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1. INTRODUCTION 

Raster scan optoacoustic mesoscopy (RSOM) is evolving as a powerful alternative for non-invasive, 

high-resolution three-dimensional imaging of skin features based on optical absorption contrast. The technique 

can resolve epidermal and dermal features, including microvasculature, at resolution-to-depth ratios that go 

beyond optical coherence tomography (OCT)1. For example, OCT in the visible range2,3 can image vascular 

networks non-invasively to depths of only ~400 μm4-6. As an alternative, high-frequency ultrasound can resolve 

microvasculature to depths of several millimeters. However, visualizing vessels with diameters smaller than 100 

μm using this method requires microbubbles as contrast agents7, which makes it challenging to apply in humans.  

   RSOM offers advantages of non-invasiveness and penetration depth over all these methods. For best 

performance, RSOM should be performed using ultra-wideband (UWB) detection, spanning a range of 200 

MHz8. UWB-RSOM can generate high-resolution images of neovascularization in a growing tumor 9, visualize 

neovascularization in neoplastic gastrointestinal tissues 10, and observe clinically relevant features of the skin 

microvascular structures11-12. For this imaging technique to be clinically relevant, it is necessary to accurately 

define the regions and subregions of tissue in the field of view10,13. For example, skin images should be 

annotated to indicate the boundaries of epidermis, dermis, and, within the dermis, the areas that have a dense 

microvascular structure (herein referred to as the vascular plexus), since identifying particular features in each 

of these subregions may facilitate disease diagnosis and assessment of its severity8. 

So far, skin layers in UWB-RSOM images have been manually segmented by visual inspection of vasculature 

morphology or automatically based on signal intensity levels. Such procedures are slow or inaccurate and 

unsuitable for processing larger numbers of patients or for making clinical decisions during the patient's visit. 

Manual segmentation is also subjective and compromises the reproducibility and robustness of UWB-RSOM as 

a clinical tool.  
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Purpose: Identification of morphological characteristics of skin lesions is of vital importance in 

diagnosing diseases with dermatological manifestations. This task is often performed manually or in an 

automated way based on intensity level. Recently, ultra-broadband raster-scan optoacoustic mesoscopy 

(UWB-RSOM) was developed to offer unique cross-sectional optical imaging of the skin. A machine 

learning (ML) approach is proposed here to enable, for the first time, automated identification of skin 

layers in UWB-RSOM data. 

Methods and materials: The proposed method, termed SkinSeg, was applied to coronal UWB-RSOM 

images obtained from 12 human participants. SkinSeg is a multi-step methodology that integrates data 

processing and transformation, feature extraction, feature selection and classification. Various image 

features and learning models were tested for their suitability at discriminating skin layers including 

traditional machine learning along with more advanced deep learning algorithms. An SVM-based post-

processing approach was finally applied to further improve the classification outputs. 

Results: Random forest proved to be the most effective technique, achieving mean classification 

accuracy of 86.89% evaluated based on a repeated leave-one-out strategy. Insights about the features 

extracted and their effect on classification accuracy are provided. The highest accuracy was achieved 

using a small group of 4 features and remained at the same level or was even slightly decreased when 

more features were included. Convolutional neural networks provided also promising results at a level 

of approximately 85%. The application of the proposed post-processing technique was proved to be 

effective in terms of both testing accuracy and 3D visualization of classification maps. 

Conclusions: SkinSeg demonstrated unique potential in identifying skin layers. The proposed method   

may facilitate clinical evaluation, monitoring and diagnosis of diseases linked to skin inflammation, 

diabetes and skin cancer. 
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Machine learning (ML) has ushered in new possibilities for automated image processing and diagnostic 

imaging14-16. Intelligent algorithms are expected to speed up clinical workflows and improve diagnostic 

accuracy and sensitivity. They can identify risk factors in medical images and provide a basis for quantitative, 

less subjective decision-making. ML has yet to be applied to the segmentation of UWB-RSOM images.   

Here we examined the feasibility of using ML to identify skin layers automatically in cross-sectional UWB-

RSOM images. We developed a multi-step method, termed SkinSeg, that integrates deterministic feature 

engineering and ML algorithms. Feature engineering is a fundamental term widely used in ML and refers to the 

process of using domain knowledge of the data to create features. The feature engineering part of SkinSeg 

involves data processing and transformation, feature extraction and feature selection. Various image features 

and ML models were tested for their suitability at discriminating skin layers. Deep learning was also 

investigated in two different ways: (i) well known pre-trained models were employed for extraction of deep 

features from the collected UWB-RSOM images and (2) CNN models were also trained to classify skin layers 

directly using the collected images as inputs skipping the feature engineering part of the methodology . The best 

performing classifier was selected, and a post-processing approach was finally applied to further improve the 

classification outputs. 

    The main contributions of this paper can be summarized as follows. The paper contains original content in the 

first ever application of learning empowered solutions on a very promising imaging technology (UWB-RSOM) 

in the task of skin morphology identification, facilitating extraction of new quantitative means for measuring 

skin and disease landmarks. Traditional machine learning approaches along with more advanced deep learning 

ones were employed to implement the classification task, whereas a novel post-classification technique was 

proposed being tailor made on the particular skin layer identification problem.  

The rest of the paper is organized as follows. In Section II, we present the SkinSeg methodology. Section III 

describes the classification results achieved when various classification models, feature selection and post-

processing were used. Section IV discusses the results, the significance of the extracted features and their effect 

on the classification results. 

 

 

2. MATERIALS AND METHODS 

2.A. Imaging System 

We used an RSOM system developed in-house8 (Figure 1) with a custom-made, spherically focused 

ultrasound detector (50 MHz central frequency, 10-120 MHz bandwidth, 3 mm focal distance, and f-number 

~1)1,8. The collected signals were amplified by a low-noise amplifier (63 dB, AU-1291; Miteq, Hauppauge, NY, 

USA), then sampled by a high-speed data acquisition card (1 GS/s; CS121G2, Dynamic Signals, Lockport, IL, 

USA). The region of interest was illuminated by a fast nanosecond laser at 532 nm (0.9 ns pulse width, 2 kHz 

maximum pulse repetition frequency, and 1 mJ max pulse energy; HB532, Bright Solutions, Cura Carpignano, 

Italy), which was coupled to the scanning head through a customized fiber bundle. To scan the region of 

interest, the detector and fiber bundle were attached to a motorized x-y stage. The motorized stages scanned a 

region of 4 × 2 mm2 in step sizes of 7.5 µm along the x-axis and 15 µm along the y-axis. These step sizes were 

chosen to satisfy the Nyquist criterion, maximize the signal to noise ratio, and minimize the scanning time. The 

scanning head was attached to an articulated arm to facilitate accurate positioning over the region of interest. 

2.B. Data collection, reconstruction and labelling  

A total of 12 participants (9 males and 3 females, mean age, 58 yr; range, 27-88 yr) were imaged using UWB-

RSOM at two locations in the lower anterior shin area. Signals were corrected for motion17 and then filtered into 

two sub-bands (14-40 and 40-120 MHz), which were reconstructed separately using a delay-and-sum algorithm 

with a dynamic aperture1. Frequency banding prior to reconstruction can improve the signal-to-noise ratio of 

smaller structures that would otherwise be masked by larger structures1. Reconstruction was performed using 

voxels of 10 × 10 × 3 µm3. The reconstructed RSOM dataset for each measurement was a 3-D matrix of size 

333×171×Nz pixels, where Nz varied between 300 and 600. The skin surface was identified as described then 

flattened to facilitate visualization of the different layers1-2. Imaging depth varied with the perfusion state of the 

skin and dermis thickness at the imaging site.  

The different coronal layers (z-slices in the x-y plane) of the RSOM dataset were assigned to one of 4 

classes: C1, dead zone, where no biological tissue was present; C2, epidermis; C3, vascular plexus; and C4, 

deeper structures. The depth ranges for each class were defined manually based on visual observation. 

Specifically, the second author visually examined the 3D volumes and assigned segment boundaries, according 

to his extensive experience with RSOM data and the typical image textures of different skin segment. This class 

assignment was performed separately for low- and high-frequency data.  
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Each x-y slice of the 3D image volume was split into sub-images following a sliding-window approach. A 

window of 100 × 100 pixels was scanned laterally over each x-y plane (row of 3D image) with a step of 50 

pixels, producing 10 partially overlapping sub-images of 100 × 100 pixels per row (Figure 2). The window size 

was a compromise to generate a sufficiently large number of samples while remaining large enough to provide 

sufficient textural information. In this way, we acquired 39,100 sub-images, each of which was assigned to 

classes C1-C4 (Table I). 

 

Figure 3 shows indicative images reconstructed with only high- or low-frequency data, along with images 

reconstructed with all data, with each image assigned to one of the 4 classes. Figure 3 leads to several 

observations: (i) deep structures appear darker than structures from epidermis (C2) or vascular plexus (C3); (ii) 

a specific textural pattern of the epidermal layer is visible in panels a), d) and i) that make the class C2 more 

easily identifiable; and (iii) a thin layer of the dermal vasculature is visible in C3 images of vascular plexus. 

Images reconstructed with low-frequency data appear less informative than images reconstructed with high-

frequency data. Best are images reconstructed using data from both frequency bands which reveal fine spatial 

details together with lower-resolution skin structures. Therefore, images reconstructed with both low- and high-

frequency data were used to train the ML algorithm to identify and extract features.  

2.C. ML methodology 

The dataset of 39,100 sub-images was split into training and testing sets using a repeated leave-one patient-

out mechanism. Two feature extraction approaches were followed: (a) Traditional feature engineering: In the 

training phase, 29 features were generated from each sub-image of the training dataset. Feature selection was 

applied on the obtained feature set to (i) identify the most informative features, (ii) reduce the complexity of the 

classification models and (iii) improve the performance of the classifiers. (b) Deep feature extraction: using 

pretrained CNN models. Various classification models were applied to both the entire feature set and the subset 

of selected features. The best model was selected based on overall classification accuracy and the confusion 

matrix. Convolutional neural networks were also investigated as an alternative deep learning approach. 

Subsequently, this best fitted model was used to predict the responses for the sub-images in the testing dataset. 

The classifier model was deployed using the selected features assigning each testing sub-image to one of the 

four classes (biological layers). 

2.C.1 Feature extraction and selection  

Traditional feature engineering: Three first-order statistical parameters (maximum, minimum and standard 

deviation) were calculated to estimate properties of individual pixel values from the low- and high-frequency 

bands. Four gray-level co-occurrence matrix (GLCM) features (contrast, correlation, energy and homogeneity)18-

19 were also computed from both frequency bands to capture textural information and characterize the spatial 

variations and relationships between voxels within an image. Using 2D fast wavelet transform (FWT)20, a two-

level wavelet decomposition was performed on the image samples. At the first level analysis, four new sub-

images were formed containing coefficients for approximation (LL1), horizontal detail (LH1), vertical detail 

(HL1), and diagonal detail (HH1). At the second level, the approximation sub-image LL1 was further 

decomposed to coefficients for LL2, LH2, HL2 and HH2. Finally, total energy measures were calculated from 

the associated wavelet coefficients of LL2, LH1-2, HL1-2 and HH1-2, generating seven features per frequency 

band.  This energy distribution from FWT provides a detailed description of the frequency content of an 

image21-22. Table II summarizes the 29 features extracted: 14 came from each frequency band, in addition to 

depth (row index).  

 The efficient feature selection method SVM-FuzCoC23-24 was applied to these features to select an 

informative, non-redundant feature subset. This method can provide a reasonable trade-off between accuracy 

and computational complexity23.  

Feature extraction using pre-trained deep learning models: The pre-trained models ResNet5025 and AlexNet26 

were also employed for extracting deep features directly from the sub-images. The 100×100 pixels sub-images 

were resized to match the input size requirements of the deep learning models (224×224 for ResNet50 and 

227×227 for AlexNet). AlexNet is a convolutional neural network that is trained on more than a million images 

from the ImageNet database. It consists of a total of 23 layers, whereas 3 of them are fully connected layers 

represented as FC6, FC7, and FC8 consisting of 4096, 4096 and 1000 features, respectively. These fully 

connected layers learn higher level image features and are better suited for image recognition tasks. FC6 and 

FC8 were used in SkinSeg for feature extraction. Due to the large number of extracted features, principal 

component analysis (PCA) was applied to reduce feature dimensionality. The first ten principal components 

were finally selected. ResNet50 is a 50-layer trained on the entire ImageNet 2012 classification dataset. The last 

fully connected layer of the network (FC1000) was used to extract 1000 deep features from each subimage.  

Similarly, PCA was also employed to reduce feature dimensionality to 10 features per sub-image. Overall, the 

following three configurations were employed: (i) Pre-trained AlexNet (using fully connected layer fc6) 
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followed by PCA. (ii) Pre-trained AlexNet (using fully connected layer fc8) followed by PCA. (iii) Pre-trained 

ResNet (using fully connected layer fc1000) followed by PCA.  

 

2.C.2 Classification 

Several algorithms were evaluated for classification of sub-images to specific biological layers. Given the 

relatively small dimensionality of the task (29 features), we tested linear discriminant analysis (LDA)27 to 

provide a baseline for comparisons with more advanced models. We also evaluated decision trees28-29 driven by 

Gini’s diversity index, KNN (k=1) and weighted KNN30  (k=10), as well as linear and non-linear support vector 

machines (SVM) algorithms31-32, which can deal with the curse of dimensionality that typically appears in high-

dimensional spaces. The ensemble techniques AdaBoost33, Random Forest34 and RUS-boost35 were also 

evaluated using LDA models as weak learners. A neural network36 with 3 hidden layers was evaluated, and the 

number of nodes per layer was varied. For this neural network, rectified linear units (ReLU) were chosen as the 

optimum activation functions, and the adaptive moment estimation (Adam) optimizer was selected for its fast 

convergence rate. Adaptive learning rate37 was adopted here with a frequency step of 10 epochs. Batch size was 

512.  

 The entire dataset was split into two subsets: a training/validation dataset (comprising data generated by 10 

subjects) and a testing dataset (data from the remaining 2 subjects): 

- Validation (29100 samples):  A repeated leave-one-out cross validation (LOOCV) schedule was implemented 

on the first dataset to validate the classifiers employed and select the optimal hyperparameters. Specifically, the 

entire data obtained from a participant was held out for evaluation, whereas the remaining datasets from the rest 

9 participants were used for training. This process was repeated 10 times (once for each one of the 10 

participants of the training/validation set) leading to 10 non-overlapping holdout testing sets, and the resulting 

accuracies were averaged. The LOOCV mechanism was iterated through a wide range of hyperparameter 

combinations and the set of parameters for which LOOCV reports the highest accuracy was finally selected per 

model. The selected hyperparameters of all ML models are given in Table IV. 

- Testing (10000 samples): The finetuned classification models (using the selected hyperparameters) were 

finally validated on the testing dataset.  

Deep learning was also employed as an alternative approach to the problem of skin layers recognition. 

Convolutional Neural Networks36 were trained directly on the extracted sub-images skipping the feature 

engineering part of SkinSeg. Different networks configurations were tested with respect to their classification 

capability. Due to CNN increased complexity, LOOCV was just performed once splitting the training/validation 

dataset into two sets: the training set (subimages generated from 9 participants) where the CNN models were 

applied and the validation set (subimages generated from 1 participant). In total, 65 network configurations were 

investigated and the one that maximized the validation accuracy was selected. Table III presents the 

characteristics and hyperparameters of the best CNN architecture that was finally selected. The selected CNN 

model was tested on the same testing dataset as described above. 

     The ML algorithms were implemented on a CPU using MATLAB 2017b (Version 9.3). Deep neural 

networks were developed using the MATLAB-based deep learning framework LightNet38. 

2.C.3 Post-processing  

Given that the class ordering is a-priori known and that the four skin layers are non-overlapping, an SVM-

based post-processing algorithm was applied to further improve the classification outputs of the best model. The 

proposed algorithm is presented below:  
 

Step 0: The outputs (labels) of the best classifier on the testing data are considered as inputs of the post-processing 

algorithm.  
 

Step 1: Find the most frequent label per row of the 3D image and generate a label vector L={li}, where li the most frequent 

label at row i, i=1,…,Nz and Nz: number of rows in the 3D image. 
 

Step 2: For c = 1… (Nc – 1), where Nc is the number of classes 
2.1 Gather labels belonging to classes c and c+1 and construct sets Sc={li,c}  and Sc+1={li,c+1} , where li,c and li,c+1 are the labels from L 

belonging to classes c and c+1, respectively.  

 2.2 Train a linear SVM to separate sets Sc and Sc+1 

2.3 Update those labels in L that belong to sets Sc and Sc+1 according to the outputs of the SVM classifier, 

 End of loop 
 

Step 3: Set li all the labels at the row i of the 3D image. Repeat for all rows of the 3D image. 

 

The proposed classification methodology produces one decision (label) per sample (sub image at x-y). 

Applying classification on all the samples generates a number of labels spatially distributed in the z axis (depth). 

However, we already know that skin layers are non-overlapping and the classes are ordered as follows: 1-2-3-4. 

The decisions (labels) obtained from the classifier typically overlap leading to mixed skin layer.  Applying any 

linear classifier on the spatially distributed decisions (1-dimensional space) would lead to non-overlapping 
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classes. Non-linear classifiers were avoided since they would lead to more complex and overlapping class 

separations. Among the existing available linear classifiers, linear SVM was preferred given that: (i) it is a 

powerful classifier, one of the most effective, (ii) it provides a  generalised class separation maximizing the 

margin between the adjacent classes and thus leading to the optimal linear separating hyperplane and (iii) it is 

fast when implemented in low dimensional spaces (1D here). Figure 4 shows a graphical example of the 

application of the proposed post-processing in a three-class classification problem. The algorithm was 

experimentally validated in Section III.   

 

2.C.4 Visualization of classification outputs  

Three-dimensional classification maps were generated from the classification decisions of the best model 

after the application of post-processing. A pixel-based approach was used in which a neighborhood (100 × 100 

pixels) was considered around each testing pixel across the x-y plane (Figure 2), then the classification algorithm 

was applied to the extracted sub-image and a decision was made. The generated decision was finally updated (if 

needed) by the post-processing unit. The decision was expressed as an integer scalar that declares the biological 

structure/layer (class) assigned. Next, the value of the testing pixel was replaced with the class number, and a 

color was assigned to it. This process was repeated for all the pixels in the 3D image, and a 3D classification 

map was generated in which skin layers were depicted in different colors.  

 To simplify the computations, the testing data were sub-sampled by selecting 10 pixels per row of the 3D 

image, resulting in the extraction of 10 overlapping areas of 100 × 100 pixels per row. The proposed ML 

methodology was applied in the extracted sub-images generating 10 decisions per row in a layout of 5 × 2. The 

decisions were reshaped to the initial dimension (333 × 171) using bilinear interpolation based on the weighted 

average of pixels in the nearest 2-by-2 neighborhood. The final 3D classification map was obtained by repeating 

the process for each one of the Nz  rows in the image cube. 

 

3. RESULTS 

3.A. Classification performance  

Table IV compares the average performance of the classification models employed to recognize skin layers.  

The full set of 29 features was used to train and test the ML classification models. As far as the deep leaning 

approaches, 4096 deep features were extracted from the ‘fc6’ layer of AlexNet, where 1000 features were 

extracted from the ‘fc8’ layer of AlexNet and the ‘fc1000’ layer of ResNet50. The dimensionality was reduced 

by applying PCA. Random forest applied on the 29 manually extracted features proved to be the most effective 

technique, achieving classification performance of 86.13%. Linear discriminant models were used as the base 

classifier during ensemble learning. The optimal number of weak learners was determined to be 35 since it 

maximized the LOOCV validation accuracy. Statistical significance analysis was also performed by applying t-

tests at two confidence levels (1% and 5%) on the accuracies obtained on the 12 LOOCV data folds. The results 

of RF without post-processing were significantly different (at both confidence levels) compared with all the 

remaining models. However, no significant differences at the confidence level of 5% were obtained on the 

results of RF, CNN and RUS-Boost followed by post-processing (third column of Table IV), with RF being 

only marginally better than CNN and RUS-Boost (at the confidence level of 1%).  

 Table V shows the confusion matrix as obtained by the best model of random forest. Despite the class 

imbalance problem, where classes 1, 2, 3 and 4 correspond to 10.15%, 18.23%, 52.68% and 18.92% of the 

entire dataset, adequately high per-class accuracies were observed from three out of the four classes (higher than 

88% for classes 1, 3 and 4).  Class 2 was recognized with the moderate accuracy of 66.28% whereas 

misclassifications occurred only between physically adjacent classes.  

3.B. Influence of feature selection on classification  

Next, we applied feature selection and repeated the classification using random forest. Figure 5 depicts the 

average classification performance with respect to the number of features selected for the best model with and 

without post-processing. The first four most important features (Table VI) alone gave an accuracy of more than 

88% after post-processing, which remained at the same level or was even slightly decreased when more features 

were included. The methodology with post-processing outperformed the methodology without post-processing 

for all the different subsets investigated (Figure 5). The confusion matrixes for the best model trained on the 

four features without and with post-processing are given in Table VII and VIII, respectively. 

Depth, as expressed in terms of the row index, was the feature most critical for achieving coarse separation of 

the layers, with an average accuracy of 70.2%. That depth would be the best feature is not surprising, given that 

the four layers are stacked one above the other in a fixed sequence. However, depth cannot guarantee fine layer 

separation, which can vary from one individual to the next. Thus, GLCM features in high- and low-frequency 

images were the second and fourth most effective features. The third most important feature was minimum 

value.  
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3.C. Visualization of classification outputs  

Figure 6b and 6c show the 3D classification maps obtained from one subject’s data using the SkinSeg method 

trained in the first four most important features without and with post-processing, respectively. Dead zone was 

depicted in purple; epidermis, blue; vascular plexus, green; and deeper structures, yellow. Figure 6a depicts a 

cross-sectional UWB-RSOM image rendered by taking the maximum intensity projection (MIPs) of the 

reconstructed images along the y direction.  

 

4. DISCUSSION  

UWB-RSOM shows unique potential for in vivo diagnostic imaging in dermatology. Here we demonstrate the 

potential of SkinSeg to reliably identify skin layers automatically from UWB-RSOM images. Our method may 

promote future development and clinical implementation of UWB-RSOM. The morphological characteristics of 

skin lesions are key elements for diagnosing skin diseases as well as systemic diseases that involve skin 

changes.  

Various classification models were tested, and the best model was random forest, which achieved 86.13% 

classification accuracy. The confusion matrix revealed that misclassifications occurred only between adjacent 

classes (layers). Further analysis showed that a small group of 4 features can even achieve a better accuracy of 

over 88% (Table VIII, Figure 5). The 3D map (Figure 6c) and the cross-sectional UWB-RSOM image (Figure 

6a) from the same subject showed good correlation between predicted and actual classes. The application of the 

proposed post-processing techniques was proved to be effective in terms of both testing accuracy (Tables VII 

and VIII) and 3D visualisation of classification maps (Figures 6b and 6c). CNNs were proved to be the second 

most promising classifier leading to a testing performance of 82.5% and 84.95% without and with post-

classification, respectively. The relatively low performance of CNNs could be attributed to the number of 

subjects considered in our cohort (12 in total). More data is needed for a deep 19-layers network to generalize 

well compared with random forest that is an ensemble of weak learners having more relaxed requirements in 

terms of data size and variability. The accuracy and generalization of the proposed CNN is expected to increase 

with the inclusion of data generated from a larger subject cohort. 
SkinSeg offers a faster alternative to current manual practices to assess skin morphology. Coronal images 

(taken in the x-y plane) proved informative, providing the necessary information content for implementing the 

classification task. The size of the coronal images (100×100 pixels) was large enough to contain enough textural 

information to reveal biological structures, but not large enough to make the method computationally 

burdensome. It may also be possible to use cross-sectional images (in the z-x plane) using segmentation 

analysis.  

Two feature families (1st order and GLCM) significantly affected classification performance: features from 

those categories appeared among the first four most significant features. Two of the top four features came from 

the high-frequency image, which suggests that it is more informative for classification than the low-frequency 

image. Visual inspection of the sub-images (Figure 3) confirms the superiority of the high-frequency image in 

capturing class information. Nevertheless, GLCM correlation from low-frequency images also fell within the 

top five features for classification. Feature selection is a key part of the ML method here because it reduces the 

computational complexity of the classifier and accelerates feature extraction. Deep features extracted from pre-

trained CNN models led to moderate testing accuracies and were not finally selected.  

Figure 5 shows that classification accuracy increased only for the first four selected features, then remained 

almost stable until the thirteenth one and finally decreased with increasing features because of overfitting. We 

believe the marginal improvement in accuracy with increasing features reflects correlations among the 29 

features.  

One limitation of SkinSeg is that it requires flattening the 3D volume, such that the z-axis is approximately 

normal to the skin. This was performed automatically during the pre-processing stage. This flattening may be 

difficult if measurements are taken when the recording head is positioned quite obliquely to the skin surface.  

Overall, the application of intelligent approaches is expected to revolutionise image-based diagnostics 

enabling new possibilities for enhanced monitoring and treatment. This paper makes a significant first step in 

applying ML empowered solutions on UWB-RSOM data in the task of skin morphology identification, 

facilitating extraction of new quantitative means for measuring skin and disease landmarks. Specifically, 

SkinSeg is expected to improve the accuracy of other ML-based methods which examine and analyze RSOM 

images for diagnostic purposes. Without a segmented description of the imaged volume, any diagnostic 

algorithm is bound to treat (and learn from) the entire volume as one piece. This condition could lead to 

problems such as overfitting. In return, the segmentation afforded by SkinSeg effectively reduces the input 

dimension and, hence, can potentially improve prediction accuracy.  

The proposed methodology is envisioned to be employed in the processing pipeline of image and sensor 

systems based on the RSOM principles. As an example, we are using the proposed method to improve the 

results of a diabetic detection and grading system, which is currently under development. The results are 
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promising, and the accuracy of our method can be increased by using data from larger studies. Nevertheless, we 

should note that, since the method is going to be used as a component in a larger processing pipeline, its 

accuracy is to be understood and evaluated in conjunction with other components and the overall system in 

particular. Future steps include research into alternative image classification techniques such as autoencoders 

along with deep learning based segmentation techniques. The full feature space, as has been generated by a 

variety of pre-trained deep learning models, should be also exploited as an alternative approach. The 

performance of SkinSeg should be assessed in studies with more participants and in which both coronal images 

(x-y plane) and cross-sectional images (x-z plane) are used. Ultimately, ML-based UWB-RSOM should be 

applied to the clinic to examine the feasibility of automated disease diagnosis and assessment.  
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Figure captions  

 

 

Figure. 1. Schematic of the data acquisition process and a sample image of the RSOM system: (a) RSOM raster-scans a single element 

detector in the x-y plane. (b) Example of a maximum intensity projection of a UWB-RSOM scan from one participant. The 

combination of low-frequency data (red channel) and high-frequency data (green channel) shows macro- and microvasculature 

(horizontal scale bar, 500 µm; vertical scale bar, 250 µm) 

 

Figure 2. Schematic of the SkinSeg ML method. 2D images (100 x100 pixels) are extracted from each slice of the 3D image and fed into the 

ML algorithm. The classification models are trained on descriptive features extracted from each sample. Post-processing is applied on 

the generated testing labels. 

 

Figure 3. Examples of skin feature classes resolved using UWB-RSOM. Representative images from one participant are shown after 

reconstruction using only low-frequency (LF) data (14-40 MHz, top row), high-frequency (HF) data (40-120 MHz, middle row), or 

data of all frequencies (RSOM, bottom row). The columns show images from epidermis, vascular plexus and deeper structures. 

 

Figure 4. Example of the application of the proposed post-processing on a 3-class problem. The outputs of the classifier are visualized with 

respect to the vertical axes, where each class is represented by a different color. (a) Firstly, linear SVM is applied to separate class 1 

from class 2, defining a separating hyperplane that re-assigns the labels of class 1 and 2 based on the maximum-margin criterion, 

resulting in the new class assignment shown in (b). The process is repeated on the updated labels by applying a second linear SVM to 

separate the classes 2 and 3, as shown in (c). The final output of the successive application of linear SVMs is the generation of three 

non-overlapping populations of labels, shown in (d). 

 

Figure 5. Classification accuracy of the best model (Random Forest) as a function of the number of features selected with and without post-

processing 

 

Figure 6. Example of UWB-RSOM image classification using the SkinSeg method with feature selection. (a) Cross-sectional UWB-RSOM 

image from one subject’s data, rendered by taking the maximum intensity projection along the y direction.  3D classification map of 

the same subject’s data without post-processing (b) and with post-processing (c). Purple, dead zone; blue, epidermis; green, vascular 

plexus; yellow, deeper structures.  The classification outputs are annotated on the image (a).  
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TABLE I.  Number of sub-images per class 

 

Class  Description 
Number of samples per 

frequency band 

C1 Dead zone  3970 

C2 Epidermis  7130 

C3 Vascular plexus  20600 

C4 Deeper structures  7400 

                                                                                                Total                                    39100 

 

 

TABLE II.  Features extracted from each sub-image 

 

ID Description  Frequency band 
     Category  

1 Maximum value Low 1st order statistics 

2 Minimum value  Low 1st order statistics 

3 Standard deviation Low 1st order statistics 

4 Contrast  Low GLCM 

5 Correlation Low GLCM 

6 Energy  Low GLCM 

7 Homogeneity  Low GLCM 

8 Energy of LL2  Low Wavelet 

9 Energy of LH1 Low Wavelet  

10 Energy of HL1 Low Wavelet  

11 Energy of HH2  Low Wavelet  

12 Energy of LH2  Low Wavelet  

13 Energy of HL2  Low Wavelet  

14 Energy of HH2 Low Wavelet  

15 Maximum value High 1st order statistics 

16 Minimum value  High 1st order statistics 

17 Standard deviation High 1st order statistics 

18 Contrast  High GLCM 

19 Correlation High GLCM 

20 Energy  High GLCM 

21 Homogeneity  High GLCM 

22 Energy of LL2 High Wavelet  

23 Energy of LH1 High Wavelet  

24 Energy of HL1 High Wavelet  

25 Energy of HH2 High Wavelet  

26 Energy of LH2 High Wavelet  

27 Energy of HL2 High Wavelet  

28 Energy of HH2 High Wavelet  

29 Row number  Depth Index 

 

GLCM stands for grey-level co-occurrence matrix 

LLk, LHk, HLk, HHk stand for approximation, horizontal, vertical and 

diagonal details at the k- level analysis of DWT, respectively 
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TABLE III.  Selected CNN architecture 

 

layer             Type  Description  

1 Image Input 100x100x2 images with 'zerocenter' normalization 

2 Convolution 8 5x5 convolutions with stride [1  1] and padding [1  1  1  1] 

3 Batch Normalization - 

4 ReLU - 

5 Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

6 Convolution 16 5x5 convolutions with stride [1  1] and padding [1  1  1  1] 

7 Batch Normalization - 

8 ReLu - 

9 Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

10 Convolution 32 5x5 convolutions with stride [1  1] and padding [1  1  1  1] 

11 Batch Normalization - 

12 ReLu - 

13 Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

14 Convolution 64 5x5 convolutions with stride [1  1] and padding [1  1  1  1] 

15 Batch Normalization - 

16 ReLu - 

17 Fully Connected 4 Fully Connected layer  

18 Softmax - 

19 Classification Output Cross entropy  
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TABLE IV. Skin layer classification performance for different algorithms 

 

 

CLASSIFIER 

(HYPERPARAMETERS) 

Accuracy                  

(%) 
Accuracy after post-

processing (%) 

M
ac

h
in

e 
L

ea
rn

in
g

  
Decision trees 

(minimum leaf size: 5, Split 

criterion: Gini’s index, Maximal 

number of decision splits: 7) 

77.56 a,b 82.01 a,b 

LDA  76.42 a, b 80.15 a, b 

Linear SVM  

(C= 104) 
67.98 a, b 74.46 a, b 

Non-linear Gaussian SVM 

 (C=80, sigma =0.15) 
71.56 a, b 78.70 a, b 

KNN1 76.15 a, b 80.16 a, b 

Weighted KNN-10 78.18 a, b 80.05 a, b 

AdaBoost 

 (number of weak learners: 50, 

best weak learner: DT) 

80.99 a, b 83.23 a, b 

Random Forest  

(number of weak learners: 35, 

best weak learner: LDA) 

85.66 86.13 

RUS-Boost 

(number of weak learners: 24, 

best weak learner: DT) 

81.55 a, b 84.81a 

Three-layer Neural Networks 

(Adam optimization, ReLU 

functions and adaptive learning 

rate) 

79.11 a, b 82.42 a, b 

  
  

 D
ee

p
 

  
  

  
  

L
ea

rn
in

g
 

CNN 82.50 a, b 84.95 a 

AlexNet + PCA + RF 

(fc6, 10 principal comp.) 
78.44 a, b 81.20 a, b 

AlexNet + PCA + RF 

(fc8, 10 principal comp.) 
69.76 a, b 74.23 a, b 

ResNet50 + PCA + RF 

(fc1000, 10 principal comp.) 
68.48 a, b 73.12 a, b 

 

 

a. Significantly different from random forest (p < 0.05) by applying t-tests on the LOOCV accuracies over the 12 data folds  

b. Significantly different from random forest (p < 0.01) by applying t-tests on the LOOCV accuracies over the 12 data folds 
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TABLE V.  Confusion matrix of the best model (Random Forest) with post-processing using the entire feature set 

 

 Class 1  
Class 

2 
Class 3 

Class 

4 

Per-class 

accuracy (%) 

Class 1 1651 149   91.72 

Class 2 229 928 243  66.29 

Class 3  191 2735 174 88.23 

Class 4   401 3299 89.16 

                                  Total  86.13 

 

 

TABLE VI.  First four most informative features selected 

 

ID             Description 
Frequency     

band 
        Explanation 

29 Row number - Depth 

19 Correlation/GLCM Hi

gh 

Linear dependency between 

neighboring pixels in high-

frequency data 

16 Minimum value/1st 

order 

Hi

gh 

Darkness of the area 

5 Correlation/GLCM Lo

w 

Linear dependency between 

neighboring pixels in low-

frequency data 

 

 

TABLE VII. Confusion matrix of the best model (Random Forest) without post-processing using the best four features 

 

 
 

Class 1 
Class 

2 
Class 3 

Class 

4 

Per class 

accuracy (%) 

Class 1  1640 149 11  91.11 

Class 2  232 922 246  65.86 

Class 3  2 195 2709 194 87.39 

Class 4   34 399 3267 88.30 

  Total  85.38 
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TABLE VIII. Confusion matrix of the best model (Random Forest) with post-processing using the best four features 

 

 Class 1 
Class 

2 
Class 3 

Class 

4 

Per-class 

accuracy (%) 

Class 1 1689 111   93.83 

Class 2 202 997 201  71.21 

Class 3  135 2824 141 91.09 

Class 4   399 3301 89.21 

 Total   88.11 
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