average cases, the weight α of the gradient energy, which 

emphasizes interfaces between anatomical structures, should be 

higher than the weights for the other energy components. When 

the skin boundary itself has low contrast, α should be increased. 

β weights the surface energy, which represents the probability 

that a voxel belongs to the uppermost surface. When prominent 

high-contrast structures can be found in deeper tissues, β should 

be increased. For its part, γ weights the noise energy, which 

prevents the algorithm from misclassifying surface-like 

artefacts as skin boundary. In cases with highly prominent 

surface-like noise structures, γ should be increased. When the 

contained surfaces are highly tilted, the noise energy does not 

contribute much and, therefore, can be set to 0. σ should be 

chosen depending on the extent of inconsistencies.  Larger 

values of 𝜎  help to improve the surface detection even over 

larger inconsistencies, while at the same time smaller changes 

in the contour might get neglected. 

 

 

3) Accuracy Evaluation 

The performance of the proposed surface detection method 

was assessed by comparing it with manual segmentations. Each 

point 𝑝𝑚
(𝑖)

 on the manually traced contours was compared to the 

corresponding point 𝑝𝑎
(𝑖)

 in the automatically detected 

boundary surface with the same (𝑥, 𝑦)-position using the mean 

absolute error (MAE) ± standard deviation and the maximum 

error.  

An additional examination of the inter- and intra-analyst 

variability in the manual segmentation was performed to 

demonstrate the reliability of the ground truth used for the 

accuracy evaluation. Three analysts (A1, A2, A3) – one with 

limited, one with intermediate and one with extensive 

experience in RSOM image analysis – independently 

segmented a predefined random subset of the dataset (𝑛 =
 10 ). The analyst with limited experience, A1, had been 

working with optoacoustic data for only a short period and had 

never previously performed manual skin segmentation. The 

highly experienced analyst A3 had been analyzing optoacoustic 

datasets on a daily basis for several months and had regularly 

performed manual skin surface segmentations. All analysts 

were given the same information about the imaging modality, 

the visual appearance of skin in RSOM data and the task to 

perform. Additionally, all of them were instructed in the same 

way and were given the opportunity to test the manual 

segmentation on the same example data sets prior to the actual 

segmentation. The mean absolute error (MAE) ± standard 

deviation was computed from the maximum difference between 

each 𝑝𝐴1
(𝑖)

, 𝑝𝐴2
(𝑖)

 and 𝑝𝐴3
(𝑖)

 , and this MAE was used as a measure 

of inter-analyst variability in manual segmentation. To assess 

intra-analyst variability, the highly experienced analyst 

manually segmented the same dataset two more times at 

intervals of 24 h, and the same metrics were computed.  

III. RESULTS 

We tested our algorithm by applying it to RSOM datasets 

from the volar forearm of healthy volunteers (n = 55). Most of 

the datasets, referred here to as "standard cases" (n = 44), were 

expected to involve less challenging contour segmentation 



because the contours were continuous and lay in regions of the 

image where the signal-to-noise ratio was relatively high. To 

test the robustness of the algorithm, we also used datasets 

termed "difficult cases" (n = 11), where we expected contour 

segmentation to be more difficult because of large contour 

discontinuity or poor contrast for the skin boundary, making 

these cases difficult even for manual segmentation. We applied 

our automated algorithm to both types of cases and then 

assessed the contour segmentation as "successful", "semi-

successful" or "failed" based on qualitative visual analysis of 

the results (Table 1). If the algorithm detected the actual skin 

boundary, the segmentation was categorized as successful. If 

the detected surface followed the pathway of the skin boundary, 

but instead of the uppermost layer, a lower layer was detected, 

the result was categorized as semi-successful. In all other cases, 

results were categorized as failed.  
 

Case Hair Tilt n 

Segmentation results* 

Success

ful 

Semi-

successful 
Failed 

Standard   19 17 2  

yes  12 9 3  

 yes 10 9 1  

yes yes 3 2  1 

Difficult   2  2  

yes  2 1 1  

 yes 5 2 1 2 

yes yes 2   2 

   55 40 10 5 

* See text for evaluation criteria 

Table 1. Performance of the automated contour segmentation 

algorithm with RSOM data from healthy volunteers. 

Fig. 4 shows successful segmentation results of the proposed 

method on two data sets, both in the volume (Fig. 4 (a), (c)) and 

in a selected 2D slice (Fig. 4 (b), (d)) of the volume. While no 

smoothing was performed by the algorithm itself, we did 

smooth the surface purely for visualization purposes, after we 

had quantitatively analyzed its accuracy. The 2D slices clearly 

depict how the extracted boundaries cover the subcutaneous 

vasculature, on horizontal as well as tilted surfaces.  

Overall, the detection algorithm successfully detected the 

skin surface in 40 of 55 volumes (~73%) examined, even 

though 12 of the 40 volumes contained local inaccuracies due 

to noise, artifacts resembling surface structures, or hair (8 

volumes). The segmentation results were classified as semi-

successful in 10 volumes. A comparison of the manual skin 

tracings and the automatic detection for the complete test data 

set, excluded the failed data sets, resulted in an MAE of 52.6 ± 

26.6 μm (equivalent to an average offset of 7 ± 3 voxel) and an 

average maximum error of 122.3 ± 59.3 μm (equivalent to an 

offset of 15 ± 7 voxel). An MAE of 40.6 ±13.5 μm was achieved 

in the successful segmentation cases.   Fig. 5 (a) shows that most 

cases showing high error were also categorized as "difficult 

cases" during manual segmentation. At the same time, the 

algorithm managed to segment the surface in some of the 

difficult data sets at similar locations as the human analyst.  

 

 
Fig. 4. Examples of successful segmentation of skin from RSOM 

data. These were standard cases without hair (first and third row of 

Table 1). (a, c) 3D volumes including the estimated skin layer. (b, d) 

2D slices of the volumes in panels (a) and (c), respectively, including 

the estimated skin contour. 

Table 2 compares the performance of the automatic 

segmentation with manual segmentation in light of inter- and 

intra-analyst variability during the manual process. The manual 

tracings of one analyst were similar over multiple executions, 

while differences between segmentations by different analysts 

were almost twice as large. The average difference of the 

automatic method was slightly greater than the inter-analyst 

variability. 

 
Table 2. Inter- and intra-analyst variability* 

 Difference (in μm) 

Mean absolute 

error 

Average maximum 

difference 

Inter-analyst 

variability  

(A1, A2, A3) 

30.8 ±   8.0 88.9 ± 49.0 

Intra-analyst 

variability (A3) 

15.8 ±   4.1 55.8 ± 24.7 

Auto vs. Analysts**  49.4 ± 18.1 126.5 ± 103.2 

* computed by comparing manual segmentations of 10 randomly 

selected data sets with the corresponding automatic segmentation 

** For 9 datasets after exclusion of one failed segmentation. 

 



 

Fig. 5. Distribution of automatic segmentation results according 

to errors in voxels. Criteria for deciding whether segmentations were 

successful, semi-successful or failed are given in the text. "Difficult 

cases" (empty circles) refer to datasets containing large discontinuities 

and a highly diffuse surface layer, which made manual boundary 

detection extremely difficult. (a) Mean absolute error in comparison to 

the maximum error in each case. (b) Distribution of segmentation error 

in each Fitzpatrick phototype. 

Fig. 6 (a) and (b) illustrate how hair can compromise the 

accuracy of the segmentation. While the algorithm successfully 

managed to separate the actual skin boundary from the hair 

perpendicular to the surface (Fig. 6 (d)), the hair running more 

parallel to the skin was classified as part of the surface (Fig. 6 

(c)). Even though this segmentation met our criteria of success, 

it is clear that hair can compromise the detection accuracy. Hair 

lying close to the skin is particularly difficult to distinguish 

from the skin surface and is likely to cause inaccuracies in 

surface detection. 

A frequent cause of semi-successful segmentation was when 

the uppermost layer showed diffuse contours, the skin boundary 

was predominantly discontinuous, and low-contrast 

subcutaneous structures were present. Fig. 6 (f) and (g) show 

that in such cases, the proposed method tended to classify the 

superficial subcutaneous structures as noise and identified the 

skin boundary as lying in a lower, less diffuse skin layer with 

increased contrast. Even during manual segmentation, such 

cases often required manual thresholding of the data in order to 

distinguish noise from subcutaneous structures. 

The algorithm failed entirely to identify a skin boundary in 5 

volumes, and the actual skin surface in all these cases was 

 
1  See also Supplementary Table 1 for a more detailed breakdown of the 

segmentation accuracy when using tuned parameters as opposed to fixed ones. 

highly tilted. In addition, most of these cases contained ill-

defined skin layers and large discontinuities in the skin 

contours, leading them to be classified as "difficult cases" 

during manual segmentation. 

 

 
Fig. 6 Situations in which the automated algorithm did not 

segment contours well from RSOM data. Segmentation was 

inaccurate for volumes containing hair (a-d) and skin layers with low 

contrast (e-g). (a, e) 3D volumes. (b, f) The same 3D volumes as in 

panels (a) and (e), overlaid with the estimated skin layer. (c, d, g) 2D 

slices, with the estimated skin contour shown as a white line. The two 

2D slices in the upper row (c, d) show the two different effects hair can 

have on the segmentation. The insets show the location of the 2D slices 

in the respective volume. 

For cases with inaccuracies (n = 12), we additionally 

examined whether tuning the initial parameters based on the 

data quality and content (as explained in section II.F.2) would 

improve the segmentation accuracy. The initial segmentation 

was visually assessed, then manually tuned where judged 

necessary. This manual refinement improved the visual results 

in 9 datasets1. Manual tuning eliminated local inaccuracies from 

6 volumes and reduced them in the other 3 volumes. The MAE 

of successful segmentations was reduced to 38.8 ± 14.4 μm. 

The Fitzpatrick skin phototype and consequently the skin 

complexion and the melanin content in the skin did not seem to 

play a significant role in the segmentation process, at least for 

the phototypes investigated in this study. The distribution of 

successful and failed segmentations was similar across the 

different Fitzpatrick values. Fig. 5 (b) demonstrates the 

distribution of segmentation error over the different phototypes. 

A pairwise comparison of the error distribution in each 

Fitzpatrick scale with Student’s t-test upholds the null 

hypothesis (with 𝑝-values > 0.3) and, thus, shows that skin 

complexion did not have a significant impact on the 

segmentation accuracy. 

An important characteristic of our method is its direction-

independency, since it considers all possible solutions (ie. the 

candidate z-coordinate of the surface during its propagation 

Supplementary materials are available in the supplementary files. 



along both x and y directions), without taking any final decision 

before the full volume has been interrogated. In contrast, the 

Cheng and Lin method [22] first calculates an intermediate map 

based on propagation along one direction only (x or y) and then 

uses this map as a priori information to generate the final map 

(namely, by propagating along the other spatial direction). This 

two-step method may provide different results depending on the 

order of propagation directions. In our approach, however, a 

single propagation takes place simultaneously along both 

spatial directions, so information along x and y is 

simultaneously considered in order to solve the problem. The 

final decision of determining the optimal surface is therefore 

taken only after the full volume has been assessed, thereby 

providing a unique solution.2 

 

IV. DISCUSSION  

In this work, a method to extract the skin surface in RSOM 

volumes was presented. It follows the DP strategy and detects 

the surface in one step using front propagation with subsequent 

backtracking. This work extends previous studies on contour 

segmentation by introducing a way to perform front 

propagation in two dimensions simultaneously (as opposed to 

one after the other) and, therefore, segmenting a surface instead 

of multiple contours. Thus, our method is direction-independent 

and yields a unique result, as opposed to methods performing 

front propagation in one dimension after the other [22], which 

may generate different segmentations depending on the order 

of directions. Furthermore, it provides a way to extract the skin 

boundary depicted in optoacoustic mesoscopy by presenting a 

domain-specific energy function that takes the properties of the 

imaging modality into account, such as surface-like artifacts. 

Replacing the RSOM-specific energy function with an 

appropriate application-specific energy function may allow our 

approach to be applied to any surface detection task in 

numerous biomedical imaging contexts and with other imaging 

modalities. 

The proposed method was evaluated against 2D manual 

annotations of in vivo measurements. While no real ground 

truth is available for such measurements and the manual 

tracings that serve as the basis for the evaluation are subjective, 

they give the best overview of the capabilities and limitations 

of the method. Simulated phantoms possess a ground truth but 

depict only a highly simplified scenario, whereas physical 

phantoms show a more realistic scenario, but lack ground truth 

due to deformations during the scanning process. Therefore, 

despite the lack of a real ground truth, we chose in vivo 

measurements with manual tracings for evaluation to assess the 

clinical translatability of our method. These manual reference 

tracings, however, are predisposed to error and inter-observer 

variability. In particular, the location of the skin boundary often 

can only be estimated based on the location of subcutaneous 

vasculature; as a result, different users may segment the same 

 
2 See Supplementary Fig. 1 for a comparison of the direction-(in)dependency 

of both methods. Supplementary materials are available in the supplementary 

files. 

surface differently, and this can even be true of the same user 

segmenting the surface at different points in time. This is 

particularly true for regions with discontinuities. During 

manual segmentation of these areas, the contour is estimated by 

interpolating the information contained in the neighboring 

regions along one dimension, whereas information along the 

other dimension is neglected, which can cause inaccuracies. 

The proposed method, in contrast, extracts the skin surface by 

taking the information contained in the whole volume into 

account. It always delivers the same result for the same volume 

and same parameter values.   

Furthermore, taking the axial resolution into account, the 

MAE of 53 ± 27 μm is equivalent to a segmentation offset of 

around 7 ± 3 voxels with respect to manual segmentation. This 

error for automatic segmentation is small compared to human 

error and variability of nearly 4 ± 1 voxels in the reference 

segmentations. 

Even though the proposed 3D boundary detection method 

was developed for the extraction of the skin surface in RSOM 

volumes, 2D front propagation can be used for various open 

surface detection tasks in different image modalities. The 

general method is universal; solely the computed volume 

energy is RSOM- and task-specific. By changing the energy 

function according to the task in hand, the method can be 

applied to other surface detection problems as, for instance, the 

segmentation of arteries in volumetric intravascular ultrasound 

images in polar domain [27, 28].  

The surface extraction is fast and efficient. Once the volume 

energy is computed, the processing time for the extraction itself 

is only linearly dependent on the volume size and the chosen 

neighborhood parameter d with an overall complexity of 

𝑂(𝑚𝑛𝑜𝑑) . In the present study, the surface detection took 

around 2.3 sec per volume, with the energy computation 

consuming up to 75% of the time3. Our method, hence, has 

faster processing times and requires less human interaction than 

manual tracing, which can take 2-5 min even when performed 

on only a few volume slices. Previous methods, such as the 

algorithm presented by Cheng and Lin [22] take up to 5 seconds 

(after adaptation to RSOM segmentation), as they require two 

propagations through the volume. 

Unlike previous approaches, the segmentation is not 

performed slice-wise or even per A-line with subsequent 

smoothing or interpolation. Instead, information contained in 

the entire volume simultaneously contributes to the surface 

detection. Subsequently, the boundary surface is extracted in 

one pass, without requiring any smoothing or interpolation of 

piecewise extracted results. 

While in our study it was not needed, the algorithm in general 

allows the user to constrain the smoothness of the extracted 

surface by choosing δ accordingly, if required. However, 

enforcing increased smoothness results in lower accuracy of the 

segmentation. The better the energy function is designed for a 

given task, the better the detection works. Hence, the choice of 

3 See Supplementary Table 2 for a comparison of execution times for different 

processing steps and different segmentation methods and their substeps. 

Supplementary materials are available in the supplementary files.  



the initial parameters α, β and γ is critical for the outcome of the 

segmentation and should be done based on the task in hand and 

content and quality of the overall data. In this sense, the 

proposed surface extraction method is not fully automatic but 

semi-automatic for the case of skin surface detection in RSOM, 

as it requires selection of the weighting parameters for the 

energy computation based on the task at hand. Furthermore, 

data quality is an essential criterion for the success of the 

segmentation. Poor image quality, increased noise level and, 

especially, a poor-quality skin boundary can obstruct the 

extraction process and cause inaccuracies or even failure in 

extreme cases.  

In conclusion, the location of the skin surface is essential 

information for automatic analysis of dermatological 

biomarkers in RSOM volumes. A 3D surface segmentation 

method to extract the skin boundary is proposed. Based on 

dynamic programming, the approach localizes the skin 

boundary even over discontinuities and diffuse interfaces, 

producing faster and more reproducible results than manual 

segmentation. Hence, this method represents the first step 

towards a more automated approach to analyze biomarkers in 

skin tissue and deliver diagnoses, which in the long term can 

help establish RSOM as a diagnostic tool in clinical settings. 
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