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Abstract



Background & Aims: Altered interactions between the mucosal immun&gysand intestinal
microbiota contribute to pathogenesis of inflammgatmowel diseases (IBD). It is not clear how
inhibitors of cytokines, such as antagonists ofdumecrosis factor (anti-TNF), affect the
intestinal microbiome. We investigated the effexftanti-TNF agents on gut microbe
community structure and function in a longitudi@adtep study of patients with IBD. We
correlated our findings with outcomes of treatmemd investigated patterns of metabolites in
fecal samples before and after anti-TNF therapy.

Methods: We performed a prospective study of 2 cohorts tiepts in Germany; the discovery
cohort comprised 12 patients with IBD, 17 patienith rheumatic disease, and 19 healthy
individuals (controls); fecal samples were colldct baseline and 2, 6, and 30 weeks after
induction of anti-TNF therapy. The validation cohocomprised 23 patients with IBD treated
with anti-TNF or vedolizumab (anti4p7 integrin) and 99 healthy controls; fecal samplese
collected at baseline and at weeks 2, 6, and 1ghl eicrobiota were analyzed by V3-V4 16S
rRNA gene amplicon sequencing. Clinical response ramission were determined by clinical
disease activity scores. Metabolic network recamsion and associated fecal metabolite level
inference was performed in silico using the AGORAaurce. Metabolomic analyses of fecal
samples from a subset of patients were performedatmate metabolites associated with
treatment outcomes.

Results: Anti-TNF therapy shifted the diversity of fecal mobiota in patients with IBD, but not
with rheumatic disease, toward that of controlsio&s timepoints, diversity indices did not vary
significantly between patients with IBD who did drd not achieve clinical remission after
therapy. In contrast, in silico modeling of metabohteractions between gut microbes found
metabolite exchange to be significantly reducetiaseline in fecal samples from patients with
IBD and to be associated with later clinical remassPredicted levels of butyrate and substrates
involved in butyrate synthesis (ethanol or acetajde) were significantly associated with
clinical remission following anti-TNF therapy, vied by fecal metabolomic analyses.
Conclusions: Metabolic network reconstruction and assessmemhetfibolic profiles of fecal
samples might be used to identify patients with IBKely to achieve clinical remission
following anti-TNF therapy and increase our underding of the heterogeneity of IBD.

KEY WORDS:. Crohn’s disease, ulcerative colitis, inflammatishert-chain fatty acid

Introduction

Inflammatory bowel disease (IBD) with its main ¢l Crohn’s disease (CD) and ulcerative
colitis (UC) can be considered an archetypal desesity of a larger, heterogeneous group of
chronic inflammatory diseases (CIDs), characterizgd dysbalanced immune system, leading
to excessive pro-inflammatory cytokine productioml aestructive local inflammatidrf. CIDs

affect different organs through their primary masthtion but are characterized by common

systemic immune perturbations. The underlying egiglcomprises a polygenic susceptibility



with more than 200 risk variants and loci idendfier IBD until today > and many of these are
shared between the different CID entities. Shaisdade genes are preferentially involved in the
regulation of innate and adaptive immune respoasdsare thought to affect the homeostasis of
host-microbiota interaction® *. Intestinal dysbiosis has been detected across&Dwhile

dysbiosis in IBB® 12 13

is likely influenced by immune dysregulation aresttuction of the
epithelial interface by local inflammation, theadbigy of dysbiosis seen in other CIDs without
overt inflammation in the gut is still vague andrgwises shifts of specific bacterial taxonomical
groups and enrichment of potentially harmful teeg, Eggerthella lentan rheumatoid arthritis
(RA).}* ** Despite an immanent need to understand the uriigrigechanism of dysbiosis, a
systematic comparison of gut microbial communitiesintestinal vs. non-intestinal driven
inflammatory disease is missing so far. Blockadd N has evolved as a therapeutic principle
that is effective across different CIBfs2’ Although the use of anti-TNF antibodies is a miins
for the therapy in CID, the development of antilesddirected against other pro-inflammatory
cytokines (IL-6, IL-B) and lately also the exploitation of other prinegy e.g. blockade of
integrin-mediated immune cell trafficking in 1BB,has led to an increased complexity in the
treatment of these CID entities.

To what extent targeted therapies are able toferemwith altered gut microbial community
structures and metabolic function is unknown. Lileywhereas it was shown in cancer therapy
that efficacy of targeted therapies, such as imrtherapy as well as classical chemotherapy, is
critically modulated by gut microbial community cposition®® ?°it is unknown whether gut
microbiota and related metabolic properties ar@@ated with therapeutic outcome. Here, we

investigated the role of anti-TNF therapy on loadihal dynamics of gut microbial composition

and metabolic function in a two-tiered approacist-we investigated the influence of anti-TNF



on gut microbial diversity by 16S rRNA phylogenetimfiling and ecosystem-scale metabolic
modeling in patients with IBD or rheumatic disead®® show that inferred microbial metabolic
interactions are associated with response to aWi-therapy in patients with IBD. In a second
step, we validated our findings in an independeBD Icohort and found that microbial
metabolite interactions are able to discriminatevben anti-TNF remitter and non-remitters.
Using in-silico prediction of metabolite exchangel astool metabolomics, we show that, among
other principles, butyrate levels are significaraliered between patients achieving remission vs.
non-remitting patients. We thereby demonstrate )ht6S rRNA based functional prediction of
metabolic cooperativity might serve as a novel apph for predicting clinical response to TNF
antagonists in patients with IBD and ii) identifyet SCFA butyrate as a clinical marker for

therapeutic efficacy in IBD.

MATERIALSAND METHODS

Patient recruitment and study design

Human study subjects were recruited at the outpiatedinic of the University Hospital
Schleswig-Holstein, Campus Kiel, to obtain fecahpées. Treatment decisions were made due
to clinical requirements after discussion at thterttisciplinary inflammatory medicine board of
the hospital. The design of the prospective stuldéesno influence on treatment or other clinical
actions. Patients were naive to biological treatnoermad at least paused prior biologic therapy
for more than 12 weeks. The study was approvedhbyethics committee of the Christian-
Albrechts-University of Kiel (A 124/14 and AZ 15@&42/13) and subjects provided written

informed consent.



For the discovery cohort (cohort #1), patients wexuited from two major patient groups, (i)
12 patients with intestinal inflammation (i.e. IBDC (n=4), CD (n=8)) or (ii) with non-IBD
rheumatic diseases (i.e. seropositive rheumatottritté (n=10), seronegative rheumatoid
arthritis (n=2), ankylosing spondylitis (n=5)), whi are collectively termed rheumatic diseases
(n=17) hereafter. Patients were asked to colleanmg feces before (24 h) and at designated
time points (2, 6 and 30 weeks) after anti-TNF dipgrinitiation. Fecal samples were collected
using feces collection tubes with prefilled DNA lstaer (Stratec, Birkenfeld, Germany) and
stored at -8 until further use. Anti-TNF agents comprised iikifhab, certolizumab pegol,
adalimumab, and etanercept. Single time point sasnfsbm a group of 19 healthy, untreated
subjects were included at the same time and usiaigtical sampling procedures were included
into the study as controls. For the validation abtjoohort #2), a total of 23 biologics-naive
patients with IBD (CD=10, UC=13) were recruited, avlreceived first-time anti-TNF
(infliximab, n=10) or antedf7 integrin antibody (vedolizumab, n=13) therapytidtds were
investigated within a 24-hour time frame befordiation of treatment and at weeks 2, 6, and 14
after initiation of treatment including collectiaf morning feces. Single time-point fecal 16S
rRNA gene microbial profiles from a cross sectiocahort of healthy individuals (n=99)
sampled in the time frame of the study served eefeaence map to assess the directionality of
microbial changes after anti-TNF therapy initiatidar cohort #2. Overview of patient
characteristics are detailed$npplementary Table 1. Overview of clinical efficacy data for the
two cohorts are shown iSBupplementary Tables 2 and 3, respectively. A detailed overview

about cohort composition and molecular analyses/en inSupplementary Figure 1.

Patient assessment



All patients were scheduled for biologic therapy foedical reason and received drug at least
until week 22. Clinical disease indices were asstsd baseline and at weeks 2, 6, 14 and 30
after therapy initiation using clinical diseasereso(Disease Activity Score 28 for RA (DAS28),
Bath Ankylosing Spondylitis Disease Activity IndéBASDAI), Harvey-Bradshaw Index for
CD (HBI) or Mayo score for UCY In RA, clinical response was defined as a redunctibthe
DAS28 score by more than 1.2 points, whereas @imemission was defined as a DAS28 <2.6.
For ankylosing spondylitis, the BASDAI clinical mnse was defined as a reduction of 50%
(BASDAI50) at week 6, whereas clinical remissiorsvagfined as a BASDAI <4. Responders in
the HBI for CD were defined by a decrease& points in HBI while non-responders showed a
decrease of < 2 points or an increase in HBI. Cikepts with an HBI ok 4 were considered to
be in remission, those with5 to have active disease. In patients with UC, eradese of the
partial Mayo score of 2 points and> 30% with either a decrease of rectal bleedirigor with
rectal bleeding< 1 were defined as responder. Patients with agbakayo Score of< 2
(bleeding 0) were considered to be in remissioms¢hwith > 3 to have active disease.
Histopathological scoring of biopsies was perforrbgdtandard clinical procedures in a blinded
fashion by a trained pathologist, and the ovenatlg of inflammation was grouped according to
normal (0), mild (1), moderate (2) or severe inflaation (3), and the respective values were

used for pathology score calculation.

Statistical analyses
Phylotype abundances were subsampled to the lowsber of sequences within the analysed
sample and relative abundances wergpftagrmalized. Principal coordinate analysis (PcoA&sw

performed on abundance (Bray-Curtis) and presebserie (Jacquard) based distance matrices.



One-way permutational multivariate analysis of aace (PERMANOVA) was performed to test
the statistical significance of microbial commundifferences in healthy subjects and patients
with IBD or rheumatic diseases. Both PCoA and PERMWA were performed in PAST
software and principle coordinates were visualirethe vegan package v.2.0-10 in R software

V 3.0.3 (https://cran.r-project.org/web/packagegardindex.html). We employed tks.c (Yue-

Clayton) similarity inde¥ to measure the shift of microbiota before andraiitétiation of
treatments (within and between disease groups)edisaw directionality in reference to healthy
subject microbiota. This similarity index is basadthe species abundance of shared as well as
non-shared species applying even weighting topeti®s in communities. The non-parametric
Mann-Whitney U test was employed to test the sigaifce of diversity/distance differences
between healthy subjects and patients (IBD/rhewumdiBeases) at different time points. The
non-parametric Wilcoxon matched-pairs signed rask was used to observe the significance of
changes before and after therapy initiation withidisease group. Indicator species andlysis
was performed to identify indicator bacterial phyjmes between healthy control group and
patients (IBD and rheumatic diseases) before andwB6ks after therapy initiation. This
approach takes relative abundance and relativeidrery of occurrence in two sets of samfjles

into account.

Microbial community modelling

We used reconstructed metabolic models of 773 humanbacterial speci&s (AGORA
resource) to predict metabolic potential and biadical interactions between bacterial species.
We extensively refined the originally published ratsdto remove erroneous futile cycles that

occurred in community simulations and often causedeasonably high exchange fluxes



between bacteria (s&eipplementary Table 6 for details). By mapping 16S rRNA sequences to
the corresponding models contained in AGORA and linimg them to a community-level
metabolic model, we derived patient-specific mod#ighe respective microbial community.
Using these models, we inferred ecological relatngoms (mutualism, competition, antagonism)
and potential metabolite exchange interactions withhost. Please refer to the Supplementary

Materials and Methods for a more detailed desanpti

RESULTS:
Chronic inflammatory diseases ar e characterized by intestinal dysbiosis

We investigated microbiota community structuresBD, healthy controls (HC) and patients
with rheumatic diseases (seropositive/seronegatiieumatoid arthritis or ankylosing
spondylitis) at baseline. This discovery cohort pased longitudinal fecal samples of a total of
29 patients (IBD=12, rheumatic diseases=17) befme after anti-TNF therapy initiation and
single time point fecal samples from HC (n=19)alfles S1 and S2). 16S rRNA gene
sequencing of all samples (including baseline amst therapeutic intervention) resulted in the
identification of 388 phylotypesT@ble $S4, Supplementary Materials and Methods). As all
statistical algorithms assessiogdiversity have inherent strengths and weaknesses)sed a
set of a—diversity indices including (i) observed and (iijtienated (Chao 1) richness, (iii)
evenness of species considering abundance (nomptir@ Shannon) and (iv) phylogenetic
distance (phylodiversity score). Comparing all gre@ubaseline microbial communities between
healthy controls and the rheumatic disease or IBBupgs, respectively, were significantly
different, as shown by non-parametric Kruskal-Véaliest. To interrogate pairwise baseline

differences of microbiadi-diversity between specific groups, we used the M@fhitney U test,

which — for the pair IBD vs. HC — showed signifidgrmreduceda—diversity index values for i)



observed (p = 0.02#&igure 1A) and ii) estimated (Chao I) richness (p = 0.CRigure 1B), iii)

NP Shannon index of diversity (p = 0.000Higure 1C) and iv) phylogenetic diversity ( p =
0.017; Figure 1D). Patients with rheumatic diseases also had redumscterial diversity
compared to HC, but the index levels were only ificant for the NP Shannon diversity index
(Figure 1C). Principal coordinate analysis (PcoA) on membgrsfJaccard) and abundance-
based (Bray-Curtif}—diversity distance matrices demonstrate that tisé tivo coordinates were
able to separate samples for a health/diseaseigtesstatus. PERMANOVA test on Jaccard
(Figure 1E) distances showed a significantly distinct micebbcomposition between IBD,
rheumatic diseases and HC. Similarly, abundanceayfBurtis)-based analysis revealed
significant differences in patients with IBD andedmatic diseases compared to HC, but the
differences were not significant between rheumdiseases and IBD communitidsidure 1F).
These observations confirm earlier findilgshowing that the baseline intestinal microbial
communities of patients with IBD are characterizeg a reduced number of species and
diminished richness and evennegsdiversity) as well as altered community compositerd
structure B—diversity). In contrast, intestinal microbiota frogpatients with rheumatic diseases
only display shifts in community structurB—diversity) compared to HC, indicating a disease

effect on the gut microbiota even in the absenaaveft intestinal inflammation.

Effects of anti-TNF treatment on microbial diversity in IBD and rheumatic diseases are
reflected on the 3- but not a-diversity level

To analyze the effect of anti-TNF treatment on stiteal microbiota in IBD (n=12) and
rheumatic diseases (n=17) independently, we assasdwersity indices before and 2, 6 and 30

weeks after first-time anti-TNF therapy inductiondaused the samples of the HC group as



reference point. The observed and estimated speciewess and phylodiversity in patients with
IBD increased after the beginning of therapeutierwention and reached statistical significance
at week 30 compared to baseline. This shift wasctid towards the controls, and the distance
between diversities of treatment naive IBD fecahgl@s and healthy controls became non-
significant after 30 weeks of theraplyigures 2A, 2B and 2D). Similar differences were not
observed for the NP Shannon diversity indeiggre 2C). In contrast, restoration of bacterial
diversities was not evident in patients with rhetimdiseasesHigure 2E-H). Interestingly, we
failed to identify a discrimination between remmgi and non-remitting patients based @n
diversity restorationsHigure S2), which could also be due to limited sample siée next
investigated3-diversity indices to measure longitudinal commymibmposition changes before
and after therapy initiation. We assessed the-inthvidual dissimilarity using Yue and Clayton
distance matrix, which considers not only membgrsbwverlap, but also species abundance
between communiti€€. Pairwise comparison of distances between sampldsaseline and
during treatment (2, 6 and 30 weeks) showed ineckager-individual dissimilarity among anti-
TNF-treated IBD patientsSgpplementary Figure 3A). This indicates that anti-TNF treatment
induces an increase of heterogeneity of the imalsthicrobiota between patients with IBD. In
contrast to IBD, anti-TNF treatment in patientshmheumatic diseases during treatment was
associated with an overall decrease of dissimyldweek 30 vs. pre-treatment) of the microbiota
(Supplementary Figure 3B). This indicates an overall constriction of micadl-diversity, i.e.

a gain of similarity, between patients with rheuimdiseases. To understand the directionality of
the observed changes, we compared dissimilaritywdest healthy subjects and disease groups
(IBD, rheumatic diseases) before and during therpetervention and observed that anti-TNF

treatment shifted the microbial communities of bpttient groups towards healthy subjects,



indicating a subtle corrective effect of anti-TNEatment on microbial dysbiosis of both disease
entities, IBD and rheumatic diseas8afplementary Figures 3C, 3D). Again, a discrimination

between clinical remission and non-remission washeervable (data not shown).

Individual phylotype alterations after anti-TNF treatment

We next determined indicator bacterial phylotypkat twere significantly different between
healthy control (HC) and anti-TNF treated patientth IBD or rheumatic diseases at baseline
and asked whether these taxa would alter theirgdnoe upon anti-TNF treatment (week 30). In
IBD, we identified 14 indicator phylotypes that wesignificantly different between HC from
untreated IBD $upplementary Table 5). Upon anti-TNF treatment, all 14 identified phylpes
lost the indicator species status, suggestingthieste phylotypes are normalized upon anti-TNF
treatment Eigure 3A). In IBD, Coprococcugindicator value, 84.37; p = 0.003) aRdseburia
inulinivorans (indicator value, 79.25; p = 0.031) were the togicator phylotypes at baseline
(based on p-value, compared to HC). Both indicatoylotypes displayed reduced abundance
compared to healthy subjects at week 0 and incdeths@r abundance over the time course of
treatment, leading to loss of significance betwé#d and IBD at week 30F{gure 3B,
Supplementary Table 5). In patients with rheumatic diseases, we idesdifi5 indicator
phylotypes, which — by abundance — were signifigadifferent between baseline and HC and
lost the indicator status after anti-TNF treatmahtweek 30 $upplementary Figure 4A,
Supplementary Table 6). Of those 5 indicator taxa, the abundance of tihg indicator
phylotypes (week O compared to HC, based on p-ydtugsipelotrichaceagindicator value,
81.33; p = 0.009) andorea (indicator value, 68.81; p = 0.042) increased ificantly to

become non-indicators in post-treatment samplewestk 30 Supplementary Figure 4B).



Strikingly, none of these identified taxa were #igantly associated with therapeutic outcome
of anti-TNF treatment (remission/non-remission). iVerefore hypothesized that such outcome-
associated shifts might be better visible in th&eried metabolic pathways and functional
properties of the microbiota, which are known teptiy a greater interindividual consistency

compared to the highly variable abundance of imtiisl taxa®

Stabilizing ecological interactions arelessfrequent in I1BD and rheumatic diseases

As diversity measurements and individual taxa ifieation in our exploratory cohort were not
able to predict therapy outcome in IBD, we nextdusesilico metabolic modeling from 16S
rRNA sequencing data to infer metabolic interactionithin the luminal microbiota and
associated fecal metabolite levels. We hypothesited metabolic functions rather than
taxonomical composition might affect response toFThBntagonists. For this purpose, we
employed the recently published AGORA resourceyraprehensive assembly of metagenomics
data from 773 human gut bacterial species, desigmgutedict metabolic interactions among
microbial communities based on 16s rRNA dataVe categorized ecological relationships
between two different bacterial organisms into mlitic interactions, antagonistic interactions,
and resource competition, depending on the bethefitthe individual partners obtained from the
predicted interactions. While mutualistic and aotagtic interactions can increase community
dynamics’” #®interspecific resource competition can reduce canity stability?’ Interestingly,
the predicted frequencies for mutualistic pairwiggeractions did not show significant
differences between patients with IBD or rheumatiseases compared to healthy controls.
However, we found that in IBD, and to a lesser degin rheumatic diseases, the predicted

frequency of antagonistic interactions was sigaifity reduced at the beginning of the therapy



and partially restored towards the end of the tneat Eigure 4A). Vice versa, we observed an
enhanced interspecific resource competition of Igatcteria in both inflammatory diseases,

indicating a reduced stability of microbial commiigs.

Metabolic cross-feeding is impaired in patients with IBD and rheumatic diseases and
associated with lack of clinical efficacy of anti-TNF therapy

To evaluate whether anti-TNF treatment also affdetsrates (or fluxes) of metabolite exchange
between organisms (referred to ametabolic interchang®, we used metabolic network
modeling to predict the exchange of metabolitesvbeh bacterial community members in the
individual samples using silico microbial community models (for details see Suppatary
Materials and Methods). The simulation resultsaéatid that non-remitting patients with IBD or
rheumatic diseases, compared to HC, displayed @libasreduction of total metabolic
interchange, which also remained below the levEH® after 30 weeks of anti-TNF treatment
(Figure 4B). This was in contrast to patients achieving cihiremission, who did not display a
reduction of the predicted metabolic interchangeyre 4B) compared to HC patients. These
data point towards different microbial metaboligratures that might affect therapeutic efficacy
and contribute to clinical remission. In summalig in-silico modeling of the gastrointestinal
bacterial metabolism indicated a strong disruptdrecosystem functioning within IBD and

rheumatic diseases gut microbiomes, which wasypaasitored upon anti-TNF therapy.

Anti-TNF therapy restoresdisrupted gut microbial community metabolism in IBD
We next aimed to validate our central hypothesa impaired metabolic cross-feeding is

associated with clinical outcome of anti-TNF therdp IBD using a second, independent



longitudinal IBD cohort (seeupplementary Table 7). In this context, we also aimed to
investigate whether these potential effects wetrébated to anti-TNF therapy alone or reflected
a generalizable effect of successful remissionéedby treatment with biologics. We recruited
a total of 23 patients (CD=10, UC=13) (Cohort #2ho underwent first-time therapy with either
anti-TNF (infliximab; IFX) or antie4p7 integrin (vedolizumab) antibodies and collectedat
samples at baseline and at week 2, 6 and 14 aftemfdy induction$upplementary Table 3).

To excludea-priori differences on the dietary intake that might iafltae microbial community
structure, we assessed the dietary intake in arsupgof patients (n=7 patients, anti-TNF
treatment; n=3 remitting, n=4 non-remitting) usindpe validated Potsdam Dietary
Questionnair® and were not able to observe significant diffeesndn the intake of
carbohydrates, fibers, protein or fat between p#ieachieving remission or non-remitting
patients (data not shown). However, a thoroughsassent is needed to fully understand effects
of dietary intake on the predicted metabolic prapsrof the gut microbiota. We performed
metabolic cross-feeding analysis on the 16S datafsem the longitudinal fecal samples of
either anti-TNF- or antidp7-integrin-treated patients with IBD and specifigahimed to
validate our previous findings from cohort #1, nnteatin silico prediction of metabolic and
ecological interactions associated with clinicdioaicy in anti-TNF-treated patients with IBD.
Indeed,in-silico predictions on bacterial interactions suggestefédihces in the gastrointestinal
microbial ecology depending on the patients’ remisstatus in response to anti-TNF. Only
patients that did not achieve clinical remissiosptiyed significantly reduced antagonistic
interactions and significantly increased resourometitive interactions, when compared to
healthy controls. Both findings were in line witindings from cohort #1, indicating that non-

remitting patients with IBD display a disrupted guicrobial ecosystent{gure 5A). Moreover,



the baseline total predicted metabolic interchafige cross-feeding) was already reduced by
25% +5% (median +SE) only in non-remitter IBD-pati&e compared to healthy controlRdure

5B, top panel; Mann-Whitney U-test, p = 0.02), wher#ee predicted metabolic interchange of
remitter patients with IBD were similar to levelsserved for controls<gure 5B, lower panel;
Mann-Whitney U-test, p = 0.48). To exclude amypriori confounding factors that might affect
the predicted metabolic interchange, we perfornmezhl regression of gut metabolic interchange
with clinical, laboratory and histology-based diseanarkers at baseline. We were not able to
observe significant differences in disease actipdyameters (HBI/Mayo at baseline, leukocytes,
C-reactive protein, pathology index) that might lexp different baseline metabolic interchange
between remitting and non-remitting patien8igplementary Figure 5). To assess whether
disruption of metabolic interchange was specificalitributed to anti-TNF therapy or displayed
a unifying phenomenon of clinical disease state,inuestigated the proportion of metabolic
interaction pairs between remitters and non-remsitie response to therapy induction with an
anti a4p7-integrin antibody (vedolizumab). Although the gdenumber of remitters (n=11) and
non-remitters (n=2) was too small to substantiatefmdings using a statistically valid method,
our observation indicates that disrupted microlredtabolic interchange may also be more

pronounced in non-remitters to vedolizum&agplementary Figure 6).

In-silico meta-analysis of microbial metabolite cross-feeding interactions predicts specific
metabolic pathways associated with anti-TNF therapy in IBD

To identify exact metabolite cross-feeding intemt that are disrupted during IBD, we
combined the 16S rRNA data from all patients undierg anti-TNF therapy in cohort #1&2 for

anin-silico meta-analysis. Principle component analysis onptieelicted cross-feeding rates of



374 metabolites revealed neither cohort-derivedctbaeffects nor gender disparities
(Supplementary Figure 7). From these cross-feeding interactions, we iefief0 metabolites in
non-remitter patients that were less frequentlyherged already at baseline compared to
healthy controls. Only three (ethanol, glutamatkycige) of them were also observable in
patients that achieved clinical remissidfigure 6, left Venn diagram), suggesting a stronger
disruption of the metabolic interaction networknon-remitter patients with IBD. Interestingly,
in-silico analysis predicted a restoration of some affeatethbolites (e.g. butyrate) after anti-
TNF therapy Figure 6, right Venn diagram). Overall, non-remitting pat® with IBD display a
stronger disruption of metabolic interactions (7tabelites) in response to anti-TNF therapy
compared to patients achieving clinical remissbmgtabolitesfigure 6). A direct comparison

of baseline samples from remitting and non-rengttipatients inferred that especially the
intercellular exchange of butyrate is significantBduced by 81% (median) in non-remitter
patients compared to patients with IBD that achdegknical remission (false discovery rate-
corrected Mann-Whitney U-test, P = 0.02). Overthiése results support the hypothesis that the
response to therapy itself is strongly associatethé prevalence of metabolic exchanges in

treatment-naive patients.

Clinical remission in anti-TNF therapy is associated with changesin the stool metabolome
Based on thean-silico prediction of gut microbial metabolic cross-feeglimteractions, we
postulated that anti-TNF therapy might also be @ased with changes in fecal metabolites. To
test this hypothesis, we investigated the stoolabmbme from 9 patients with IBD (CD=3,
UC=6, remitting=5, non-remitting=4) at baseline aitér 14 weeks of anti-TNF treatment. To

define which metabolites were characteristic inebas, non-remission and remission groups,



we built an orthogonal partial least squares disicrant analysis (OPLS-DA) modeFigure
7A). The classification models were highly significdot both datasets. Overall, we observed
time-dependent differences between baseline andk viide and fewer differences due to
remission stateNigure 7A, 7B). Despite small effects of the treatment, we cdund particular
metabolites increased at baseline, in remissian non-remission statd-{gure 7C). Within the
screening set of 50 metabolites (authentic chensizaldards), 21 were found in fecal samples
and of those 4 metabolites were responsible forditkerimination of the three groupBigure
7C). Whereas the baseline group was discriminateeldyated levels of 3-indolepropionic acid
and L-tyrosine, 3-hydroxyphenylacetic acid was éased in the remission group and pyruvic
acid in the non-remission grougrigure 7C). All other clusters were not identified by an
authentic chemical standard and are only putativ@yotated on MS1 or MS2 level
(summarized inSupplementary Table 8). We next investigated whether specific stool
metabolites were applicable to delineate clinieahission in anti-TNF treated patients with IBD.
Overall, creatinine distinguished untreated (weplr@m anti-TNF treated (week 14) patients,
irrespective of remission status. Interestingly andine with ourin silico prediction, we found
that butyric acid was significantly increased umilyuin the stool metabolome of anti-TNF
remission patients. In contrast we found that thetafolite Cluster_1061 annotated & “
methyl-thiopropionic acid, methyl 2-(methylthio)ete) (Figure 7F) was found to be

specifically increased in patients with IBD not esting remission at week 14.

DISCUSSION
Dysbiosis is defined by altered diversity, compositand structure of the intestinal microbiota

but the underlying metabolic principles contribgtio dysbiosis remain poorly understood. Most



importantly, it is unknown whether anti-TNF theramay affect gut microbial composition or
function and could thereby contribute to diseaggrobin IBD. In this study, we investigated the
interplay of therapeutic anti-TNF inhibition andtguicrobiota function in IBD and delineated
the effects of organ-specific inflammation (i.etestinal vs. non intestinal) on host microbe
interaction using patients with rheumatic diseasa aon-intestinal inflammatory control cohort.
We confirmed that IBD and rheumatic diseases dyspliatinct features of altered microbial
community structure and metabolic function in congan with healthy individuals and thereby
confirm previous findings from studies assessincalfeglobal microbial profileso- and (3-
diversity) in IBD and rheumatic diseases®® *'While these previously published studies used
different techniques and sampling conditions, wesent a coherent dataset as a direct side by
side comparison of rheumatic diseases and patweititsIBD recruited from the same clinical
setting. Furthermore, we applied a novel systembgy approach that, for the first time in the
context of IBD, allowed us to assess functional semuences of the dysbiotic change in
community structure on the level of metabolic iatg#ions within microbial communities. We
show that anti-TNF treatment induces restorationinbéstinal microbial diversity in IBD,
whereas in rheumatic diseases, anti-TNF-associettedges were less pronounced and only
transient. We further analyzed anti-TNF-associat@fts of phylotype abundances in IBD and
rheumatic diseases by indicator species analysisdemtified disease-specific phylotypes that
change their abundance over the time course ofTdfE treatment in either IBD or rheumatic
diseases. Notably, we neither identified indicagpecies that specifically attributed to clinical
efficacy of anti-TNF treatment nor did we confirmepiously reported associations of increased
counts ofFaecalibacterium prausnitzat baseline with therapeutic efficatywhich both might

be attributed to small sample sizes in our study.



It is noteworthy that phylotypes whose abundancngkd significantly in patients with IBD
towards the direction of healthy subjects (€Cgprococcusand Roseburia inulinivoransare
known short chain fatty acid (SCFA) produc&ts?

These findings prompted us to interrogate gut nwdi@tiunctions using am silico, 16S rRNA
gene sequencing-based metabolic cross-feedingsimanhis analysis was conducted to identify
metabolic cross-feeding interactions that might tebate to increased butyrate production
observed in the case of therapeutic efficacy (rsimig. Using two independent cohorts of anti-
TNF therapy in IBD, we assessed potential metalioteractions between bacteria within the
community using constraint-based modeling. We sti@t/reduction in metabolite cross-feeding
interactions and increase of resource competitierpeesent in IBD. Such metabolic interactions
are widespread in human intestinal microbiota aredthought to be of high importance for
community stability and robustness in a healthytesfaWhile mutualistic and antagonistic
interactions can stabilize community dynamics ameraby contribute to the maintenance of
species diversity” %® interspecific resource competition can reduce camity stability?’
Moreover, it has been suggested that species agrecces in microbial communities are
largely driven by metabolic exchanges between .&&lladeed, we observed that metabolite
exchange interactions could be restored by anti-iritgfvention in IBD. More importantly, we
show that, already at baseline level, the totabibaite exchange across bacteria is significantly
disrupted in patients with IBD not achieving cliaicemission in response to anti-TNF therapy.
Lastly, we found that butyrate and substrates waablin butyrate synthesis, such as ethanol or
acetaldehyde, were less frequently exchanged arbaotgrial communities from patients that
did not show therapeutic efficacy in response t-BNF therapy. Along this line, it has been

shown by various studies that disturbances in therafial networks containing taxa that



typically produce SCFA characterize treatment failto conventional and biologic theraffy>®
These findings do not only support the crucial r@leSCFA in the disease control of patients
with IBD but also underline the feasibility of ugiri6Sin silico analysis to predict metabolic
pathways that are disrupted in IBD and might aftberapeutic efficacy, which has also been
suggested by other$. “° It is tempting to speculate on the mechanism dfoacby which
biologic therapy is able to restore metabolite exgje interactions in IBD. A robust clinical
response to biologic therapy leads to mucosal mgainducing subsequent changes in host
transcriptome architectufé. As impaired congruence between host transcriptame gut
microbiome has been described as a distinct featftil®D,** we assume that re-established
congruence upon successful biologic therapy mitgd affect phylotype-phylotype interactions
and metabolite crosstalk among bacteria. Howevdurther detailed molecular description of
changes in the mucosa-associated microbiota and ititeraction with host transcriptional
changes in the context of anti-TNF treatment isdeddo deepen our understanding of the host-
microbial interaction and its effect on remissioduction.

In summary, we demonstrate that the use of anti-frei&ment leads to restoration of intestinal
microbiome constitution and shifts of disease iathc taxa in human IBD, and we show that
specific inferred metabolic interactions betweemihal bacteria are associated with therapeutic
outcome in IBD. Similar to studies on immune chpoint inhibitors in cancer, our study clearly
suggests functional links between the intestinalcrafiial ecosystem and therapeutic
manipulation by TNF inhibition. Further studies #énes warranted to analyze the exact role of
the microbial metabolic interaction network as #&eptial diagnostic marker or actionable entry

point to actively improve therapy control in IBD.
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FigureLegends

Figure 1. a- and B-diversity of intestinal microbial communities in inflammatory bowel
disease (IBD), rheumatic diseases (RD) and healthy control subjects (HC). a-diversity
indices as estimated by observed number of phydstyp), estimated richness (B), NP Shannon
index of diversity (C) and phylodiversity (D). Pcipal coordinate plots based on Jaccard (E)
and Bray-Curtis (F) distances. Significance ofat#nces im-diversity indices were determined
by the Mann Whitney U test. Significance of diffeces in(-diversity was assessed by
PERMANOVA statistics. Bonferroni corrected p valu&ay Curtis: (HC-IBD, p = 0.0003;
HC—rheumatic diseases, p = 0.0003; IBD-rheumasieaties, p = 0.0366); Jaccard (HC—-IBD, p

= 0.0003; HC—rheumatic diseases, p = 0.0003; IBBwmmatic diseases, p = 0.237).

Figure 2: Anti TNF therapeutic intervention restores a-diversity in IBD, but not in
rheumatic diseases

Observed number of phylotypes (A and E), estimagties richness (B and F), NP Shannon
diversity (C and G) and phylodiversity (D and H}ices were assessed in fecal samples
collected from patients with IBD or rheumatic dises (RD) at baseline and after initiation of
anti-TNF interventions (W, week). Healthy contralbgects (HC) served as benchmark for
normal microbial diversities. Remitters are shovenopen circles, whereas non-remitters are
shown as filled circles. Significance of observatfedences were determined by Wilcoxon
matched-pairs signed rank test (pairwise comparidmfore and after the beginning of
therapeutic interventions) or Mann Whitney U tebeglthy control subjects compared to

patients).



Figure 3: Anti-TNF intervention partly restores phylotype alterationsin IBD.

(A) Loss (down) or gain (up) of indicator speci¢atss was determined in relation to healthy
control group microbiota. Relative abundance sigradlies were transformed into Z-scores for
visualization. Each column represents an individoatient whereas each row represents the
relative abundance of labelled indicator speci83. Representative indicator phylotypes that
were significantly decreased at week 0 compardueeaithy controls and increased in abundance
after anti-TNF therapeutic intervention to becomenparable to healthy control subject status
(median = green dashed line) at week 30. p-valugisate the statistical significance at week 0

between IBD and healthy control patients.

Figure 4. Bacterial metabolic interactions are disrupted in IBD and rheumatic diseases,

and metabolic interchange is especially reduced in patients not remitting in response to
anti-TNF intervention.

(A) Fraction of antagonistic (+/—), competitive -§-/and mutualistic (+/+) interactions among
bacterial community members for each disease g(tRIp or rheumatic diseases) and therapy
duration (week 0, 2, 6, or 30). Dashed lines in@i¢che median value for samples from healthy
subjects and the gray area the interquartile rafi@®&). (B) Predicted total intercellular
metabolite fluxes (i.e. interchange/cross-feedioigall metabolites relative to healthy controls.
The dashed line (=1) indicate the median value thedgray area the IQR for samples from
healthy subjects. Bar heights denote the mediandhange estimates for the respective disease
group (pre-treatment vs. post-treatment), dependimghe patients’ therapy response status

(Remission vs. No Remission). Error bars span@te. IAsterisks indicate significantly different



levels for the respective disease group and tinmepeoed to healthy controls (two-sided Mann-

Whitney U test, p < 0.05).

Figure 5: In silico-predicted ecological interaction types and total metabolite interchange
levelsin patientswith 1BD before and during anti-TNF intervention.

Fraction of antagonistic (+/-), competitive (-/-)damutualistic (+/+) interactions among
bacterial community members. Dashed lines inditagemedian value for samples from healthy
subjects and the gray area the interquartile rafi@®&). (B) Predicted total intercellular
metabolite fluxes (i.e. interchange/cross-feediofypall metabolites relative to the interchange
levels in healthy controls. The dashed line (=tjdates the median value and the gray area the
IQR for samples from healthy subjects. Bar heigl#sote the median of predicted interchange
estimates for the respective disease group angatients’ remission status. Error bars span the
IQR. Asterisks indicate significantly different lelg for the respective disease group and time

compared to healthy controls (two-sided Mann-Whjtbetest, p < 0.05).

Figure 6: Disruption of specific metabolite exchange inter actions between bacteria is more
pronounced in non-remitter patients with 1BD than in remitter patients already prior to
anti-TNF therapy.

The Venn diagrams show metabolites whose exchamgfegeen bacterial community members
are, compared to healthy controls, significantidueed in patients with IBD who go into
remission and/or do not achieve remission in thesm of the treatment (left: before treatment;

right: after treatment. False discovery rate-caa@dwo-sided Mann-Whitney U test, p < 0.05).



All anti-TNF-treated patients with IBD from cohgfl and #2 were combined for this analysis to

improve statistical power.

Figure 7: Stool metabolome analysis identifies indicator metabolites of therapy response in
patientswith IBD

Orthogonal partial least squares discriminant aialfOPLS-DA) scores plot derived from (+)-
(A) and (-)-HILIC-LC-MS/MS (B) analysis of longiturmal stool samples of 9 patients with IBD,
who underwent anti-TNF therapy. Samples were catbédefore therapy and at 14 weeks.
Baseline, non-remission and remission samplesaoei@d in gray and red respectively. OPLS-
loading plot illustrates clusters, which are respble for the separation of the three groups. (C)
Clusters are coloured according to the importancétfe three classes (red (high) to gray (low)).
Metabolites identified by authentic chemical staddaare labelled. (D—F) Creatinine, butyric
acid and the metabolite Cluster_1061 were foungetgignificantly altered between the groups.
#. increased at baseline compared to the non-remisgioup;*: increased in the remission
group compared to baseling; increased in the nonremission group comparedetoission

group; significance was calculated with Mann-Whytnank sum test (p-value<0.05).
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What you need to know

Background: We investigated the effects of treatment with tumor necrosis factor antagonists
(anti-TNF) on gut microbe community structure and function in patients with inflammatory
bowel diseases (IBD). We analyzed patterns of metabolitesin fecal samples before and after
anti-TNF therapy.

Findings: Anti-TNF therapy shifted the diversity of fecal microbiotain patients with IBD toward
that of healthy individuals. Levels of butyrate and substrates involved in butyrate synthesis were
significantly associated with clinical remission following anti-TNF therapy.

Impact: In silico modelling of metabolic profiles of fecal samples might be used to identify
patients with IBD likely to achieve remission following anti-TNF therapy. These ana yses might
also provide information about the pathogenesis of IBD.

Lay Summary: In patients with inflammatory bowel diseases, treatment with drugs such as
tumor necrosis factor antagonists alters the collection of gut microbes to more closely resemble
that of healthy persons. We identified molecul es produced by these microbes that are associated
with response to therapy. This finding might be used to improve IBD treatment.



Cohort #1

HC=19 RD= 17 IBD =12
R=11 NR=6 R=9 NR =3
16S profiling + in-silico metabolic flux
Cohort #2
HC=99 IBD = 23 (CD=10, UC=13)
VDZ =13 IFX =10
R=11 NR =2 R=6 NR =4
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Aden K., Rehman A., Waschina S. et. al.: Gut microbial metabolic functionsare
associated with Anti-TNF efficacy in IBD patients

Supporting Document

Supplementary Figures

Figure S1: Schematic overview of included cohort and analysis wor kflow

For hypothesis generation cohort #1 (MAUT) wasudeld in 16s profiling + in-silico metabolic flux
analysis. Key findings were validated in cohort(ERMED). For in-silico metaanalysis (Figure 6) HC
(in total n=118) and IBD patients (in total n=35¢n& pooled from cohort #1 and #2.

Figure S2: Alphadiversity in IBD and RD patientsaccording to responder status.

As a measure of change in alpha diversity, obsenwgdber of phylotypes (A and B), estimated
species richness (C and D), phylo-diversity (E &ydand NP Shannon diversity (G and H) were
assessed in faecal samples collected from IBD dhdubjects at baseline and after initiation of anti
TNFa interventions. Responders are shown as open giralbereas non-responders are shown as
filled circles.

Figure S3: Anti TNFa therapeutic intervention induces expansion of beta-diversity in IBD but

not in RD

Yue and Clayton dissimilarity (beta diversity) kit IBD (A) and RD (B) groups before and after
anti TNFo interventions. Interindividual distances beforerttpy initiation were used as baseline
point to compare interindividual distances at wetkweek 6 and week 30 aftenti TNFa
intervention. p values were determined by Wilcormetched-pairs signed rank test and represent Yue
and Clayton dissimilarity between healthy contnodl dBD patients (C), healthy control and RD (D).
Interindividual distances were compared to heatthwtrol at baseline and after therapy initiation at
week 2, week 6 and week 30. Significance of chamgge ascertained by Mann Whitney test

Figure $4: Indicator phylotypes before and after anti TNFa therapeutic intervention in RD
patients. (A) Loss (down) or gain (up) of indicator specistus was determined in relation to
healthy control group microbiota. Relative abundasignal values were transformed in to Z-score
for visualization. Each column represents individagtients whereas each row represents the relative
abundance of labelled indicator species. (B) Remtasive indicator phylotypes, that were
significantly decreased at week O compared to hga&ontrol and increased in abundance after anti
TNFa therapeutic intervention to become comparablestdthy control subject status at week 30. P-
values indicate the statistical significance atk@detween RD and HC patients.

Figure S5: Linear regression analysis of gut metabolic interchange with disease activity
parameters at baseline.

Linear regression of relative metabolic interchangith Disease activity score (HBI/Mayo),
Leukocytes count, C-reactive protein and pathologlex. Note, that none of the listed parameters
shows a significant relationship with the degreerefative metabolic interchange in baseline
microbial samples.

Figure S6: In silico-predicted ecological interaction types and total metabolite interchange levels

in IBD patients upon ant-a4f7 integrin intervention.

Fraction of antagonistic (+/-), competitive (-/gnd mutualistic (+/+) interactions among bacterial
community members. The dashed line indicates thdianevalue for samples from healthy subjects
and the gray area the interquartile range (IQR).T(#e predicted total intercellular metabolite #sx
(i.e. interchange/cross-feeding) of all metabolitdative to the interchange levels in healthy oalst
The dashed line (=1) indicates the median valuet@dyray area the IQR for samples from healthy



subjects. Bar heights denote the median of pratlictierchange estimates for the respective disease
group and the patients’ remission status. Erros bpan the IQR.

Figure S7: Principle component analysis on predicted metabolite exchange rates.

Samples from healthy controls and IBD patients-(ggatment only) and from both cohorts (MAUT
and EMED) were combined for this analysis. The ysialincluded the in silico-predicted cross-
feeding rates of 374 different metabolites. Showe @nly the first two principle component axes,
which cover 78% of the observed variability in thea.

Supplementary Tables

Table S1: Patient characteristics of cohort #1

Table S2: Response status in IBD and RD patients from ca¥brt

Table S3: Remission status in IBD patients from cohort #2

Table S4: Distribution of bacterial phylotypes in fecal gales obtained from healthy subjects and
IBD and RD subjects in cohort #1.

See online version for download

Table S5: Indicator value and p values of phylotypes altgreditively or negatively after 30 weeks

of anti-TNFa therapeutic intervention in IBD in comparison &althy subjects.

Table S6: Indicator value and p values of phylotypes altgueditively or negatively after 30 weeks

of anti-TNFa therapeutic intervention in RD in comparison taltiey subjects.

Table S7: Distribution of bacterial phylotypes in fecal gales obtained from healthy subjects and
IBD in cohort #2.

See online version for download

Table S8: List of identified metabolites in (+)/(-)-HILICC-MS/MS

See online version for download

Supplemental Materials and Methods

16SrRNA gene sequencing

Aliquot of extracted DNA was used to amplify V4 \adile region of 16S rRNA gene. Forward primer
(515F) consists of 'Sllumina adaptor (AATGATACGGCGACCACCGAGATCTACACKR primer
pad (TATGGTAATT), linker (GT) and 16S rRNA gene sjfie forward primer
(GTGCCAGCMGCCGCGGTAA) and reverse primer (806R)ludes reverse complement of 3'
lllumina adapter (CAAGCAGAAGACGGCATACGAGAT) barcod@xxXXXXXXxxX) reverse primer
pad (AGTCAGTCAG), reverse primer linker (CO) and veese primer
(GGACTACHVGGGTWTCTAAT). 16S rRNA gene variable regi V3 and V4 will be amplified
using dual indexed fusion primérsn brief primers consist of illumina linker seque, 12 base
barcode sequence and heterogeneity spacer folldyedither 16S rRNA gene specific forward
(319F: ACTCCTACGGGAGGCAGCAG) or reverse (806R: GGRAKCHVGGGTWTCTAAT)
primer sequences. Amplification was performed budihr? Hot start Flex 2X master Mix (New
England Biolab, Germany) in GeneAmp PCR system 9@®@plied Biosystems, Foster City,
California, USA) using following cycling conditionsan initial denaturation of 3 min at 98°C
followed by 30 cycles, denaturation at 98°C for déconds, annealing at ‘B5for 30 seconds,
elongation at 7Z for 30 seconds and a final extension aC7®r 10 minutes. PCR performance for
quality (expected amplicon size) and quantity (bamdnsity) was assessed by running aliquot of
amplified products on agarose gel. Quantitativemradization was performed using SequalPrep kit
(Invitrogen) to pool equal amount of amplicons pample. Sequencing was performed using the
lllumina MiSeq platform employing a paired end aggarh with two times 250 bases, aiming at a 250
base target region. Consequently, this approadlresnshe highest contig quality possible.

DNA extraction and 16SrRNA gene sequencing

16S rRNA gene variable region V4 19 (cohort #1) &3dv420 (cohort #2) based bacterial profiles
were generated from IBD and RD patients and coriteallthy subjects feces. Total genomic DNA
was extracted from feces using MoBio Powersoil Di¢alation kit (Dianova GmbH, Hamburg,



Germany) as per the manufacturer instructions.rBMA gene amplicon libraries were prepared and
sequenced as published earlier.

16SrRNA gene sequence analysis

Sequencing reads were primarily processed for tyuatintrol using the software mothur package 21.
For cohort #1 over 2.2 million high quality readsrying from 6366 to 67699 reads per samples.
These sequences were binned into 453 taxonomigdbtphes. For subsequent analysis sequences
per sample were rarefied to 6366 to have comparabtpiencing depth. This resulted in the
rarefication of 388 phylotypes. For cohort #2 o2ét million high quality ready varying from 4036 to
43033 reads per samples. These sampels were hitinet1 taxonomical phylotypes.

Forward and reverse reads (fastq) were mergedno ¢ontigs, and discarded if, were more than 275
bases in length, having any ambiguous base or thare8 homopolymers. Sequences were aligned
against mothur curated silva alignment database samdened to have alignment in amplified
specified (V4, V3-V4) regions only. Chimeric seqoes were detected by Uchime 22 algorithm and
were also removed. In the first step, sequences alassified (threshold 80%) phylogenetically using
mothur formatted greengenes (gg_13 8 99) traingtg and eliminated if classified as unknown,
archaea, eukaryotes, chloroplast or mitochondriabs&quently, reference-based (green genes)
operational taxonomical units (OTUs or phylotyppiking approach was implemented to cluster
sequences with same phylogenetic affiliations im fohylotype (label=£y. Alpha diversity indices
including observed and estimated number of phykdypnd non-parametric Shannon index were
calculated using mothur. For phylogenetic diversijimation neighbor joining phylogenetic tree was
generated by Clearcut command as implemented thundSignificance of differences in diversities
between healthy, IBD and RD subjects were assdsgafihitney U test, otherwise significance of
differences in diversities before and after thexapiere assessed by Wilcoxon matched-pairs signed-
rank test. Both tests were performed in GraphPainp5.0. To identify the specific phylotypes that
alters after therapy initiations, we used indicapecies analysis24 using 1000 iteration using uroth

Microbial community modelling

We used a flux balance analysis-based communityettiog approach® to assess the functional
consequences of shifts in microbial community dtreee in inflammatory diseases. Flux balance
analysis is a methodological framework that trizsnfer fluxes within metabolic networks through
the utilization of comprehensive reconstructions aof organism’'s metabolic network and the
assumption of evolutionary objectives for inferrifigxes within this network. The underlying
metabolic networks used are typically build frone tannotated genome of an organism with a
downstream manual curation procedure that corexotss in the model (e.g. based on literature data)
removes gaps in metabolic pathways and perforntsclialidation steps depending on the amount
of experimental data available for a specific oigah Additionally, these networks contain
information about the reversibility of the presaetctions and information about the specific
nutritional environment of an organism that is iexpkented through constraints on specific metabolite
uptake and secretion reactions. Using such netwéitksbalance analysis assumes that all (internal)
metabolites within a metabolic network are balandedtheir production/consumption and that
irreversible reactions are only used in the themymadically feasible direction. Using this
assumption, flux balance analysis determines a that maximizes the production of all biomass
components from the constrained nutrient supplyicwvishould reflect the evolutionary objective of
maximizing growth rate. In the context of microbi@mmunity modelling, the metabolic networks of
distinct bacterial species are connected to edutr dhrough a common compartment that allows for
the exchange of metabolites and contains an inflbmetabolites representing the respective growth
environment considered (e.g. a specific diet). \Weefassume that within a community, the objective
of optimization is community growth, that is, theaximization of the total amount of bacterial
biomass that is being producéd

We used the AGORA (Assembly of Gut Organisms thhoRgconstruction and Analysis) resource
containing genome-scale metabolic models of 773titoient bacterial species of the human gut
microbiota® to predict the ecological relationships betweansgpecies that are present in the analysed
microbial communities. These models were built isemi-automated fashion from the annotated
genomes of the corresponding speéieBurthermore, the models were used to assess atabatic



activity of communities in the individual samplesder defined dietary conditions and oxygen
regimes’. To simulate the nutritional environment in therfan gut, the inflow of metabolites into the
models were constrained by assuming a westerrdieanaerobic conditiohs

Please note that in this study, the bacterial genscale metabolic models were used to predict
metabolic phenotypes of bacterial populations witithe sampled microbiomes. Therefore,
predictions should be considered as novel hypathmsithe biochemical physiology of dysbiosis and
need to be experimentally scrutinised in futurelistst

Prediction of bacterial growth and ecological relationships

In order to determine whether pairs of co-exisspgcies affect each other's metabolism and growth
we used Flux Balance Analy$igo predict the organisms’ growth rates in isolat{single growth
Hsg and their growth rates in pairs of different spegco-growth ). The underlying rationale is
that the growth rate of an organism can be alténesugh metabolic interactions with neighboring
cells. For co-growth simulations, the models werergad in a pairwise manner as previously
described®®. The predicted single growth and co-growth ratesswcompared to infer the theoretical
ecological relationship of each pair of speciese Thlationship of two bacterial organisms was
considered (imutualistic if each organism could grow faster in co-growtmpared to single growth
(Heg > Msg + €), (i) competitive if both organisms crew slower compared to thespeetive single
growth rate (g < Hsg - €), (iii) antagonistic if one organisms could grow faster while the other
organism had a reduced growth rate, ¢mnmensal if one species could grow faster in a pair and one
did not show an altered growth rate,(fi € > g > Hsg- €) , (V) amensal if one organism had a
reduced growth rate and the other organism’s graethained unchanged, and (wgutral if both
species showed no difference between single- argtaeth rate. Are of 10° was used to account
for minor differences between predicted single- aadjrowth rates that might occur due to unstable
floating-point computations during linear optimipat In this study, we focused on mutualistic,
competitive, and antagonistic interactions becauwndy less than 1% (median) of the species pairs per
sample were predicted to be commensal, amensadwrah All scripts for single- and co-growth
simulations were implemented in R and are availablgtps://github.com/jotech/agora_interactions.
To map 16S sequencing reads from each sample toatiesponding bacterial models from the
AGORA resource and their predicted interactiongjusece reads were aligned against the 16S
ribosomal rRNA gene sequences of the corresporiaficgeria using USEARCH. Each sequence
was mapped to the AGORA organism with the highestl8S sequence identity and sequence reads
with less than 97% sequence identity were considasebacteria that are not included in the AGORA
collection. Next, we mapped for each sample thatixed phylotype frequencies to every pair of
AGORA organisms to calculate the relative pair alaucy ¢ = ¢ and ¢ =2*G- g fori#jwhere

¢ and g¢are the relative abundancies of the individual@iypes i and j, respectively.

Prediction of metabolic interchange within bacterial communities

To assess metabolic activity of the microbial comities for each sample, the metabolic models of
bacteria mentioned above were joined into a comiyiinulation as described previodsty Only
bacterial species, which were detected with aivelaibundance above 0.1% were included in the
community model. To account for individual abundassica ‘community biomass reaction’ was
introduced that incorporated the biomass reactdriBe individual bacteria in accordance with their
relative abundances. Fluxes were determined usigirponious flux balance analySis by
maximizing the production of community biomass sabjo the above mentioned dietary constraints
and concomitantly minimizing the total sum of flsxéscaled with a factor of f0n the objective
function). For each case, optimality of the resgjtiobjective function value was verified by
maximizing biomass production without minimizatiaf the total sum of fluxes. To accelerate
computation dietary constraints were scaled byctofaf ten. For individual bacteria, active reans
were determined based on a threshold flux 6f dnol/gDW/hr. To predict the activity of specific
reactions on the community level all fluxes of #ame biochemical reactions across all community
members were summed and a threshold flux of @mol/gDW/hr was used to decide which
reactions are likely to be active and which are nobnly marginally utilized. For the two cohove



tested for significantly different predicted reactiactivities between male and female samples mvithi
the healthy or IBD cohorts (pre-treatment) butmldd observe significant differences.

Impact of different assumptionsfor dietary conditions

As mentioned above, the flux balance simulatiomsbfacterial community metabolism requires the
definition of the nutritional environment. Chemi@amposition of the environment of gut-inhabiting
bacteria is decisively determined by the dietarpitsaof the human hdSt. Thus, also the model
prediction might be strongly influenced by the itidnal assumptions fain silico simulations. Since

all patients and healthy persons who were parhisf study were located in northern Germany we
assumed a standardized western diet as definetpsyf. Nonetheless, for sake of completeness we
compared the model predictions on the frequencyaatagonistic, mutualistic, and resource
competitive interactions also to a fictive diet i fibres, such as arabinogalactan and Xy(&iy
S11). For healthy controls, the models predict fsgagonistic and competitive interactions compared
to the western diets (see Fig. 3A). In contraswvestern diet, levels of antagonistic interactioms i
IBD and RD did not significantly differ to healtltpntrols, but resource competitive interactionsever
still significantly more frequent in both diseasstites if a high-fibre diet is used for model
simulations. Thus, changing the dietary conditibad some impact on model predictions, but model
simulations do not contradict the central obseoratdbf more abundant community-destabilizing
competitive interactions during disease. Moreoassuming a western diet is more accurate for the
specific two cohorts used in this study.

Manual and literatur e-based correctionsto AGORA metabolic models

While in silico simulating the metabolic processes within badt@wnmunities, we came across a
number of inconsistencies in the original modelergibn 1.01) that caused unrealistically high
predicted flux rates for metabolic cross-feedingeiiactions (i.e. > 500 mmol*igDW™; in
comparison, the maximum inflow flux of water is &2t1.0 mmol*h*gDW™). These high fluxes were
caused by futile cycles that involved the cyclikease and uptake of metabolites as depicted in the
scheme shown in Figure S7. The corrections ligte8uipplementary Table S6 prevented such cycles
and include amendments in reaction stoichiometdyrawmersibility.

Statistical analysis of metabolomic data

Metabolites were analyzed from stool samples oBB kubjects, treated with anti-TNFantibody,
which resulted in 4 non-remission and 5 remissiatiepts at week 14. An orthogonal partial least
squares discriminant analysis (OPLS-DA) was applefind variables, responsible for the separation
of remission and non-remission patients prior dter ghe treatment.

The robustness of the build model was verified bjcwation of p-values with cross-validation
analysis of variance (CV-ANOVA). The goodness df R2Y(cum), the goodness of prediction
Q?(cum), and the p-values were reported as indisator the significance of the models. The
coefficients of regression of the models were atergd in order to detect which metabolites are
highly correlated (positively or negatively) withet different classes. All the classification models
were done in SIMCA 13.0.3.0 (Umetrics, Umed, Swdre box plots in RStudio (Version 1.0.136
— © 2009-2016, RStudio, Inc.) and the Mann-Whitdiegnk Sum Test in SigmaPlot 12.0 (Systat
Software Inc., San Jose, CA, USA).

Non-tar geted metabolomicsusing HILIC-LC-MSM S

Around 50 mg of fecal stool sample was weighedténile ceramic bead tubes (NucleoSpin® Bead
Tubes, Macherey-Nagel, Dueren, Germany). One im#lil of pre-chilled (-20°C) methanol
(LiChrosolv®, hypergrade for LC-MS, Merck KGaA, Dastadt, Germany) was added to the stool
sample and homogenized with Precellys® Evolutionmidgenizer (Bertin Corp., Rockville,
Maryland, United States of America; 4,500 rpm, 40x32 s pause time). Samples were then
centrifuged for 10 minutes at 21.000xg, cooled°&. #An aliquot of 100 uL was evaporated at 40°C
(Savant, SPD121P, SpeedVac Concentrator, Therm@triSkientific, Waltham. Massachusetts,
United States of America) and reconstituted witko7&cetonitrile (LiChrosolv®, hypergrade for LC-
MS, Merck KGaA, Darmstadt, Germany) to perform hodrilic interaction liquid chromatography
(HILIC) coupled to mass spectrometry (MS) analy3ém robustness of the build model was verified



by calculation of p-values through the analysivariance of the cross-validated predictive resislual
(CV-ANOVA). In order to exclude possible overfittinthe significant level of p-value was set to
0.05.

Fecal samples and standard mixtures of 50 metabolitere analyzed on a time of flight mass
spectrometer (maxXis, Bruker Daltonics, Bremen, Gayl), coupled to an UHPLC system (Acquity,
Waters, Eschborn, Germany). A charge modulateddxyaithyl Amide HILIC column (iHILIC®-
Fusion UHPLC Column, SS, 100x2.1mm, 1.8um, 100ALIEON AB, Umea, Sweden)) was used
to separate polar metabolites of stool samplestagkssolution of 0.5 molar ammonium acetate
(Merck KGaA, Darmstadt, Germany) was adjusted to 4Bl with glacial acetic acid (Biosolve,
Valkenswaard, Netherlands). MilliQB was derived from Milli-Q Integral Water Purifiaan
System (Billerica, MA, United States of America)oMle phase for HILIC separation consisted of 5
millimolar ammonium acetate in 95% acetonitrile, g (A) and 25 millimolar ammonium acetate
in 30% acetonitrile, pH 4.6 (B). Elution of metabed was performed with a flow rate of 0.5
mL/minutes, using a 0.1-99.9% phase B gradient @ay&minutes. At the start, 0.1% B was kept for
2 minutes with increasing step to 99.9%B within mbutes. 99.9%B was constant for 2.5 minutes
with fast decrease to 0.1%B within 0.1 minutes angre-run time of 2.5 minutes at 0.1% B. The
column oven temperature was set to 40 °C and fketion volume at partial loop wagb.

M ass spectrometry conditions

Internal calibration of mass spectrometer was dmonénjecting ESI-L Low Concentration Tuning
Mix (Agilent, Santa Clara, CA, United States of Ana). External Calibration of mass spectrometer
was ensured by injecting ESI-L Low Concentratiomifig Mix (1:4 diluted in 75% acetonitrile) in
the first 0.3 minutes of each LC-MS run, introdutgda switching valve.

Mass spectra were acquired in positive and negativiegation mode (+/-ESI). ESI parameters were
as follows: nitrogen flow rate of 10 L/minute, dmgater of 200°C, nebulizer pressure of 2.0 bar and
capillary voltage of 4500V. Data was acquired meliand profile mode with acquisition rate of 5
Hertz. Data dependent MS/MS experiments were peddrfor each sample by fragmenting the three
most intense ions within one scan (>2000 countdyea@exclusion of 3 spectra, release after 0.1
minutes and reconsider precursor if current intgfsievious intensity x 3). Collision energy was se
to 10eV and isolation width of 8 Dalton.

Data processing

Raw LC-MS data were processed with Genedata ReRt&rsoftware (Genedata GmbH, Munich,
Germany), including chemical noise substractionlibcation, chromatographic peak picking,
deisotoping and metabolite library search (HMDB fa81 level (+0.005 Dalton}j and spectral
libraries derived from MasBank of North America tfiwmona.fiehnlab.ucdavis.edu) including
MassBank’, GNPS®, HDMB and LipidBlast’ for MS2 level (0.1 Dalton)). Final data matrix
consisted of mass signals (m/z) and their respecgitention time (RT) in minutes, called clustethwi
observed maximum intensity for each sample. Clastéth RT<1 minute were excluded from further
analysis. Data was normalized to the wet sampl@hteand scaled (unit-variance) prior statistical
analysis.
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