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� Abstract
Identifying nuclei is often a critical first step in analyzing microscopy images of cells
and classical image processing algorithms are most commonly used for this task.
Recent developments in deep learning can yield superior accuracy, but typical evalua-
tion metrics for nucleus segmentation do not satisfactorily capture error modes that
are relevant in cellular images. We present an evaluation framework to measure accu-
racy, types of errors, and computational efficiency; and use it to compare deep learning
strategies and classical approaches. We publicly release a set of 23,165 manually anno-
tated nuclei and source code to reproduce experiments and run the proposed evalua-
tion methodology. Our evaluation framework shows that deep learning improves
accuracy and can reduce the number of biologically relevant errors by half. © 2019

The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for

Advancement of Cytometry.
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Image analysis is a powerful tool in cell biology to collect quantitative measurements
in time and space with precision, speed, and sensitivity. From image-based assays to
high-content screening (1,2), microscopy images have led to understanding genetic
perturbations, pursuing drug discovery, and phenotyping cells in biomedical applica-
tions and cell biology research (3,4). The most widely used quantitative imaging
technique in biological laboratories is fluorescence imaging; with automation it can
easily produce terabytes of primary research data (5). Accurate and automated anal-
ysis methods are key to successfully quantify relevant biology in such large image
collections.

One critical step in quantifying fluorescence images is often the identification of
the nucleus of each cell with a DNA stain, and there is a long history of research
efforts to design and improve nuclear and cellular segmentation (6). One of the most
commonly used strategies for nucleus segmentation is Otsu’s thresholding method
(7) followed by seeded watershed (8,9), because of its effectiveness, simplicity of use
and computational efficiency. Machine learning-based segmentation methods have
also been introduced for segmenting cells (10), which typically require annotated
examples in the form of segmentation masks or interactive scribbles. Many of these
strategies are readily available in various bioimage software packages (11), including
open source options such as CellProfiler (12), Ilastik (10), and ImageJ/Fiji (13), facil-
itating their adoption in routine biological research.

Despite widespread adoption, segmentation tools in biology generally do yield
nontrivial amounts of segmentation error. These may silently propagate to
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downstream analyses, yielding unreliable measures or sys-
temic noise that is difficult to quantify and factor out. There
are several causes for segmentation errors. First, existing algo-
rithms have limitations due to the assumptions made in the
computational design that do not always hold, such as
thresholding methods that assume bimodal intensity distribu-
tions, or region growing that expects clearly separable bound-
aries. Second, the most popular solutions for nucleus
segmentation were originally formulated and adopted several
decades ago when the biological systems and phenotypes of
interest were often simpler; however, as biology pushes the
limits of high-throughput cellular and tissue models, natural
and subtle variations of biologically meaningful phenotypes
are more challenging to segment. Finally, algorithms are usu-
ally configured using a few—hopefully representative—images
from the experiment, but variations in signal quality and the
presence of noise pose challenges to the robustness and reli-
ability of the solution at large scale.

The ideal approach to nucleus segmentation would be a
generic, robust, and fully automated solution that is as reliable
as modern face detection technologies deployed in mobile
applications and social networks. The current state of the art
in face detection and many other computer vision tasks is
based on deep learning (14), which has demonstrated high
accuracy, even surpassing human-level performance in certain
tasks (15). Several models based on deep learning have
already been proposed for cell segmentation in biological
applications, most notably U-Net (16) and DeepCell (17),
which are based on convolutional neural networks (CNNs).

In this article, we present an evaluation framework,
including a new metric, to answer the question of how much
improvement is obtained when adopting deep learning models
for nucleus segmentation. The most commonly-used metric
for nucleus/cell segmentation evaluation is the Jaccard index
(17–19), which measures pixel-wise overlap between ground
truth and segmentations estimated by an algorithm. From a
cell biology perspective, pixel-wise overlap alone is not useful
to diagnose the errors that actually impact the downstream
analysis, such as missing and merged objects (Fig. S1). Thus,
we recommend the use of metrics that explicitly count cor-
rectly segmented objects as true positives and penalize any
instance-level error, similar to practice in diagnostic applica-
tions (20,21). These include object-level F1-score and false pos-
itives, among others.

We demonstrate the utility of this methodology by evalu-
ating two deep learning methods proposed for cell segmenta-
tion and comparing them against classical machine learning
and image processing algorithms. The goal of our study is to
investigate the potential of deep learning algorithms to
improve the accuracy of nucleus segmentation in fluorescence
images. Expert biologists on our team hand-annotated more
than 20,000 nuclei in an image collection of 200 images of the
DNA channel from a large image-based chemical screen,
sampled from a diverse set of treatments (22). We apply our
evaluation framework to analyze different types of segmenta-
tion errors, computational efficiency, and the impact of

quantity and quality of training data for creating deep learn-
ing models.

Our study is restricted to segmenting the nucleus of cells
in fluorescence images, which is different from the more gen-
eral cell segmentation problem. We also assume the availability
of a large dataset of annotated images for training the machine
learning models. We note that the deep learning techniques
evaluated in our experiments were designed for different set-
tings: general purpose cell segmentation with limited training
data. Nevertheless, both deep learning methods (DeepCell and
U-Net) showed improved ability for segmenting nuclei and fix
errors that are relevant to experimental biology when trained
with a large image set.

MATERIALS

Image Collection

The image set is a high-throughput experiment of chemical
perturbations on U2OS cells, comprising 1,600 bioactive com-
pounds (22). The effect of treatments was imaged using the
Cell Painting assay (23) which labels cell structures using six
stains, including Hoechst for nuclei. From this image collec-
tion, we randomly sampled 200 fields of view of the DNA
channel, each selected from a different compound. By doing
so, phenotypes induced by 200 distinct chemical perturba-
tions were sampled.

The original image collection is part of the Broad
Bioimage Benchmark Collection, with accession number
BBBC022, and the subset used for this study has been made
publicly available with accession number BBBC039 at https://
data.broadinstitute.org/bbbc/BBBC039/.

Expert Annotations

Each image in the sampled subset was reviewed and manually
annotated by PhD-level expert biologists. Annotators were
made to label each single nucleus as a distinguishable object,
even if nuclei happen to be clumped together or appear to be
touching each other. Nuclei of all sizes and shapes were
included as our goal was to densely annotate every single
nucleus that can be recognized in the sampled images, regard-
less of its phenotype. In this way, a wide variety of pheno-
types was covered, including micronuclei, toroid nuclei,
fragmented nuclei, round nuclei, and elongated nuclei, among
others (22).

We included tiny fragments of nuclei as part of the
annotated objects in our dataset, which correspond to small
blobs of DNA-stained material that appear to be membrane
bound, primarily micronuclei. The biological relevance of
micronuclei is abundantly documented in the literature
(24–29) and these are frequently quantified using fluorescent
imaging for projects involving cancer research, congenital dis-
orders, and therapy toxicity, among others. Adding these tiny
objects to the dataset is useful to stimulate computational
research that detects and quantifies them better.

Creating a resource of manually annotated images is
time consuming, and existing tools for annotating natural
images are not ideal for microscopy. In order to improve and
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simplify the image annotation experience for experts in our
team, we created a prototype annotation tool to assign
single-object masks in images. Our user interface allowed the
experts to zoom in and out to double check details, and also
presented the annotation masks overlaid on top of the original
image using a configurable transparency layer. Importantly, our
annotation tool was based on assisted segmentation based on
superpixels, which are computed on intensity features to facili-
tate user interactions.

Our prototype tool was useful to collect nucleus annota-
tions for this research; however, significant development is
needed to improve it. Alternative methods for collecting
image annotations now exist, such as the Quanti.us system (30)
for distributing manual annotations to nonexpert workers
on the internet. This may enable the annotation process for
new projects to be scaled up quickly to many more images,
and, according to their findings, reaching similar precision to
experts when multiple workers provide independent annotation
replicates.

METHODS

Identifying nuclei in an image is best framed as an “instance
segmentation” problem (31), where the challenge is to find dis-
tinct regions corresponding to a single class of objects: the
nucleus. Semantic segmentation (32), which splits an image to
regions of various classes without requiring objects to be sepa-
rated, is not helpful for nucleus segmentation because there is
only one class, and touching nuclei would not be distinguished

from each other. Both of the deep learning strategies evaluated
in this article are cases of instance segmentation that formulate
nucleus segmentation as a boundary detection problem.

The boundary detection problem consists of identifying
three different types of pixels in an image of nuclei:
(a) background, (b) interior of nuclei, and (c) boundaries of
nuclei. This formulation simplifies the problem of instance
segmentation into a three-class, pixel-wise classification prob-
lem (Fig. 1), which can be understood as a semantic segmen-
tation solution to identify the structural elements of the
image. The critical class to separate single objects is the
boundary class: failure to classify boundaries correctly will
result in merged or split objects. The actual segmentation
masks are obtained from the interior class, which covers the
regions where objects are located. This requires additional
postprocessing steps over classification probability maps to
recover individual instances using the connected components
algorithm (33) and morphological operators (34) (Supporting
Information S2). Note that while we pose this as a pixel-wise
classification problem of boundaries, we evaluate the perfor-
mance on the success of identifying entire objects.

The ground truth to solve the boundary detection prob-
lem starts with masks individually assigned to each object
(Section 2.2) and then transformed to three-class annota-
tions. The boundary annotations are initially obtained from
ground truth annotations using a single pixel contour
around each nucleus. We then expand this contour with two
more pixels, one inside and another outside the boundary to
cover natural pixel intensity variations of the input image

Figure 1. Strategy of the evaluated deep learning approaches. Our main goal is to follow the popular strategy of segmenting each nucleus

and micronucleus as a distinct entity, regardless of whether it shares the same cell body with another nucleus. It is generally possible to

group nuclei within a single cell using other channels of information in a postprocessing step if the assay requires it. (a) Images of the DNA

channel are manually annotated, labeling each nucleus as a separate object. Then, labeled instances are transformed to masks for

background, nucleus interior, and boundaries. A convolutional neural network (CNN) is trained using the images and their corresponding

masks. (b) The trained CNN generates predictions for the three class classification problem. Each pixel belongs to only one of the three

categories. In postprocessing, the predicted boundary mask is used to identify each individual instance of a nucleus.
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and also to compensate for errors in manual annotations.
We tested with boundaries of different sizes but did not
observe any significant benefits of further adjusting this
configuration.

Various CNNs can be used for nucleus segmentation,
including the Mask-RCNN model (35), which decomposes
images into regions first and then predicts object masks. The
automatic design of neural networks by searching the space of
architectures with an optimization procedure (36) may also be
used to create generic nucleus segmentation networks. How-
ever, in this work we do not propose novel architectures,
instead, we develop an evaluation methodology to identify
errors and improve performance of existing models. Specifi-
cally, we evaluate two architectures, representing two promi-
nent models designed and optimized for segmenting biological
images: DeepCell (17) and U-Net (16). We use the same
preprocessing and postprocessing pipeline when evaluating
both CNN models (Supporting Information S2), so differences
in performance are explained by architectural choices only.

DeepCell

DeepCell (17) is a framework designed to perform general-
purpose biological image segmentation using neural networks.
Its driving philosophy is to get deep learning operational in
biological laboratories using well-constructed models that can
be trained with small datasets using modest hardware require-
ments, making them usable in a small data regime. The
DeepCell library is open source and features a Docker con-
tainer with guidelines for training and testing models with
new data via Jupyter Notebooks, and more recently, user-
friendly functionalities to run a deep learning application in
the cloud (37).

The DeepCell model evaluated in our work is a CNN
that segments images of cells using a patch-based, single pixel
classification objective. The network architecture has seven
convolutional layers, each equipped with a ReLu nonlinearity
(38) and batch normalization (39); three max-pooling layers
to progressively reduce the spatial support of feature maps;
and two fully connected layers; totaling about 2.5 million
trainable parameters per network (a full DeepCell model is an
ensemble of five networks). Note that DeepCell was designed
to be trained in a sample wise fashion and then executed in a
fully convolutional way. During training, the incoming feature
layer is flattened, and during execution a tensor product using
the same weight matrix is used. This architecture has a recep-
tive field of 61 × 61 pixels, which is the approximate area
needed to cover a single cell (of a diameter up to 40 μm,
imaged at 20× at a resolution of 0.656 μm/pixel), and pro-
duces as output a three-class probability distribution for the
pixel centered in the patch.

In our evaluation, we use the recommended configura-
tion reported by Van Valen et al. (17), which was demon-
strated to be accurate on a variety of cell segmentation tasks,
including mammalian cell segmentation and nuclei. Their
configuration include training an ensemble of five replicate
networks to make predictions in images. The final segmenta-
tion mask is the average of the outputs produced by each

individual network. The ensemble increases processing time
and the number of trainable parameters, but can also improve
segmentation accuracy. The settings of the DeepCell system
that we used in our experiments can be reproduced using
the following Docker container: https://hub.docker.com/r/
jccaicedo/deepcell/.

U-Net

The U-Net architecture (16) resembles an autoencoder (40)
with two main sub-structures: (a) an encoder, which takes an
input image and reduces its spatial resolution through multi-
ple convolutional layers to create a representation encoding.
(b) A decoder, which takes the representation encoding and
increases spatial resolution back to produce a reconstructed
image as output. The U-Net introduces two innovations to
this architecture: First, the objective function is set to recon-
struct a segmentation mask using a classification loss; and
second, the convolutional layers of the encoder are connected
to the corresponding layers of the same resolution in the
decoder using skip connections.

The U-Net evaluated in our work consists of eight con-
volutional layers and three max pooling layers in the encoder
branch, and eight equivalent convolutional layers with
upscaling layers in the decoder branch. We note that batch
normalization layers were not part of the original U-Net
design, so we added one after all convolutional layers in our
implementation. The skip connections copy the feature maps
from the encoder to the decoder. The receptive field of the
U-Net is set to 256 × 256 pixels during training, which can
cover a large group of cells at the same time. This architecture
has a total of 7.7 million trainable parameters.

We adapted the objective function as a weighted classifi-
cation loss, giving 10 times more importance to the boundary
class. We did not introduce a different weighting scheme for
edges between two cells, giving all boundary pixels the same
weight regardless of their context (background or another
cell). We apply basic data augmentation during training,
including random cropping, flips, 90� rotations, and illumina-
tion variations. Also, we apply additional data augmentation
using elastic deformations, as discussed by the authors (16).
The training parameters for this network were tuned using
the training and validation sets, and the final model is applied
to the test set to report performance. The source code of our
U-Net implementation can be found in https://github.com/
carpenterlab/2019_caicedo_cytometryA, with an optional
CellProfiler 3.0 plugin of this nucleus-specific model (41).
Also, a U-Net plugin was independently developed for ImageJ
for running generic cell segmentation and quantification
tasks (42).

Evaluation Metrics

Measuring the performance of cell segmentation has been
generally approached as measuring the difference between
two segmentation masks: a reference mask with ground truth
objects representing the true segmentation, versus the pre-
dicted/estimated segmentation mask. These metrics include
root-mean-square deviation (43), Jaccard index (17), and
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bivariate similarity index (18), among others. However, these
metrics focus on evaluating pixel-wise segmentation accuracy
only, and fail to quantify object-level errors explicitly (such as
missed or merged objects).

In our evaluation, we adopt an object-based accuracy
metric that uses a measure of area coverage to identify cor-
rectly segmented nuclei. Intuitively, the metric counts the
number of single objects that have been correctly separated
from the rest using a minimum area coverage threshold. The
metric relies on the computation of intersection-over-union
between ground truth objects T and estimated objects E:

IoU T ,Eð Þ= T \E
T [E

Consider n true objects and m estimated objects in an
image. A matrix Cn × m is computed with all IoU scores
between true objects and estimated objects to identify the best
pairing. This is a very sparse matrix because only a few pairs
share enough common area to score a nonzero IoU value.

To complete the assignment, a threshold greater than 0.5
IoU is applied to the matrix to identify segmentation matches.
In our evaluation, we do not accept overlapping objects, that
is, one pixel belongs only to a single nucleus. Thus, a threshold
greater than 0.5 ensures that for each nucleus in the ground
truth there is no more than one match in the predictions, and
vice versa. We also interpret this threshold as requiring that at
least half of the nucleus is covered by the estimated segmenta-
tion to call it a true positive. In other words, segmentations
smaller than half the target object are unacceptable, raising the
bar for practical solutions. This differs from a previous strategy
(44) that takes a similar approach but does not impose this
constraint, potentially allowing for very low object coverage.
At a given IoU threshold t, the object-based segmentation
F1-score is then computed as:

F1 =
2TP

2TP + FN + FP
:

We compute the average F1-score across all images, and
then across multiple thresholds, starting at t = 0.50 up to
t = 0.90 with increments Δt = 0.05. This score summarizes
the quality of segmentations by simultaneously looking at the
proportion of correctly identified objects as well as the pixel-
wise accuracy of their estimated masks.

Our evaluation metric is similar in spirit to other evalua-
tion metrics used in computer vision problems, such as object
detection in the PASCAL challenge (45) and instance seg-
mentation in the COCO challenge (31,46). One important
difference between these metrics and ours is that our problem
considers a single object category (the nucleus), and therefore,
it is more convenient to adopt the F1-score instead of preci-
sion. Precision and recall have been used in previous studies
of nucleus segmentation in fluorescent images (47), and
F1-score has also been adopted to measure segmentation per-
formance in tissue samples (48). But we note that our score is
evaluated across multiple intersection-over-union thresholds,

which is the practice in modern computer vision research to
simultaneously measure object detection accuracy as well as
shape alignment accuracy.

In our evaluation, we also measure other quality metrics,
including the number and type of errors to facilitate perfor-
mance analysis (49). The following are different types of
errors that a segmentation algorithm can make: false nega-
tives (missed objects); merges (under-segmentations), which
are identified by several true objects being covered by a single
estimated mask; and splits (over-segmentations), which are
identified by a single true object being covered by multiple
estimated masks. We identify these errors in the matrix C of
IoU scores using a fixed threshold for evaluation, and keep
track of them to understand the difficulties of an algorithm to
successfully segment an image.

Baseline Segmentations

Classic image processing
We use CellProfiler 3.0 (41) pipelines to create baseline seg-
mentations. CellProfiler was used as a baseline over other
tools because it offers great flexibility to configure multi-step
image processing pipelines that connect different algorithms
for image analysis, and it is widely used in biology labs and
high-throughput microscopy facilities. The pipelines are con-
figured and tested by an expert image analyst using images
from the training set, and then run in the validation and test
set for evaluation. We refer to two CellProfiler pipelines for
obtaining baseline segmentations: basic and advanced.

The basic pipeline relies only on the configuration of the
module IdentifyPrimaryObjects, which is frequently used to
identify nuclei. The module combines thresholding tech-
niques with area and shape rules to separate and filter objects
of interest. This is the simplest way of segmenting nuclei
images when the user does not have extensive experience with
image analysis operations, yet it is complete enough to allow
them to configure various critical parameters.

The advanced pipeline incorporates other modules for
preprocessing the inputs and postprocessing the outputs of
the IdentifyPrimaryObjects module. In our advanced configu-
ration, we included illumination correction, median filters
and opening operations, to enhance and suppress features in
the input images before applying thresholding. These opera-
tions are useful to remove noise and prepare images to the
same standard for segmentation using the same configuration.
The postprocessing steps include measuring objects to apply
additional filters and generate the output masks.

A single pipeline was used for segmenting images in the
BBBC039 dataset, while Van Valen’s set required to split the
workflow in two different pipelines. We observed large signal
variation in Van Valen’s set given that these images come
from different experiments and reflect realistic acquisition
modes. Two settings were needed for thresholding, the first
for normal single mode pixel intensity distributions and
another one for bimodal distributions. The latter is applied to
cases where subpopulations of nuclei are significantly brighter
than the rest, requiring two thresholds. We used a clustering
approach to automatically decide which images needed which
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pipeline. The pipelines used in our experiments are released
together with the data and code.

Segmentation using classic machine learning
We used Ilastik (10) to train a supervised machine-learning
model as an additional benchmark in this evaluation. Ilastik is
effective at balancing memory and CPU requirements, allowing
users to run segmentations in real time with sparse annotations
over the images (scribbles). We loaded the full set of existing
annotated training images, and trained a Random Forest classi-
fier with the default parameters. The feature set included inten-
sity, edge, and texture features in three different scales. The
annotated images used the same three categories used for
deep-learning-based segmentation: background, interior, and
boundaries of nuclei. In addition, we subsampled pixels in the
background and interior categories to balance annotations and
reduce the impact of redundant pixels.

After the Random Forest model is trained, the validation
and test images were loaded into Ilastik for predictions. We
obtained the probability maps for each category and applied
the same postprocessing steps used for deep-learning-based
segmentations (Supporting Information S2).

RESULTS

Deep Learning Improves Nucleus Segmentation

Accuracy

Overall, we find that deep learning models exhibit higher accu-
racy than classical segmentation algorithms, both in terms of

the number of correctly identified objects, as well as the locali-
zation of boundaries of each nucleus (Fig. 2). We evaluate these
properties using the F1-score (the harmonic average of preci-
sion and recall) averaged over increasingly stringent thresholds
of overlap between the ground truth and prediction. U-Net
and DeepCell obtained higher average F1-scores (Fig. S1),
yielding 0.898 and 0.858, respectively, versus 0.840 for Random
Forests, 0.811 for advanced CellProfiler and 0.790 for the basic
CellProfiler pipeline. This improvement is a significant margin
when experiments are run at large scale with thousands of
images. Deep learning models yield a higher average F1-score
across higher thresholds (Fig. 2a), indicating that the bound-
aries of objects are more precisely mapped to the correct con-
tours compared to the other methods.

The most common errors for all methods are merged
objects, which occur when the segmentation fails to separate
two or more touching nuclei (yellow arrows in Fig. 2b). Deep
learning strategies tend to reduce this type of error (more in
Fig. 3c) and provide tighter and smoother segmentation
boundaries than those estimated by global Otsu thresholding
and declumping, which is at the core of the baseline Cel-
lProfiler pipelines for nucleus segmentation.

Qualitatively, nucleus boundaries predicted by deep
learning appear to define objects better than those produced
by human annotators using an assistive annotation tool,
which can introduce boundary artifacts. Neural nets can learn
to provide edges closer to the nuclei with fewer gaps and
better-delineated shapes, despite being trained with examples

Figure 2. Segmentation performance of five strategies compared against ground-truth expert segmentations. (a) Average F1-score versus

nucleus coverage for U-Net (green), DeepCell (yellow), Random Forest (purple), CellProfiler advanced (red), and CellProfiler basic (blue).

The y axis is average F1-score (higher is better), which measures the proportion of correctly segmented objects. The x axis represents

intersection-over-union (IoU) thresholds as a measurement of how well aligned the ground truth and estimated segmentations must be to

count a correctly detected nucleus. Higher thresholds indicate stricter boundary matching. Notice that average F1-scores remain nearly

constant up to IoU = 0.80; at higher thresholds, performance decreases sharply, which indicates that the proportion of correctly

segmented objects decreases when stricter boundaries are required to count a positive detection. (b) Example segmentations obtained

with each of the five evaluated methods sampled to illustrate performance differences. Segmentation boundaries are in red, and errors

are indicated with yellow arrows.
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that have such boundary artifacts, showing ability to general-
ize beyond noise. Overcoming the limitation of assisted anno-
tations is a major strength of this approach because fixing
boundary artifacts by hand in the training data is very time
consuming. We suspect that the accuracy drop observed in
the segmentation performance plot at IoU = 0.85 (Fig. 2a)
may be partly explained by inaccurate boundaries in ground
truth annotations, that is, improved segmentations may be
unfairly scored at high thresholds.

Deep Learning Excels at Correct Splitting of Adjacent

Nuclei

Deep learning methods make fewer segmentation mistakes
compared to classical pipelines, effectively correcting most of
their typical errors (Figs. 3 and 4). Here, an error is defined
as when a nucleus in the ground truth is missed in an esti-
mated segmentation mask after applying a minimum IoU
threshold of 0.7. By this metric, U-Net achieves an error rate
of 8.1%, DeepCell 14.0%, Random Forest 16.5%, advanced
CellProfiler 15.5%, and basic CellProfiler 20.1% (Fig. S2).
These results are consistent with the evaluation of accuracy
performed at multiple IoU thresholds, indicating that deep
learning obtains improved performance.

To understand the performance differences among
the evaluated methods, we categorized missed objects by
size (Fig. 3a,b) and segmentation errors by type (merges

vs. splits; Fig. 4a,b). An object is missed when the segmen-
tation does not meet the minimum IoU threshold crite-
rion. A merge is counted when one estimated mask is
found covering more than one ground truth mask. Simi-
larly, a split is counted when a ground truth mask is being
covered by more than one estimated mask. Note that splits
and merges are a subset of the total number of errors, and
partially overlap with the number of missed objects. That
is, some splits and all merges result in one or more miss-
ing objects, but not all missing objects are a result of a
split or merge.

Deep learning corrects almost all of the errors made by
classical pipelines for larger nuclei. We also note that all
methods usually fail to capture tiny nuclei correctly (gener-
ally, micronuclei, which are readily confounded with debris
or artifacts, and represent about 15% of all objects in the test
set; Fig. 3a). Interestingly, deep learning tends to accumulate
errors for tiny nuclei only, while the CellProfiler pipelines
and Random Forests tend to make errors across all sizes
(Fig. 3b). Tiny nuclei are missed for several reasons, includ-
ing merging with bigger objects, confounding with debris, or
failing to preserve enough object signal for the post-
processing routines. Some of these issues can be addressed
by developing multi-scale segmentation methods or by
increasing the resolution of the input images either optically
or computationally.

Figure 3. Analysis of segmentation errors (missed and extra objects). The 5,720 nuclei in the test set were used in this analysis.

(a) Fraction of missed nuclei by object size (see table). Missed objects in this analysis were counted using an IoU threshold of 0.7, which

offers a good balance between strict nucleus coverage and robustness to noise in ground truth annotations. (b) Example image

illustrating sizes of nuclei. (c) Fraction of extra or false objects introduced by algorithms.
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Both deep learning approaches are effective at recogniz-
ing boundaries to separate touching nuclei and correct typical
error modes of classical algorithms: merges and splits
(Fig. 4a). Split errors produced by the advanced CellProfiler
pipeline reveal a trade-off when configuring the parameters of
classical algorithms: in order to fix merges we have to accept
some more splits. A similar situation happens with U-Net: it
has learned to separate clumped nuclei very effectively
because the boundary class has 10 times more weight in the
loss function, which at the same time forces the network to
make some splits to avoid the cost of missing real boundaries
(Fig. 3a,c).

We observe different types of errors produced by the
two deep learning models. U-Net detects nuclei of all sizes
better than DeepCell (Fig. 3a), but also sees imaginary objects
more often (Fig. 3c). Also, U-Net is more sensitive than
DeepCell at detecting intra-cell edges, which helps introduce
fewer merge errors. However, U-Net also see edges where it
should not, leading to more splitting errors as well (Fig. 4a).
Computationally, two main differences between the methods
are the use of multiresolution and how spatially coarse feature
maps are created. However, we did not investigate the impact
on performance of these or other differences (such as filter
sizes) in detail in this work.

More Training Data Improves Accuracy and Reduces

Errors

We found that training deep learning models with just two
images performs already more accurately than an advanced
CellProfiler pipeline (Fig. 5a). This is consistent with previous
experiments conducted in the DeepCell study (17), demon-
strating that the architecture of neural networks can be
designed and optimized to perform well in the small data
regime. Since training a CNN requires the additional effort of
manually annotating example images for learning, limiting
the investment of time from expert biologists is valuable.

Data augmentation plays an important role for achieving
good generalization results with a small number of images.

DeepCell classifies the center pixel of cell-sized patches, creat-
ing a large dataset with thousands of examples obtained from
each image. Basic augmentations include image rotations,
flips, contrast, and illumination variations. When combined
all together, it results in thousands of training points drawn
from an image manifold around the available annotated
examples. U-Net follows a similar approach but using larger
crops and additional data augmentation based on elastic
deformations.

Providing more annotated examples improved segmenta-
tion accuracy and reduced the number of errors significantly
(Fig. 5). Accuracy improves with more data, gaining a few
points of performance as more annotated images are used, up
to the full 100 images in the training set (Fig. 5a). We found
little difference in this trend whether using basic data aug-
mentation versus using extra augmentations based on elastic
deformations.

Segmentation errors are reduced significantly with more
annotated examples, by roughly half (Fig. 5b), but as above,
even training with two images produces results better than
the advanced CellProfiler baseline. Touching nuclei particu-
larly benefit from more training data, which helps to reduce
the number of merge errors. As a model learns to fix difficult
merge errors by correctly predicting boundaries between
touching objects, a trade-off occurs: some split errors appear
in ambiguous regions where no boundaries should be
predicted. This effect makes the number of split errors
increase with more data, albeit at a slower rate and rep-
resenting a very small fraction of the total number of errors,
while being still fewer than the number of splits made by the
advanced CellProfiler pipeline.

Providing a Variety of Training Images Improves

Generalization

Preventing overfitting is an important part of training deep
learning models. In our study, we followed the best practices,
discussed in detail in the DeepCell work, to mitigate the effect
of overfitting: (a) collection of a large annotated dataset for

Figure 4. Analysis of segmentation errors (splits and merged objects). The 5,720 nuclei in the test set were used in this analysis.

(a) Fraction of merged and split nuclei. These errors are identified by masks that cover multiple objects with at least 0.1 IoU. (b) Example

merges and splits.
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training; (b) the use of pixel normalization and batch normal-
ization to control data and feature variations, respectively;
(c) the adoption of data augmentation; (d) weight decay to
control parameter variations. Besides all these known strate-
gies, we also found that including example images with tech-
nical variations in the training set (such as experimental noise
or the presence of artifacts) can prevent overfitting, serving as
an additional source of regularization.

We found that training with images that exhibit different
types of noise produces models that transfer better to other
sets (Fig. 6a). In contrast, training on an image set that has
homogeneous acquisition conditions does not transfer as well
to other experiments (Fig. 6b). We tested U-Net models
trained on one image set and evaluated their performance
when transferring to another set. In one case we took images
of nuclei from a prior study (“Van Valen’s Set”)(17), rep-
resenting different experiments and including representative
examples of diverse signal qualities, cell lines, and acquisition
conditions (Fig. 6d). In the other case we used the BBBC039
image collection which exhibits homogeneous signal quality
and was acquired under similar technical conditions (Fig. 6c).

A model trained only on the 9 diverse images of Van
Valen’s set generalizes well to test images in BBBC039,
improving performance over the baseline (Fig. 6a) and
reaching comparable performance to the model trained on
BBBC039 training images. Note that training a network on
images of BBBC039 improves performance with respect to
the CellProfiler baseline. The transferred model does not fix
all the errors, likely because the number of training examples
is limited. Nevertheless, the transferred performance indicates

that it is possible to reuse models across experiments to
improve segmentation accuracy.

A transfer from the more homogenous BBBC039 set to
the more diverse Van Valen’s set is less successful: a model
trained with 100 examples from the BBBC039 set fails to
improve on the test set of Van Valen’s images despite the
availability of more data (Fig. 6b). This demonstrates the
challenges of dealing with varying signal quality, which is a
frequent concern in high-throughput and high-content
screens. The large gap in performance is explained by varying
signal conditions (Fig. 6c,d): because the model did not
observe these variations during training, it fails to correctly
segment test images.

The CellProfiler pipelines also confirm the difficulty of
handling noisy images. A single pipeline cannot deal with all
variations in Van Valen’s test set, requiring the adjustment of
advanced settings and the splitting of cases into two different
pipelines. In BBBC039, a single pipeline works well due in
part to the homogeneity of signal in this collection; the errors
are due to challenging phenotypic variations, such as tiny
nuclei or clumped objects.

Deep Learning Needs More Computing and

Annotation Time than Classical Methods

Although we found the performance of deep learning to be
favorable in terms of improving segmentation accuracy, we
also found that this comes at higher computational cost and
annotation time. First, deep learning requires significantly
more time to prepare training data with manual annotations
(Fig. 7a). Second, deep learning needs the researchers to train

Figure 5. Impact of the number of annotated images used for training a U-Net model. Basic augmentations include flips, 90� rotations,

and random crops. Extra augmentations include the basic plus elastic deformations. (a) Accuracy improves as a function of the number of

training images, up to a plateau around 20 images (representing roughly 2,000 nuclei). (b) Segmentation errors are reduced overall as the

number of training images increases, but the impact differs for merges versus splits. The advanced CellProfiler pipeline is shown as

dotted lines throughout. Results are reported using the validation set to prevent over-optimizing models in the test set (holdout). For all

experiments, we randomly sampled (with replacement) subsets (n = 2, 4, 6, 8, 10, 20, 40, 60, 80, 100) of images from the training set

(n = 100) and repeated 10 times to evaluate performance. Data points in plots are the mean of repetitions. Although the percent overlap

between the random samples increases with increasing sample size, and is 100% for n = 100, we nonetheless kept the number of repeats

fixed (=10) for consistency. The numbers below each arrow indicate the reduction in number of errors for each category of errors.
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Figure 6. Signal quality is the main challenge when transferring models across experiments: Performance differences when models are

trained and evaluated in different experiments. (a) Models evaluated on the BBBC039 test set, including a U-Net trained on the same set,

another U-Net trained on Van Valen’s set, and a CellProfiler pipeline. The results indicate that transferring the model from one screen to

another can bring improved performance. (b) Models evaluated in Van Valen’s test set, including CellProfiler baselines adapted to this set,

a U-Net trained on the same set, and another U-Net trained on BBBC039. The results illustrate the challenges of dealing with large signal

variation. (c) Example images from BBBC039 showing homogeneous signal with uniform background, which is reflected in the

aggregated histogram of fluorescent intensities for this dataset, with a bimodal distribution and easily separable peaks. (d) Example

images from Van Valen’s set illustrating various types of realistic artifacts, such as background noise and high signal variance, also

observed in the corresponding histogram with higher density between the peaks of the bimodal distribution. Number of training images:

100 in BBBC039 and 9 in Van Valen. Number of test images: 50 in BBBC039 and 3 in Van Valen.

Figure 7. Evaluation of the time needed to create annotations, train, and run segmentation models. (a) Preparation time measures hands

on, expert time annotating images or creating CellProfiler pipelines. Manually annotating 100 training images with about 11,500 nuclei

requires significantly longer times. (b) Machine learning models need to be trained while CellProfiler pipelines do not need additional

processing. Neural network training was run on a single NVIDIA Titan X GPU. DeepCell trains an ensemble of five models, which was

used in all evaluations. (c) CellProfiler pipelines and Random Forests are run on new images using CPU cores to measure the

computational cost of segmenting a single image. Deep learning needs significantly more resources to accomplish the task, but can be

accelerated using GPUs, which have thousands of computing cores that allow algorithms to run operations in parallel. This reduces

significantly the elapsed time, making it practical and even faster than classical solutions.
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a model and tune its parameters (Fig. 7b), usually with special
hardware. Third, when a model has been trained, it is slower
to run on new images than classical algorithms (Fig. 7c).
However, running times can be accelerated using graphic
cards, which makes the technique usable in practice.

We observed that the time invested by experts for anno-
tating images is significantly longer than configuring Cel-
lProfiler segmentation pipelines (Fig. 7a). We estimate that
manually annotating 100 images for training (~11,500
objects) takes 50 h of work using an assisted-segmentation
tool. In contrast, a basic CellProfiler pipeline can be calibrated
in 15–30 min of interaction with the tool, setting up a config-
uration that even users without extensive experience nor
computational expertise could complete. CellProfiler is very
flexible and allows users to add more modules in order to
correct certain errors and factor out artifacts, creating an
advanced pipeline that can take from 1 to 3 h.

Training deep learning models takes substantial comput-
ing time on GPUs, while CellProfiler pipelines do not need
any additional training or postprocessing (Fig. 7b). In our
study, the deep learning models under evaluation are big
enough to need a GPU for training, but light enough to be
trained in a few hours. In particular, a U-Net can be trained
in a single NVIDIA Titan X GPU in just 1 h, while DeepCell
takes 25 h for an ensemble of five networks (as suggested in
the original work (17)). Also, training models may need pre-
liminary experiments to calibrate hyperparameters of the neu-
ral network (e.g., learning rate, batch size, epochs), which
adds more hands-on time.

Notice the trade-off between memory and training time
of deep learning models. DeepCell trains a compact neural
network with small memory requirements, which makes it
ideal for running experiments efficiently in modest hardware
configurations. This design has the additional advantage of
allowing strategic pixel sampling for training, resulting in a
balanced selection of pixels from the background, boundary,
and interior of cells. In contrast, U-Net trains larger neural
network models that process all the pixels simultaneously
using a fully convolutional approach resulting in high mem-
ory requirements and, therefore, needing expensive GPU
hardware for training. This can be constraining for laborato-
ries not equipped to run computationally heavy experiments.

When segmenting new images using CPU cores, deep
learning models are slower than CellProfiler pipelines
(Fig. 7c). The computational complexity in terms of space
(memory) and time (operations) of a CNN is proportional
to the number of layers, the number of filters, and the size
of images. As these architectures get deeper and more com-
plex, they involve more operations to produce the final
result, and thus require more computing power. This is in
contrast to classical segmentation algorithms whose
thresholding and filtering operations have relatively limited
computing requirements that scale well with the size of
images. Even with 8 times more cores, a U-Net takes 10.1 s
to segment a single image, which results in about 20 times
more computing power requirements than the advanced
CellProfiler pipeline. CellProfiler pipelines are run in a single

CPU core and take 2.2 and 4.3 s for the basic and advanced
pipelines respectively.

Using GPU acceleration can significantly speed up the
computations of deep learning models, making them very
usable and efficient in practice (Fig. 7c). Segmenting a single
image with a U-Net model takes only 0.6 s on a Nvidia Titan
X GPU, improving computation times by a factor of 16×.
Note that no batching was used for prediction, which can
accelerate computation of groups of images even further. In
our experiments, a single DeepCell network ran at 4.4 s per
image with GPU acceleration, which has been sped up using
a custom implementation of dilated convolution and pooling
operations in Theano. Even faster versions of these operations
are available in modern deep learning frameworks, such as
TensorFlow. These results show that deep learning models
are faster than classical algorithms when using appropriate
hardware and efficient implementations.

Better Segmentations Improve High-Content

Cytometry Screens

Accurate nucleus segmentation improves the sensitivity of
cytometry screens in real world high-throughput applications.
To quantify this effect, we evaluated the performance of the
segmentation using the Z’-factor in a high-content experi-
ment. The goal of this experiment is to identify compounds
that disrupt normal cell cycle, thus, we measured the DNA
content of single cells using the total integrated intensity
within each segmented nucleus as a readout.

We selected a subset of 10 compounds screened with
high-replicates in the BBBC022 image collection (Fig. S3) to
measure their effect to the cell cycle compared to DMSO
treated wells (negative controls). For each image, we mea-
sured the integrated intensity of nuclei and estimated the pro-
portion of cells with 4N DNA content. After controlling for
potential batch effects, we observed that none of the com-
pounds yield a sufficiently high Z’-factor that indicates cell
cycle disruption. It should be noted that the compounds
selected are not known to have effects on the cell cycle—thus,
we did not expect them all to yield a detectable phenotype in
this assay. However, the measurements were a good choice
for our purposes, because we wanted a nucleus-based readout
whose baseline quality was not so high so as to leave no room
for improvement with better segmentation. For 7 out of the
10 selected compounds we observed improved Z’-factor
scores when the segmentation was carried out with a deep
learning model, indicating more sensitivity of the screen for
detecting interesting compounds.

Other studies have also observed improved assay quality
when using deep learning for cell segmentation. For instance,
analyzing the structure of tumors in tissues using multiplexed
ion beam imaging reveals the spatial organization and
response of immune cells in cancer patients (50). These
results were obtained with a computational workflow powered
by the DeepCell library, demonstrating that deep learning can
accurately segment single cells in challenging imaging
conditions.
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DISCUSSION

Previous studies of cell segmentation observed minor
improvements when comparing deep learning methods versus
classical algorithms using the Jaccard index (17). Also, a
recent cell tracking challenge analysis noted that thresholding
approaches are still the top solutions for segmenting cells
(19); their ranking score is also the Jaccard index. We argue
that these evaluation methods do not satisfactorily capture
biologically important error modes, making it difficult to
appropriately assess cell and nuclei segmentation algorithms.
We presented an evaluation framework focused on object
level accuracy, which captures biological interpretations more
naturally than pixel-level scores (Fig. S1).

The objects of interest in biology are full instances of
nuclei that experts can identify by eye. Our results show that
deep learning strategies improve segmentation accuracy and
reduce the number of errors significantly as compared to base-
lines based on classical image processing and machine learning.
However, we show that these methods still make mistakes that
experts do not. Being able to quantify these mistakes explicitly
will drive future research toward better methods that could
match human performance. In our benchmark, deep learning
provided improved performance in all the tests that measured
accuracy and error rates. Despite requiring significant annota-
tion effort and computational cost, deep learning methods can
have a positive impact on the quality and reliability of the mea-
surements extracted from fluorescence images.

Improved Accuracy

The proposed evaluation metrics are able to distinguish bio-
logically meaningful errors, helping to better differentiate the
performance of segmentation models. The results of our
benchmark show that deep learning methods can bring signif-
icant advantages for segmenting single objects in new images,
compared to manually configured image processing algo-
rithms and classic machine learning. Both DeepCell and
U-Net are able to improve the segmentation accuracy (Figs. 2
and S1) and reduce the total number of errors (Figs. 3–4, and
S2). This shows that even though these models were created
for generic cell segmentation and optimized for learning from
small datasets, they can be trained to successfully identify
nuclei using large sets of images.

The analysis of errors indicates that deep learning can fix
most of the segmentation errors observed in classical algo-
rithms, especially merges. One special type of error that repre-
sents a challenge for both deep learning models is the
segmentation of tiny nuclei (micronuclei and other debris, if of
interest in an experiment). In extensive experiments conducted
in the DeepCell study (17), the size of the receptive field has
been shown to be a key parameter to improve performance,
suggesting that crops that fully cover single cells are sufficiently
informative for accurate segmentation. Increasing the resolu-
tion of images, either during acquisition (51) or with computa-
tional methods such as resizing images to make objects look
bigger, may help fix these errors. Alternatively, different loss
functions adapted to this problem might be designed.

Training Data

In our evaluation, the amount of training data was shown to
be an important factor to reduce the number of errors. Our
results confirm that training a neural network with only a few
images is enough to get improved performance relative to
nondeep learning baselines. However, in order to improve
accuracy and leverage the learning capacity of deep learning
models, more data is required. Importantly, a neural network
can also be reused across experiments, as long as the training
data incorporates variations in morphological phenotypes as
well as variations in signal quality and acquisition conditions.

Datasets used for training supervised machine learning
models are prone to contain human errors and subjective
biases. Errors include accidentally overlooking real objects, and
biases include differences in opinion about precise boundaries.
We used multiple annotators for practical reasons and also to
reflect real differences of opinion among biologists. When mul-
tiple annotators are used, it is recommended to agree upon best
practices to minimize errors and curate useful ground truth. A
useful dataset is one that has enough examples of varied situa-
tions and where the real signal is not dominated by subjective
noise. We believe our dataset is such a resource, where biolo-
gists agreed on covering all possible nuclei phenotypes and
worked hard to be as consistent as possible, while allowing for
individual variation that might arise from subjectivity or even
screen brightness during annotation. Although assigning two
or more annotators to the same image can create a very high-
quality dataset, given the amount of inherent subjectivity
among annotators, we decided it would be more useful to have
twice the amount of good-quality ground truth with a single
annotator per image. Future efforts to fix existing issues and to
expand the dataset would be welcome.

We argue that a single deep learning model might be con-
structed to address all the challenges of nucleus segmentation in
fluorescence images if a diverse database of annotated examples
were to be collected to incorporate these two critical axes of var-
iation. We advocate for collecting that data collaboratively from
different research labs, so everyone will benefit from a shared
resource that can be used for training robust neural networks.
We have begun such an effort via the 2018 Data Science Bowl
https://www.kaggle.com/c/data-science-bowl-2018/.

Computational Cost

Deep learning models generally run a higher computational
cost. GPUs can be useful in microscopy laboratories for accel-
erating accurate neural network models; if acquisition or
maintenance is prohibitive, cloud computing allows laborato-
ries to run deep learning models using remote computing
resources on demand. Adopting these solutions will equip
biologists with essential tools for many other image analysis
tasks based on artificial intelligence in the future.
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