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Abstract

Lipid droplets (LDs), important organelles for energy storage and involved in the development of metabolic disorders, are

extremely dynamic and interact with many other cellular compartments to orchestrate lipid metabolism. Little is known

about how these organelle contacts are changed according to cellular needs and functions under different metabolic and

pathological conditions and which proteins regulate this. Here, we summarize recent exciting discoveries about the reor-

ganization of organelle contacts in steatotic liver, including the identification of novel LD contact site proteins in cell lines and

in animals. We also discuss state of the art proteomics workflows that enable the characterization of LD-organelle contacts

and tethering proteins and give an outlook how this can inform obesity research.
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Lipid Droplets—An Extremely Dynamic

and Connected Organelle

Cellular organelles are highly dynamic structures that

adapt their protein and lipid composition, biochemical

activities, cellular abundance, and distribution but also

their interactions with each other to environmental chal-

lenges. Nutrient availability is one of the environmental

factors with the highest fluctuations. Normally, cells

cope well with changing nutrient levels that organisms

are exposed to on a daily basis such as fasting and feed-

ing cycles. However, chronic caloric overexposure repre-

sents a severe form of environmental stress. Excessive

energy uptake leads to increased lipid synthesis and the

accumulation of free fatty acids and toxic lipid species

such as diacylglycerols or ceramides. Their sequestration

in the form of neutral lipids in lipid droplets (LDs) pro-

vides a mechanism to prevent lipotoxicity (Chaurasia

and Summers, 2015; Engin, 2017). LDs are essential

for normal energy metabolism, mediate many metabolic

processes, and provide building blocks for membranes.

However, LD accumulation, especially in tissues and cell

types not specialized for lipid storage such as macro-

phages or the liver, is a hallmark of the development

of many diseases such as artherosclerosis or hepatic stea-

tosis (Krahmer et al., 2013a). Therefore, elucidating the

regulation and dynamics of LD composition and

interactions is indispensable to understand mechanisms
underlying disease development.

LDs are extremely dynamic organelles that fuse,
undergo fission, and adapt their size several orders of
magnitude according to metabolic demands. LDs are
unusual organelles inasmuch as they consist of a lipid
core, including triglycerides or sterol esters, which is sep-
arated by a phospholipid (PL) monolayer, rather than a
bilayer, from the aqueous cytosol (Olzmann and
Carvalho, 2018). The LD proteome is highly dynamic
and diverges between tissues, cell types, and metabolic
conditions (Yu et al., 2015; Bersuker et al., 2018).
Proteins can bind to the LD surface monolayer via
hydrophobic elements, such as amphipathic helices,
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hydrophobic domains, or lipid modifications but do not
require a specific targeting sequence (Kory et al., 2016).
Many proteins have structural capacities to attach to
LDs; however, not all of these proteins localize to LDs
or they do so only under certain conditions. Only few
LD marker proteins localize exclusively to LDs and
many of them have multiple cellular localizations with
only a certain pool targeted to LDs (Kory et al., 2015).
How the LD targeting is regulated and specificity of
LD binding is achieved is still poorly understood
and the regulation of the LD proteome is likewise largely
enigmatic.

One crucial question is how LD proteins distinguish
between a lipid bilayer and the LD monolayer.
Computer simulations revealed that the PL monolayer
differs from bilayers by the presence of large and persis-
tent lipid packing defects, which are discontinuities in
the PL layer induced by the underlying neutral lipid
layer. At these sites, neutral lipids are exposed on the
surface inducing energetically unfavorable interactions
between the hydrophobic lipid patches and the hydro-
philic cytosol (Bigay and Antonny, 2012). Many cyto-
solic proteins with amphipathic helices containing large
hydrophobic residues can detect and bind these sites to a
different extend, depending on the length and size of
hydrophobic residues within the amphipathic helices.
However, the fact that only a minor pool of these amphi-
pathic helices containing proteins binds to LDs under
normal cellular conditions, or some proteins only
target a specific pool of LDs (Thul et al., 2017), suggests
that there are additional mechanisms that
selectively prevent proteins from binding LDs, such as
protein–protein interactions or binding competition to
other cellular membranes. Another possible mechanism
controlling the LD proteome is macromolecular crowd-
ing at the LD surface. Normally, the number of LDs and
hence binding surfaces on the PL monolayer are limited,
so that proteins with weaker affinities are crowded off
the LD surfaces and only proteins with stronger affinities
can bind (Prevost et al., 2018).

LD associations with almost all other cellular com-
partments including the endoplasmic reticulum (ER),
Golgi, mitochondria, lysosomes, and peroxisomes have
been observed by different techniques such as multispec-
tral time-lapse microscopy, super-resolution microscopy,
or electron microscopy (Pu et al., 2011; Valm et al., 2017;
Gemmink et al., 2018). these contacts might serve
various cellular functions such as protein transport, sub-
strate flux, and orchestration of lipid metabolism
(Schuldiner and Bohnert, 2017). To promote lipid
storage, membrane bridges with the ER are formed,
allowing transfer of lipid synthesis enzymes onto LDs
(Wilfling et al., 2013). In addition, contacts to mitochon-
dria or peroxisomes were suggested to coordinate lipid
oxidation (Boutant et al., 2017), and accumulation of

LDs around mitochondria was reported to protect
these from toxic lipid species (Nguyen et al., 2017).
In addition, close proximity of mitochondria and LDs
in brown adipocytes favor lipid synthesis, storage, and

Figure 1. Workflow for the characterization of organelle
proteomes and LD contact sites by Protein Correlation Profiling
(PCP). Organelles are separated by density-based or differential
centrifugation and analyzed using proteomic and phophoproteo-
mic workflows. Protein and peptide profiles are generated by
plotting abundances over organelle fractions. Subcellular localiza-
tions of proteins and peptides can be assigned using machine
learning-based algorithms. LD proteins display a distinct and
strongly separated peak in the lowest density fraction of the gra-
dient. HPLC¼ high performance liquid chromatography;
ER¼ endoplasmic reticulum; LD¼ lipid droplet; ESI¼ electro
spray ionization; SVM¼ support vector machines; HFX¼ hybrid
quadrupole orbitrap mass spectrometry (MS).
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LD expansion by providing ATP for fatty acid activa-

tion and resulting in triglyceride synthesis. This is sup-

ported by the fact that in brown adipocytes, LD-

associated mitochondria exhibit reduced b-oxidation
and increased ATP synthesis (Benador et al., 2018).

As for most other organelle interactions, the presence

of tethering proteins or complexes between LDs and the

other organelles has been postulated (Eisenberg-Bord

et al., 2016). these tethers are required to keep opposing

membranes in close proximity and might have additional

functions in lipid and metabolite transfer, protein shut-

tling, or signal transduction. However, the field is just

beginning to reveal the identity of those LD contact site

proteins and their roles in regulating organelle interac-

tions according to metabolic and physiological needs.

The functional analysis of these tethering complexes is

complicated by the fact that some of them might have

overlapping and redundant functions and that they

may only fulfill their tethering function under certain

metabolic conditions or in specific tissues. The metabolic

context is hard to study in cell lines because complex

metabolic changes such as overnutrition or starvation

are difficult to simulate. In vivo, cells are embedded in

their complex organ environment, exposed to organ

crosstalk, metabolic hormones, and complex diets.

This is difficult to mimic with commonly used

approaches such as loading cells with fatty acids or

inducing serum starvation.
In the last years, first bona fide LD tethering factors

have been identified. As an example, the seipin complex

forming an oligomeric ring at LD-ER junctions tethers

newly forming LDs to the ER (Sui et al., 2018; Yan

et al., 2018). In cells with seipin mutations, ER-LD inter-

actions are altered, suggesting that seipin is involved

in the formation of membrane bridges that normally

connect the two organelles (Salo et al., 2016).
Recently, an LD binding domain has been mapped on

VPS13A/C. VPS13 proteins are involved in various

organelle contacts in yeast and mammals (John Peter

et al., 2017; Bean et al., 2018). The VPS13A isoform

Figure 2. Potential mechanisms of the Golgi apparatus relocalization in steatotic liver (a) and (b) immunofluorescence microscopy of LDs
stained via Perilipin2 (PLIN2) (red) and the Golgi apparatus via GOLGA5 (green) in the liver of steatotic mice showing the assembly of
Golgi apparatus compartments around LDs. (c) and (d) Potential mechanism by which Golgi tethering proteins attach to LDs. (c) Under
normal conditions Golgi tethering proteins bind to highly curved vesicles and direct them to the Golgi apparatus for fusion. (d)In steatotic
liver tthering proteins containing ALPS domains might mis-target to LDs induced by extreme LD accumulation and thereby increase
organelle contacts.
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primarily localizes to ER–mitochondria contacts, where-
as VPS13C localizes to contacts between ER and endo-
somes (Kumar et al., 2018). ER association happens via
the interaction of its N-terminal domain with VAMP-

associated protein-proteins, whereas its C-terminal
regions mediate endosome/LD and mitochondria/LD
binding. Interestingly, the highly conserved N-terminal
portion of VPS13 is tubular, with a large hydrophobic
cavity that can solubilize and transport PLs between
membranes. VPS13 proteins might play a role for PL
transfer at ER-LD contacts and may therefore represent
the long thought pathway that supplies growing LDs
with PLs (Krahmer et al., 2011).

Identification of the LD Proteome,

Interactions, and Contact Site Proteins by

Proteomic Profiling

In the last decades, the LD proteome of cell lines and
tissues has been extensively studied (Cermelli et al., 2006;
Bouchoux et al., 2011; Schmidt et al., 2013; Baumeier

et al., 2015; Khan et al., 2015; Kramer et al., 2018).
Most experimental approaches have so far relied on deter-
mining proteins present in a purified LD fraction.
However, as for other organelles, it has become obvious
that it is impossible to purify LDs to complete homoge-
neity, especially as the tight membrane interactions cause
cofloatation of various organelles or their fragments.
Therefore, and especially with the increasing

sensitivity of mass spectrometry (MS), the detection of a
protein in a purified LD fraction is insufficient evidence of
its specific LD association and does not allow to distin-
guish genuine LD proteins from contaminants. In cell
lines, this problem can be overcome by using proximity
labeling strategies, such as APEX or BioID. Here, by
expression and activation of a peroxidase-based proximity
tag, proteins within a certain distance (�10 nm) can be

covalently modified with an affinity handle that can sub-
sequently be used to enrich bona fide organellar proteins
(Bersuker et al., 2018).

Spatial proteomics profiling approaches can also be

used to discriminate compartment-associated proteins
from unspecific contaminants. these methods are based
on a separation and partial enrichment of certain organ-
elles depending on their size and density either by differ-
ential centrifugation or on a density gradient (Figure 1).
Subsequent MS-based analysis of the fractions allow the
generation of abundance profiles for the quantified pro-
teins reflecting their subcellular distributions and subcellu-

lar localizations. Although organelle fractions are not
pure, the distribution of proteins from a specific compart-
ment over all fractions is highly characteristic for each
organelle. The quantitative profile of organellar marker
proteins indicates the profile for each of them. Protein

correlation profiling (PCP) has been used successfully to
determine the proteomes of many organelles including
ones that could never be purified before (Andersen et al.,
2003; Wiese et al., 2007; Pandya et al., 2017), but also for
systematic subcellular maps, even in comparative manner
(Dunkley et al., 2004; Foster et al., 2006; Itzhak et al.,
2016; Geladaki et al., 2019), thereby generating compre-
hensive views on cellular processes under specific biological
or pathological conditions.

Advances in MS-based technologies have pushed fur-
ther the development and quality of proteomic profiling
approaches over the last years. Label-free quantification
algorithms are increasing the accuracy of protein profiles
(Cox et al., 2014). Multiplexing of proteomic samples by
using isobaric tags such as tandem mass tags (TMT)
(Rauniyar and Yates, 2014; Washburn et al., 2002) or
EASI-tag (Easily Abstractable Sulfoxide-based Isobaric
tag) (Virreira Winter et al., 2018) can help to overcome
problems with missing values, increase accuracy, and
reduce the required MS measuring time. In addition, bio-
informatic tools such as machine learning-based determi-
nation of subcellular localizations have strongly facilitated
and improved the quality of organelle assignments (Itzhak
et al., 2016; Crook et al., 2018). Novel high sensitivity MS-
based proteomic workflows including improved sample
preparation methods, more sensitive instruments, and
scan modes now allow the generation of high quality pro-
files for large numbers of proteins, increasing the number
of mapped proteins and extending the dynamic range of
localized proteins.

The development of phosphoproteomic workflows
enabling high-throughput quantification of phosphopep-
tides from small amounts of protein input such as organ-
elle fractions make it feasible to extend organelle maps to
phosphopeptide level for the first time (Krahmer et al.,
2018). Overlay of protein with phosphopeptide profiles
allow the identification of phosphorylation events that
occur only on a certain compartment. these organelle-
specific phosphorylation events, especially these whose
levels are correlated with protein relocalization events,
might either induce relocalization or be caused by
organelle-specific interactions with kinases or phospha-
tases. In the future, this approach could be expanded to
other post-translational modifications (PTMs), such as
ubiquitination or acetylation.

Protein profiling approaches have also turned out to be
an useful tool to study the LD proteome of yeast or dro-
sophila cells (Krahmer et al., 2013b; Currie et al., 2014)
and especially in tissues where proximity labeling is not
feasible (Krahmer et al., 2018). Due to their specific
hydrophobic characteristics, LDs have a unique floating
and fractionation behavior, resulting in a highly specific
protein profile with a single sharp peak for LD proteins in
the lowest density fraction. LD proteins with dual local-
izations or those enriched in contact sites display profiles
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with two defined characteristic organelle peaks. In addi-

tion, PCP allows the characterization of systemic reorga-

nization of LD contacts and the detection of increased

contacts with LDs by shifts and increased LD peaks in
the average organelle profiles. As an example, the expres-

sion of a toxic Huntingtin form with an extended poly-Q

stretch in yeast leads to a strong LD and mitochondrial

phenotype and PCP revealed a loss of LD–mitochondria

interaction (Gruber et al., 2018).

Unexpected Contacts in Nonalcoholic

Fatty Liver Disease

Diet-induced nonalcoholic fatty liver disease affects 25%

of the total population worldwide and is characterized

by excessive hepatic LD accumulation (Rinella, 2015).

LD formation is initially thought to be protective, but
long-term effects of extreme LD accumulation are still

not clear. LDs can cover up a large portion of the total

cellular volume and whether this affects cellular process-

es and functions is unknown. Moreover, cellular mech-

anisms underlying the shift from reversible

asymptomatic steatosis to nonalcoholic steatohepatitis,

characterized by fibrosis and inflammation in some
patients, remain to be elucidated (Rinella, 2015).

In a recent study by our group, proteomic profiling

revealed a comprehensive overview of protein localiza-

tion, phosphorylation, and subcellular organization

during hepatic lipid accumulation (Krahmer et al.,
2018). Diet-induced steatosis in high fat diet (HFD)

mice leads to a progressive increase in the number of

relocalized proteins over time and to increased LD-

organelle contacts under severe steatosis. We reasoned

that increased cofractionation of the plasma membrane,

mitochondria, and the ER with LDs in the low-density

fraction of the gradient in steatotic liver might derive
from enhanced organelle associations. Indeed, increased

LD-mitochondrial contacts were confirmed by electron

and fluorescence microscopy. Concomitantly, several con-

tact site proteins relocalized to LDs and therefore are

potential candidates to control these organelle associa-

tions. ESYT2, a protein channeling lipids between the

plasma membrane and ER, partially shifted to LD local-
ization, and VPS13A/D displayed a dual

LD/mitochondrial peak. However, VPS13A might not

mediate binding of LDs to mitochondria but instead

simultaneous binding of LDs and mitochondria to the

ER, as the LD and mitochondria binding domains of

VPS13A are in close proximity of each other at the

C-terminal part of the protein and likely exclude each
other (Kumar et al., 2018). Increased contacts between

mitochondria and ER were observed in the liver of

HFD mice (Arruda et al., 2014). This raises the question

whether VPS13 proteins might play a role in the

formation of metabolic highly active tripartite contact
regions between LDs, ER, and mitochondria.

In severe steatosis, PCP reveled that approximately
6% of the total proteome was targeted to LDs including
kinases and transcription factors, thereby indicating new
roles for LDs in influencing gene expression and signaling
pathways. Interestingly, almost all proteins with lipid
modifications such as Rab proteins or small G-proteins
were detected on LDs. This sequestering of proteins to
LDs might be induced by the dramatic expansion of LD
surfaces. The increase in protein binding sites on LDs
during steatosis might counteract the molecular crowding
normally limiting LD binding to the proteins with highest
affinities. Under these conditions, proteins with lower LD
affinity that normally bind to other compartments might
be retargeted to LDs. This led us to the hypothesize that
LD induced depletion of proteins from their initial local-
izations impairs cellular processes and the functions of
other organelles and thereby contributes to the pathology
and cellular dysfunction in hepatic steatosis.

A dramatic example for the sequestering of proteins
to LDs was the surprising finding that all Golgi appara-
tus proteins cofractionating with LDs in the low-density
fraction in the steatotic state. This was not caused by
lipoprotein accumulation in the Golgi apparatus, as
ApoB, the main very low density lipoprotein (VLDL)
protein was predominantly localized to the ER.
Confocal and super-resolution microscopy revealed
that in the steatotic liver, the Golgi apparatus partially
fragments and wraps around LDs, forming direct con-
tacts with the LD monolayer (Figure 2A). This cellular
reorganization was only observed under conditions of
extreme LD accumulation in severe steatosis and not
at earlier time points of high fat diet in the mouse
liver. The Golgi-LD association was also not detected
in most cell lines after lipid treatment, indicating that
cellular models for steatosis do not completely reflect
the more complex in vivo situation.

It still needs to be elucidated whether this reorganiza-
tion of the secretory apparatus has a functional and pro-
tective role or whether it is simply a pathological
consequence of extreme lipid accumulation impairing cel-
lular functions. We speculate that close association
between LDs and the Golgi apparatus could play a role
in lipoprotein lipidation. So far, the assembly of the lipo-
protein particles in hepatocytes is poorly understood and it
is still enigmatic how lipids are mobilized and transferred
from the cytosolic LDs to lipoprotein particles during their
trafficking through the secretory apparatus. However, the
observed general decrease in protein secretion in primary
hepatocytes from steatotic mice points toward a patholog-
ical role. Indeed, parallel accumulation of lipids and
impaired secretion could lead to a vicious cycle where
more and more lipids accumulate. However, we note
that the secretion defect was relatively rapidly reversible

Krahmer and Mann 5



by starvation. The key question is now whether the reor-

ganization of the secretory apparatus induced by lipid

accumulation is also happening in the liver of patients

with nonalcoholic fatty liver disease and whether it plays

a role for the pathology and the progression of the disease.

Potential Mechanism for the Golgi

Apparatus Sequestering to LDs and

Open Questions

What drives the relocalization of the Golgi apparatus

proteins to LDs? All Golgi proteins float with LDs in

the steatotic condition, no matter whether they have any

structural features for LD binding of not. This favors the

hypothesis that Golgi stacks or membrane fragments are

sequestered to LDs via tethering proteins. Indeed, sever-

al crucial Golgi organizing proteins have structural fea-

tures that would allow monolayer binding by either

amphipathic helices or fatty acid modifications.
The golgins are interesting candidates to mediate

these interactions (Figure 2B). This group of large

coiled-coil proteins localizes to the Golgi apparatus via

a C-terminal transmembrane domain or the interaction

with small-GTPases (Munro, 2011). The golgins,

expressed at high levels in the liver (according to our

proteomic liver analysis), bind vesicles and direct them

to the Golgi apparatus where they fuse with the bilayer.

The vesicles are captured with mostly uncharacterized

domains in their N-terminal part. One exception is

GMAP210, which contains an N-terminal ALPS

(amphipathic lipid packing sensor) motif that binds

highly curved vesicles (Magdeleine et al., 2016). These

ALPS domains sense lipid packing defects and are also

able to bind to LDs whose monolayer has a greater

extent of packing defects than bilayer membranes, espe-

cially under conditions of LD expansion when PLs are a

limiting factor (Prevost et al., 2018). Both vesicles and

LDs have many packing defects, a common surface fea-

ture that golgins use for selective binding and this might

be the cause for a “mis-targeting” of golgins to LDs.

This could be specifically enforced under conditions of

major LD growth, when the expanded surface area pro-

vides new binding sites that compete proteins with

potential LD binding sites off and sequester them.

Golgins are important organizers for Golgi apparatus

localizations and for instance, artificial targeting of

GMAP210 leads to Golgi apparatus (GA) accumulation

around mitochondria (Wong and Munro, 2014). A sim-

ilar process could also occur on LDs in steatotic liver.

Besides golgins, several other Golgi proteins contain

ALPS domains (e.g., ARFGAP1, AKAP9, COG6)

(Drin et al., 2007) or lipid modifications (Rab proteins,

GRASP proteins) (Zhang and Wang, 2015) that in

principle enable LD binding, making them further can-
didates to mediate the organelle attachment.

We observed that in steatotic liver, the protein profiles
of subunits of the coat protein complex COPI for retro-
grade transport shifted dramatically and surprisingly over-
lapped with the peroxisomal profile. Previously, COPI has
been found on peroxisomes by interacting with PEX11a, a
protein involved in peroxisome biogenesis at the ER when
peroxisomal proliferation is induced by PPARa agonists
(Lay et al., 2006; Wiese et al., 2007). Indeed, under high
fat diet, peroxisomal proliferation is induced and the ques-
tion arises how COPI and Golgi apparatus relocalizations
are connected or cause each other?

Another open question is the role of cellular signaling
and posttranslational modifications for the lipid-induced
organelle reorganization. The Golgi apparatus is a
highly dynamic organelle whose assembly and reassem-
bly during cell cycle is controlled by activation of kinases
and phosphatases and phosphorylation status of Golgi
organizing proteins (Valente and Colanzi, 2015). This
process is initiated by mitotic kinases, including cyclin-
dependent kinase 1 (CDK1), polo-like kinase-1 and 3
(PLK1,3). In addition, activation of RAF-MEK-ERK,
JNK2 and CAMK-AMPK signaling have been found to
control Golgi apparatus structure (Valente and Colanzi,
2015). The kinases phosphorylate Golgi stacking and
tethering proteins (e.g., GORASP1 and 2, GM130)
and thereby induce its fragmentation. In Alzheimer’s
disease, Golgi apparatus fragmentation is caused by
increased GORASP1 phosphorylation by CDK5
(Gordon-Weeks, 2016). Therefore, investigating whether
the activation of specific signaling pathways also plays a
role in the loss of normal Golgi apparatus structure in
hepatic steatosis is an important question, especially
since strong changes in phosphorylation pattern of GA
proteins occur in steatotic liver.

We believe that these and other interesting questions
will soon become answerable with further technological
progress in proteomics. We are especially excited about
the prospect for drastically increased sensitivity leading
to a reduction of input material required for proteomic
and phosphoproteomic analysis. This will open the field
to map organelle changes in response to metabolic chal-
lenges in various tissues and organs or even specific cell
subtypes in in vivo disease models or human samples.
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