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Overview

In the main manuscript, we discuss the analytic hierarchical optimization of scaling, offset, and noise parameters in a
particular setting assuming additive Gaussian measurement noise. Here, we provide some background information
and a more general description (Section 2). For the specific situation of objective functions based on ordinary
differential equation (ODE) models, we outline for time-discrete measurements the adjoint approach of computing
the objective gradient (Section 2.3). We describe how hierarchical optimization can be combined with adjoint
sensitivities for efficient gradient-based optimization of large-scale problems (Section 2.4). Then, we discuss in
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detail the derivation of analytic expressions for scaling, offset, and noise parameters assuming an additive Gaussian
noise model (Section 3). Last, we give details on the case study and its implementation (Section 4).

1 Hierarchical minimum is global minimum

To define the general concept of hierarchical optimization, we consider an objective function J : Rm × Rn → R,
(x, y) 7→ J(x, y), where R := R ∪ {∞}. We want to minimize J , i.e. find

inf
x,y

J(x, y).

When J is defined only on a subdomain, set J(x, y) = ∞ otherwise. We will be interested in the biologically
relevant situation that this infimum is finite and assumed as a minimum, i.e. that there are x∗, y∗ : J(x∗, y∗) =
minx,y J(x, y) ∈ R. To find the minimum, we perform hierarchical optimization, i.e. we minimize in x using the
conditional minimum in y given x. That is, we compute minx miny J(x, y), or, re-written,

min
x
Ĵ(x) where Ĵ(x) := min

y
J(x, y).

The following proposition verifies that this procedure is indeed feasible:

Proposition 1. Let J : Rm ×Rn → R, (x, y) 7→ J(x, y). Then

inf
x,y

J(x, y) = inf
x

inf
y
J(x, y).

Proof. Write i := infx,y J(x, y), Ĵ(x) := infy J(x, y) for x ∈ Rm. Then clearly i ≤ infx Ĵ(x) = infx infy J(x, y), and

for all (x, y) ∈ Rm×Rn holds Ĵ(x) ≤ J(x, y), so, taking the infimum, we also find infx Ĵ(x) ≤ infx,y J(x, y) = i.

Note that this only verifies that, of course, we recover the global optimum of J in Ĵ . While under certain conditions
like convexity, further statements about changes in the problem structure can be made, in general we in particular
cannot say whether an optimization algorithm, started at the same point, will converge to the same (local) minimum
for both problems.

Further note that when applying an iterative optimization algorithm on the hierarchical problem yielding values
(xi, yi)i with yi := miny J(xi, y), it is important to recalculate yi for every new xi to ensure conditional optimality.

2 Hierarchical gradient-based optimization of ODE models

A common situation in systems biology is an ODE model of the form (this is the same as in the main manuscript,
included here just for completeness of discussion)

ẋ(t, θ, u) = f(x(t, θ, u), θ, u), x(t0, θ, u) = x0(θ, u),
y(t, θ, u) = h(x(t, θ, u), θ, u).

(1)

Here, the state vector x(t, θ, u) ∈ Rnx describes the involved species concentrations. The vector field f : Rnx×Rnθ×
R
nu → R

nx describes the temporal evolution of the states. The vector x0(θ, u) denotes the initial states at time
t0. The vector θ ∈ Rnθ denotes unknown parameters like reaction rates or initial concentrations, whereas u ∈ Rnu
encodes (possibly time-dependent) differential experimental conditions like drug doses, which are given as an input
to the system, and need not be inferred. We first discuss the general problem, and link to hierarchical optimization
later. The function h : Rnx × Rnθ × Rnu → R

ny maps the system state to observables y(t, θ, u) ∈ Rny , where
typically ny < nx since not all states can be observed. These observables correspond to measured experimental
data

D =
{
ȳit,iy,iu

}
(it,iy,iu)∈I
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for some index set I over time points 1 ≤ it ≤ nt, observables 1 ≤ iy ≤ ny, and experiment-specific conditions
1 ≤ iu ≤ nu (where we w.l.o.g. include possible experimental or technical replicates in the experimental conditions).
When the origin of a specific data point does not matter, we will simplify the notation to an arbitrary index i ∈ I.
The measurements are linked to the states via

ȳit,iy,iu = hiy (x(tit , θ, uiu), θ, uiu) + εit,iy,iu

for some noise model εit,iy,iu , a random variable. This noise model can again be subject to parameters, denoted
σ = σ(θ) here, possibly parameter-dependent. Here, we will consider Gaussian noise εit,iy,iu ∼ N (0, σ2

it,iy,iu
), the

most commonly used noise model. We assume the noise on all data points to be independent, however different noise
models, e.g. for different conditions, are possible. To infer the unknown parameters θ, we maximize the likelihood

L(θ) =
∏

it,iy,iu

π(ȳit,iy,iu | hiy (tit , θ, uiu), σ)

of observing the measured data D given parameters θ under the noise model π. To increase convexity and for
numeric reasons, usually we minimize the negative log-likelihood J(θ) := − logL(θ) instead. It takes the general
form

J(θ) = −
∑

it,iy,iu

log π(ȳit,iy,iu | yiy (tit , θ, uiu), σ).

In particular, assuming Gaussian measurement noise, we get

J(θ) =
∑

it,iy,iu

[
log(2πσ2

it,iy,iu) +
(ȳit,iy,iu − yiy (tit , θ, uiu))2

σ2
it,iy,iu

]
. (2)

2.1 Gradient-based optimization

When we want to optimize J w.r.t. the parameters θ, we usually employ an iterative gradient-based scheme,
assuming our objective is sufficiently smooth. That is because the gradient ∇θJ gives the direction of steepest
descent in the objective function landscape. Higher derivatives (like the Hessian ∇2

θJ) provide additional curvature
information. In the following, we will for simplicity of notation abstract from the details of J . All we require is
that our objective can be written in the form

J(θ) =

N∑
j=0

Jj(y(tj , θ), θ)

as a sum over the discrete time points t0 < . . . < tN , where we w.l.o.g. hide dependence on data and experimental
conditions. When we have multiple experimental conditions, experiments, or observables, one can simply sum over
all of them inside the Jj . Then, we have for the derivative

dJ

dθ
(θ) =

N∑
j=0

[
∂Jj
∂θ

(y(tj , θ), θ) +
∂Jj
∂y

(y(tj , θ), θ)
dy

dθ
(tj , θ)

]

=

N∑
j=0

[
∂Jj
∂θ

(y(tj , θ), θ) +
∂Jj
∂y

(y(tj , θ), θ)
∂h

∂θ
(x(tj , θ), θ) +

∂Jj
∂y

(y(tj , θ), θ)
∂h

∂x
(x(tj , θ), θ)

dx

dθ
(tj , θ)

]

=

N∑
j=0

[
∂Jj
∂θ

+
∂Jj
∂y

∂h

∂θ
+
∂Jj
∂y

∂h

∂x

dx

dθ

]
,

(3)

where we used
dy

dθ
=
∂h

∂θ
+
∂h

∂x

dx

dθ
,

and dropping the obvious arguments at time points tj . The interesting part here is the last summand which involves
dx
dθ , the derivative w.r.t. the parameter θ of the state x, which in turn is given only as the solution of an ODE. To
compute ∇θJ , there exist – apart from finite differences, which are often observed to be numerically unstable and
computational expensive – basically two approaches, which we will shortly discuss.
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2.2 Forward sensitivity analysis

We can compute ∇θJ once we have the state sensitivities sx := dx
dθ , or equivalently the observable sensitivities

sy := dy
dθ = ∂h

∂xs
x + ∂h

∂θ . They can be obtained by differentiating the ODE (1) w.r.t. θ, giving the forward sensitivity
equations

ṡx(t, θ) =
∂f

∂x
(x(t, θ), θ)sx(x(t, θ), θ) +

∂f

∂θ
(x(t, θ), θ), sx(0, θ) =

dx0

dθ
(θ).

These ODEs can be solved along with the original ODE, giving an enlarged system of ODEs

ẋ = f, x(0) = x0,

ṡxi = ∂f
∂xs

x
i + ∂f

∂θi
, sxi (0) = dx0

dθi
, i = 1, . . . , nθ

of dimension nx(1 + nθ), the solution of which is the state x along with its sensitivities sx.

2.3 Adjoint sensitivity analysis

An alternative way of getting rid of the problematic term in (3) is as follows: We introduce an adjoint state
p : [t0, tN ] → R

nx playing the role of a Lagrange multiplier. Then, with dẋ
dθ = ∂f

∂θ + ∂f
∂x

dx
dθ according to the

differential equation, we can write, by adding a zero-term,

∂Jj
∂y

∂h

∂x

dx

dθ
=
∂Jj
∂y

∂h

∂x

dx

dθ
+

∫ tj+1

tj

pT (
dẋ

dθ
− ∂f

∂θ
− ∂f

∂x

dx

dθ
)dt

IP
=
∂Jj
∂y

∂h

∂x

dx

dθ
+ ( lim

t↗tj+1

pT
dx

dθ
− lim
t↘tj

pT
dx

dθ
)−

∫ tj+1

tj

(ṗT + pT
∂f

∂x
)
dx

dθ
dt−

∫ tj+1

tj

pT
∂f

∂θ
dt,

j = 0, . . . , N − 1. Here, it becomes apparent that it is convenient to choose p s.t. it satisfies p(t) = 0 for t > tN ,
and on (tj , tj+1] p satisfies the backward differential equation

ṗ = −∂f
∂x

T

p with initial condition p(tj+1, θ) = lim
t↘tj+1

p(t)−
(
∂Jj+1

∂y

∂h

∂x

)T
. (4)

Then, in the above expression the first integral vanishes, and due to the re-initialization of the backward equation
at time point tj , the expression simplifies to

∂Jj
∂y

∂h

∂x

dx

dθ
=
∂Jj
∂y

∂h

∂x

dx

dθ
+ p(tj+1, θ)

T dx

dθ
(tj+1, θ)

− (p(tj , θ)
T +

∂Jj
∂y

(y(tj , θ), θ)
∂h

∂x
(tj , x(tj , θ), θ))

dx

dθ
(tj , θ)−

∫ tj+1

tj

pT
∂f

∂θ
dt

= p(tj+1, θ)
T dx

dθ
(tj+1, θ)− p(tj , θ)T

dx

dθ
(tj , θ)−

∫ tj+1

tj

pT
∂f

∂θ
dt.

Summing over j = 0, . . . , N − 1, simplifying the telescope sum, and adding p(tN )dxdθ = −∂JN∂y
∂h
∂x

dx
dθ , we get

dJ

dθ
=

N∑
j=0

[
∂Jj
∂θ

+
∂Jj
∂y

∂h

∂θ

]
− p(t0, θ)T

dx0

dθ
(θ)−

∫ tN

t0

pT
∂f

∂θ
dt. (5)

This is independent of the state sensitivities dx
dθ , except from those at time 0, which can however usually be easily

computed. In turn, it now depends on the adjoint state p, whose dimension is nx and does not increase with the
dimension of θ. Thus, compared to forward sensitivity analysis, the computational effort for one gradient evaluation
has changed from nθ + 1 systems of size nx to 2 systems of size nx. In addition, a numerical quadrature is required,
the effort for which is often negligible. Computation times may however also be affected by e.g. stiffness of the
quadrature as well as the need to store results of the forward equation at intermediate points.
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2.4 Combining hierarchical optimization with adjoint sensitivities

In this manuscript, we assume the particular unscaled observation function

ỹ(t, θ, u) = h̃(x(t, θ, u), θ, u)

s.t. the former full (scaled) observation function becomes

yiy (tit , θ, uiu) = hiy (x(tit , θ, uiu) = sit,iy,iu · h̃iy (x(tit , θ, uiu), θ, uiu) + bit,iy,iu (6)

with scaling parameters s and offset parameters b, to put the simulations on the same scale as the measurements.
Then, simulations and data are related via

ȳit,iy,iu = yit,iy,iu + εit,iy,iu ,

ε encoding the (additive) noise model, which we here assume to be Gaussian independent additive (see main
manuscript). Together, our negative log-likelihood objective function (2) thus reads

J(θ, s, b, σ) =
∑

it,iy,iu

[
log(2πσ2

it,iy,iu) +
(ȳit,iy,iu − (sit,iy,iu · h̃iy (tit , θ, uiu) + bit,iy,iu))2

σ2
it,iy,iu

]
. (7)

For ease of notation, we summarize the static parameters as

w := (s, b, σ)

such that our overall parameter vector becomes (θ, w) with dynamic parameters θ and static parameters w. Further,
we abstract from any condition dependence. Then, we can write

y(t, θ, w) = h(h̃(x(t, θ), θ), w),

s.t. only the dynamic parameters are involved in the ODE simulation, where

ỹ(t, θ) = h̃(x(t, θ), θ)

denotes the mapping from the states x to the unscaled observables ỹ, which have to be scaled to y using w in order
to allow for the comparison to the observed data. As in the discussion for the derivation of forward and adjoint
sensitivity analysis above (there yet without static parameters), we write our objective function (7), highlighting
only time dependence (with N := nt − 1), as

J(θ, w) =

N∑
j=0

Jj(ỹ(tj , θ), θ, w).

Note that here we added some extra θ parameters in h̃ and Jj compared to (6), in case one does not treat all
parameters not directly involved in the ODE simulation of x as static parameters, but rather as dynamic parameters.
This notation thus allows for more flexibility.

When we want to estimate the parameters, the most straightforward way is to treat both kinds of parameters
equally, i.e. to optimize over the full vector (θ, w) simultaneously. This we refer to as the standard optimization
approach. However, it can be favorable to use hierarchical optimization as introduced in the main manuscript on

Ĵ(θ) := J(θ, w(θ)), where w(θ) := arg min
w
J(θ, w).

Now, assuming Ĵ is differentiable, the gradient is given as

dĴ

dθ
=
∂J

∂θ
+
∂J

∂w

dw

dθ

=

N∑
j=0

[
∂Jj
∂θ

+
∂Jj
∂ỹ

dỹ

dθ
+
∂Jj
∂w

dw

dθ

]

=

N∑
j=0

[
∂Jj
∂θ

+
∂Jj
∂ỹ

∂h̃

∂θ
+
∂Jj
∂ỹ

∂h̃

∂x

dx

dθ
+
∂Jj
∂w

dw

dθ

]
.

(8)
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Here, assuming that the inner optimization problem was solved s.t.

∂J

∂w
= 0 (9)

(necessary for a local minimum in the interior of the domain of definition, and for our applications always the case),
the last term vanishes and we do not need to compute the terms dw

dθ , as our gradient reduces to

dĴ

dθ
=

N∑
j=0

[
∂Jj
∂θ

+
∂Jj
∂ỹ

∂h̃

∂θ
+
∂Jj
∂ỹ

∂h̃

∂x

dx

dθ

]
. (10)

Then, in one optimizer iteration, for given θ, we can first simulate the observables y(θ) for the required time
points and experimental conditions, then compute the optimal w(θ), and then compute the objective Ĵ as well as
potentially derivatives to guide optimization. This was done using forward sensitivity analysis in Loos et al. [2018].
While we will not go into details here, the basic algorithm works as follows:

1. ỹ, dθỹ = simulate forward given θ,

2. w, dθw = compute optimal static parameters given ỹ,D,

3. Ĵ ,∇Ĵ = compute likelihood given w, dθw,D, ỹ, dθỹ.

Here, in the first step the unscaled states and their sensitivities w.r.t. θ are simulated, and in the third step all
derivatives are gathered according to (10) to give the full gradient. Here, an ODE simulation is involved only in
the first step.

However, the question remained open whether the hierarchical approach can also be combined with adjoint sensi-
tivities, which is of great interest for large-scale models. The main problem here is that, as we see in equation (4), in
general the adjoint state depends on the data and the full simulated observables y via the residuals Jj . But unlike ỹ,
y depends also on the static parameters w. So, we cannot first simulate the ODE and then compute optimal static
parameters and the objective along with its gradient, as done in the forward approach. Nonetheless, combining the
hierarchical approach with adjoints turns out to be not that difficult: Again, there is only one problematic term
in (10) involving the state sensitivities dx

dθ , which depends on an ODE, all the other terms are in practice readily
computed. In this term, it does not matter how w was computed, so it can be treated as constant and h as a

function of only x and θ. So, replacing ∂h
∂x by ∂h̃

∂x , we see that we can again apply the adjoint equation (4) to get
an adjoint formulation comparable to (5), here taking the form

dĴ

dθ
=

N∑
j=0

[
∂Jj
∂θ

+
∂Jj
∂ỹ

∂h̃

∂θ

]
− p(t0, θ)T

dx0

dθ
(θ)−

∫ tN

t0

pT
∂f

∂θ
dt.

Then, in practice we can proceed as follows: First, we simulate the unscaled observables ỹ, then compute optimal
static parameters w, and then use both to compute the likelihood Ĵ as well as to simulate the adjoint state p which
allows us to compute ∇Ĵ . In algorithmic form:

1. ỹ = simulate forward given θ,

2. w, dθw = compute optimal static parameters given ỹ,D,

3. compute Ĵ given ỹ, w,D,

4. simulate adjoint state p given ỹ, w, dθw,D to get ∇Ĵ .

This algorithm requires no additional ODE simulations compared to the standard approach. Moreover, since the
number of parameters is reduced, we can hope for reduced computation times, and in particular that the problem
is easier to optimize.
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Table 1: Overview of optimization approaches

standard, forward
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hierarchical, forward

hierarchical, adjoint
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It should be noted that since the inner subproblem was assumed to be solved exactly in this chapter in the sense
of (9), s.t. the gradient reduces to

∇Ĵ(θ) =
∂J

∂θ
(θ, w(θ)),

all expressions involving ∂J
∂w vanish from the gradient, so that (8) effectively reduces to (3) with the additional

application of rescalings to h̃ in Jj . Also, then dw
dθ does not need to be evaluated. From a practical perspective, this

implies that, once computed, we can treat the static parameters w as constant when computing dĴ
dθ using the adjoint

approach. Thus, we can easily re-use existing software implementations that allow to pass parameters θ the gradient
shall be computed along, as well as constants (primarily used to express differential experimental conditions) along
which no gradients are supposed to be evaluated.

If the inner subproblem is not solved exactly in the sense of (9), adding these terms to the gradient dĴ
dθ involves

some additional effort and cannot be addressed by the proposed approach.

2.5 Properties of the different optimization approaches

In Table 1, the properties of the diverse optimization approaches discussed above, standard vs. hierarchical and
forward vs. adjoint sensitivities, are listed. Scalable means that the approach scales well with the number of pa-
rameters. Handle static parameters efficiently means that the handling of additional static parameters is possible
without considerable additional computational overhead. FIM uncertainty assessment means that the Fisher Infor-
mation Matrix can be computed in order to assess parameter uncertainty. Least-squares based optimization means
that (non-linear) least-squares optimizers can be used, which are based on the observable residuals, in contrast to
objective based optimization, which only requires the full objective function. Finally, improved convergence means
that the approach has been observed to converge more often to the global optimum than the other approaches.

3 Analytic formulas for scaling, offset, and noise parameters for addi-
tive Gaussian measurement noise

In this section, we derive general formulas for the scaling, offset, and noise parameters assuming additive Gaussian
noise. We consider the observation function (6) and objective function (7) from the previous chapter.

In general, scaling parameters s, offset parameters b, and noise parameter σ can be shared among various data
points, and either need to be estimated or sometimes can be fixed externally. Sharing parameters translates to
using e.g. the same rescaling for all data points in a time series, or generated under the same conditions. To define
which time points, observables, and experimental conditions share a scaling, offset, or noise parameter, one can
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define
Isα, I

b
β , I

σ
γ ⊂ N

nt
+ ×N

ny
+ ×N

nu
+

for α = 1, . . . , ns, β = 1, . . . , nb, γ = 1, . . . , nσ, where ns, nb, nσ denote the numbers of scaling, offset, and noise
parameters respectively, s.t. each data point belongs to exactly one Isα, I

b
β , I

σ
γ . Then, all parameters sit,iy,iu for

which the indices i = (it, iy, iu) are contained in the same group Iiss share the same scaling parameters, similarly
for offset and noise parameters.

A common assumption in the following will be that first,

{Isα}α =
{
Ibβ
}
β
,

i.e. the sets Is = Ib coincide, and that second

∀α∃γ : Isα ⊂ Iσγ ,

i.e. data points sharing the scale parameter (and thus also the offset parameter) share also the noise parameter.
This we will also refer to as the resolution of σ being coarser than that of s and b.

These two assumptions will be required only when all parameters are to be optimized. We will call variables fixed,
if they are not to be optimized, but specified to some fixed value externally, or optimized as a dynamic parameter.
This will be made explicit in the respective subsections.

For ease of notation, we write in the following

ȳi = si · h̃i + bi + εi,

where i ∈ I is an arbitrary index over e.g. time points, observables, replicates, and experimental conditions, and
h̃i = h̃i(ti, θ, ui) denotes the unscaled observable. So, in the following, we consider the negative log-likelihood

J(θ, b, c, σ2) =
1

2

∑
i∈I

[
log(2πσ2

i ) +
(ȳi − (si · h̃i + bi))

2

σ2
i

]

for minimization, assuming a Gauss noise variable, see (2). We can decompose the objective function J to sums
over indices of interest, which we will w.l.o.g. do in the following, i.e. in the following sections, we only consider the
part of the sum relevant for a given parameter.

3.1 Scalings and offsets

We assume that the resolution of the scalings s and offsets b coincide, and that either σ2 is not to be optimized, or
its distribution is coarser than that of the scalings. So, we consider a reduced sum

J(θ, s, b, σ2) :=
1

2

∑
i

[
log(2πσ2

i ) +
(ȳi − (s · h̃i + b))2

σ2
i

]
,

where we assume that either σ2 is not to be optimized as a static parameter, or, if they are to be optimized as
static parameters. In that case imagine σ2

i = 1 for all i, as it will then drop out of the formulas here and can be
determined afterwards.

To find optimal parameters, we have the necessary conditions that the derivatives w.r.t. said parameters disappear:

0 = ∂sJ = −
∑
i

ȳi − (sh̃i + b)

σ2
i

h̃i ⇒ s =

(∑
i

h̃2
i

σ2
i

)−1(∑
i

(ȳi − b)h̃i
σ2
i

)

and

0 = ∂bJ = −
∑
i

ȳi − (sh̃i + b)

σ2
i

⇒ b =

(∑
i

1

σ2
i

)−1(∑
i

ȳi − sh̃i
σ2
i

)
.
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If either scaling or offset is fixed, we are done by inserting that value (in particular 1 or 0 assuming absolute data)
in the respective formula for the other one. Note that also different values for the fixed variables for different data
points would be possible. If both are to be optimized, we proceed by inserting the first equation into the second
one, giving 1−

(∑
i

1

σ2
i

)−1

∑
i
h̃i
σ2
i

∑
j
h̃j
σ2
j∑

i
h̃2
i

σ2
i


 b =

(∑
i

1

σ2
i

)−1
∑

i

ȳi
σ2
i

−

∑
i
ȳih̃i
σ2
i

∑
j
h̃j
σ2
j∑

i
h̃2
i

σ2
i

 .

If the factor on the left-hand side is non-zero, we find

b =

(∑
i

1
σ2
i

)−1

∑
i
ȳi
σ2
i
−

∑
i
ȳih̃i
σ2
i

∑
j

h̃j

σ2
j∑

i

h̃2
i
σ2
i


1−

(∑
i

1
σ2
i

)−1

∑
i
h̃i
σ2
i

∑
j

h̃j

σ2
j∑

i

h̃2
i
σ2
i

 . (11)

Otherwise, our simulations are not diverse enough to allow the identification of both s and b, in which case we can
simply set b = 0. However, if such a case is detected, a warning to the user is a good idea, as it indicates that
revising the data and static parameters would be a good idea. In either case, we can then use b to compute s as in
the previous formula.

Inspection of the second derivative shows that

∂2
sJ =

∑
i

h̃2
i

σ2
i

≥ 0, and ∂2
bJ =

∑
i

1

σ2
i

> 0,

so both are obviously (global) minima.

3.2 Noise parameters

We consider the reduced objective function

J(θ, s, b, σ2) =
1

2

∑
i

[
log(2πσ2) +

(ȳi − (sih̃i + bi))
2

σ2

]
.

This sum will typically involve multiple sums of the type discussed for the scalings and offsets. Here, it does not
matter where the values for si and bi come from. We find

0 = ∂σ2J =
1

2

∑
i

[
1

σ2
− (ȳi − (sih̃i + bi))

2

(σ2)2

]
⇒ σ2 =

(∑
i

1

)−1(∑
i

(ȳi − (sih̃i + bi))
2

)
.

Inspection of the second derivative shows that

∂2
σ2J =

1

2

∑
i

2(ȳi − (sih̃i + bi))
2 − σ2

(σ2)3

=
1

2

2
∑
i(ȳi − (sih̃i + bi))

2 −
∑
i(ȳi − (sih̃i + bi))

2

(σ2)3

=
1

2

∑
i(ȳi − (sih̃i + bi))

2

(σ2)3
=

1

2

∑
i 1

(σ2)2
> 0,

confirming we have a minimum.
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A problem arises when for the optimal noise parameter holds σ(θ) = 0. This indicates that all (rescaled) simulation
and data that are relevant for the given σ are a perfect match (easily possible e.g. when there is just one data point
per noise parameter). In this case, we would have a singularity for the objective function, which is undesirable as
it does not allow to infer the other parameters. Such constellations should be filtered out beforehand. If this is not
possible, a practical solution would be to limit σ > σ0 for some small minimum σ0 > 0. For the models and data
used in this study, this was not an issue.

3.3 Objective gradient used for optimization

The objective function gradient then used in optimization (assuming s, b, σ 6∈ θ, otherwise those derivatives need to
be added) is given specifically by

∇Ĵ(θ) = ∂θJ(θ, s(θ), b(θ), σ(θ)) = −
∑
i

ȳi − (sih̃i + bi)

σ2
i

s
dh̃i
dθ

= −
∑
i

ȳi − (sih̃i + bi)

σ2
i

s

(
∂h̃i
∂θ

+
∂h̃i
∂x

dx

dθ

)
,

as one easily verifies. While this expression still contains the sensitivities of states w.r.t. θ, we employed a re-
formulation using adjoint sensitivity analysis, as explained in the previous chapter. Here, the formula explicitly
reads

∇Ĵ(θ) = −
∑
i

ȳi − (sih̃i + bi)

σ2
i

si
∂h̃i
∂θ
− p(t0)T

∂x0

∂θ
−
∫ tN

t0

pT
∂f

∂θ
dt

with p satisfying p(t) = 0 for t > tN and on (tj , tj+1] obeying the backward differential equation

ṗ = −∂f
∂x

T

p with initial condition p(tj+1, θ) = lim
t↘tj+1

p(t) +
∑
i:ti=tj

ȳi − (sih̃i + bi)

σ2
i

si
∂hi
∂x

,

where we take the sum only over summands involving ti. See also Stapor et al. [2018] for a more extensive derivation
of the explicit formulas in the Gaussian case.

Note that in these formulas the problem of dependence of the adjoint state re-initialization terms on the scaling
parameters becomes apparent once more.

4 Implementation and computational analysis

4.1 Measurements for model calibration

We used the data file MCLP v1.1 from the MCLP website (https://tcpaportal.org/mclp/#/download, down-
loaded on 23.03.2017). 96 cell-lines of the processed CCLE measurements from Fröhlich et al. [2018] were taken.

4.1.1 Mapping protein measurements to the ODE model

To map the measured proteins from, e.g. MCLP, we added an observable as the sum over all states that included
this specific protein, weighted by their stoichiometric coefficients. Phosphorylation site-specific antibodies were
assumed to bind any modeled state of the given protein carrying the respective phosphorylation (irrespective of any
other modification). Antibodies not specific for any phospho-site were assumed to bind any modeled state of this
protein, modified or unmodified.
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4.2 Model simulation

Model simulation and gradient computation was performed using AMICI (https://github.com/ICB-DCM/AMICI/,
commit 974093). The SBML model was imported using the AMICI Matlab interface (Matlab, Mathworks, versions
R2017a or R2017b) and simulated using either the Matlab interface (for fmincon optimization) or the C++ interface
(other optimizers). For computing the gradient ∇J of the objective function, we employed the adjoint approach as
implemented in AMICI.

All measurements were considered steady-state measurements and the model was simulated from t0 = 0, x0 = 0
until t = 108, which showed to be sufficient for equilibration in previous studies.

4.3 Comparison of computation time for forward and adjoint sensitivities

We calculated the computation time for forward and adjoint sensitivity calculation by randomly sampling 6 com-
binations of parameters and experimental conditions. For these 6 samples, we calculated forward and adjoint
sensitivities for a randomly sampled subset of parameters,starting by one parameter up to all dynamic parameters
(Figure S1A). For all dynamic parameters, this yielded a 2703 fold speedup. We subsequently used this approxi-
mated speedup, to estimate the computation time needed for a full optimization using fmincon. The computation
time is estimated by multiplying the computation time using adjoints with the speedup factor.
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Figure S1: A: Computation time for one simulation with forward and adjoint sensitivities for increasing number of parameters.
B: Estimated computation time for a full optimization with adjoint and forward sensitivities using fmincon with hierarchical
optimization.

4.4 Optimization objective and gradient computation

With all optimizers we used an objective of the form of (2). The model was simulated for each experimental
condition and for the standard setting, the log-likelihood as well as, where required, its gradient as provided by
AMICI were aggregated.

In the hierarchical optimization setting, simulations were performed the same way, but then optimal static param-
eters were computed, the observables rescaled and the log-likelihood was computed. For computing the gradient
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∇J of the objective function, we employed the adjoint approach as explained above. It was, for ease of implemen-
tation, that the forward simulation was performed twice, once before computing the optimal static parameters, and
afterwards again in order to compute the adjoint state. This was because intermediate results from the forward
simulation are required for the backward simulation, which we did not store. So, we had a little computational
overhead compared to the theoretically most efficient algorithm depicted in Figure 1 of the main manuscript.

4.5 Parameter optimization

4.5.1 Parameter optimization settings

For parameter optimization, we used log-transformed parameters except for the offsets, which may also take negative
values. Initial parameters were sampled within the interval [−2, 2] ([−102, 102] for offsets) and for optimization,
the parameters were bound by [−5, 3] ([−103, 103] for offsets). Wider bounds sometimes led to numerical problems,
because of an increased number of parameters for which the objective function or the gradients were not evaluable.
We chose the parameter bounds to be wider than the sampling interval, to avoid problems that occur, especially
with Ipopt, when the starting parameters are too close to the bounds.

Initially, we encountered premature stopping of the optimizers due to failure to evaluate the objective function at
certain parameter values. Therefore, we implemented an automated integration tolerance relaxation scheme. In
case of integration failures, we repeated the respective simulation with absolute and relative tolerances relaxed by
a factor of 100, starting from an initial absolute tolerance of 10−16 and relative tolerance 10−8. This process was
repeated for three times.

4.5.2 Parameter optimization fmincon

For parameter optimization, objective function for hierarchical and standard optimization was implemented in
Matlab (Supplemental data, script path. Parameter estimation was performed using PESTO (https://github.
com/ICB-DCM/PESTO/, commit 1e30f9). Matlab code was compiled using the Matlab compiler toolbox and run on
compute nodes equipped with either: AMD Opteron processors with nominal frequency 2.4 GHz, 64 cores and 512
GB / AMD Opteron processors with nominal frequency 2.4 GHz, 64 cores and 256 GB / AMD Opteron processors
with nominal frequency 1.7 GHz, 48 cores and 192 GB. Model simulations were parallelized across 32 cores using
Matlab parfor. Individual local optimizations were run independently. Fmincon was supplied with gradients as
described above and called with the following options: MaxIter : 100, TolX : 10−8, TolFun: 0, MaxFunEvals: 107,
algorithm: interior-point, GradObj : on. We used the same AMICI version and settings as for the optimizers
described in the following section. However, due to different hardware, the reported run times for fmincon cannot
be compared directly to those of the other optimizers.

4.5.3 Parameter optimization Ipopt, SUMSL, Ceres

For parameter optimization, we used the following optimizers and settings:

• Ipopt (Wächter and Biegler [2006], https://www.coin-or.org/Ipopt/, version 3.12.9 with COIN-HSL ver-
sion 2015.06.23 http://www.hsl.rl.ac.uk/)
Default settings were used except for: max iter : 150, hessian approximation: limited-memory, limited -
memory update type: bfgs, tol : 10−9, acceptable iter : 1, acceptable tol : 1020, acceptable obj change tol :
10−12, watchdog shortened iter trigger : 0.

• Ceres, http://ceres-solver.org/, version 1.13.0)
We used the ”General Unconstrained Minimization” algorithm with default settings except for: max num -
iterations: 150.

• SUMSL (Gay [1983], http://netlib.org/toms/, file 611.gz)
SUMSL is originally provided as Fortran code. We used f2c (Fortran to C Translator, version 20100827)
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to convert this to C++ code. To allow for parallel usage of SUMSL, all static variables were changed to
static thread. Default settings were used except for: Maximum number of objective function evaluations
(mxfcal): 108.

Ceres and SUMSL do not natively support parameter bounds. Therefore, we used a naive implementation, reporting
failure to evaluate objective function to the optimizer in case the proposed parameters where outside the specified
bounds.

We interfaced above-mentioned optimizers using a custom C++ parameter estimation library parPE (https://
github.com/ICB-DCM/parPE/, commit 0e0fb1) which provides a generalized objective function for AMICI models
as described above and allows for its parallel evaluation. parPE was linked with the AMICI-generated model C++
codes to generate executables for parameter estimation and model simulation.

Parallelization at the level of individual simulations corresponding to individual experimental conditions was realized
using the IBM message passing interface (MPI) library in a master-worker architecture. The respective optimizer
was run on the master process and for objective function evaluation, batches of simulation jobs were sent to workers
for evaluation. Aggregation of individual likelihoods and gradients, as well as where applicable, the computation
of optimal static parameters were performed on master process. Different local optimizations for a given setting
were either run independently or in parallel. In the case of parallel optimizer runs, MPI-based parallelization of
simulations was combined with pthreads-parallel optimizer runs.

This code was run on the SuperMUC phase2 supercomputer at the Leibniz Supercomputing Centre (Leibniz-
Rechenzentrum, LRZ) of the Bavarian Academy of Sciences and Humanities, Garching, Germany. The employed
computes nodes were equipped with Haswell Xeon Processor E5-2697 v3 processors with nominal frequency 2.6
GHz, 28 cores per node and 64GB RAM per node. Compute jobs were submitted using IBM LoadLeveler using
either 128 nodes (3576 cores) for parallel runs of 20 local optimizations within one job, or as 20 individual jobs
using 10–12 nodes (280–336 cores).

4.6 Data and code availability

All simulation, parameter estimation, data analysis and visualization codes are provided as Supplementary Code at
http://doi.org/10.5281/zenodo.3254441. This archive additionally includes a human- and machine-readable defini-
tion of the parameter estimation problems considered in this manuscript in the PEtab format (https://github.com/ICB-
DCM/PEtab). Intermediary data and result files are available at http://doi.org/10.5281/zenodo.3254429.

To reuse our implementation of the applied parameter estimation pipeline, we refer users to the https://github.

com/ICB-DCM/parPE/ repository, which contains a constantly updated and more recent version than the one used
for this study. The codebase comes with some high-level documentation on how to use the workflow with different
SBML models and a test case of the hierarchical optimization using a toy example.

4.7 Simulation study

4.7.1 Synthetic data generation

We used synthetic absolute and relative viability data to evaluate the loss of information using relative data and
the differences in optimizer performance. The data was simulated using parameters from a former optimization
run, where viability and protein measurements were used. Noise was added to the simulated data according to the
estimated sigma parameter for the viability data:

Notation:

·̂ - estimates from optimization with viability + protein data

θ̂ - dynamic parameters
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ŝ - scalings

σ̂viability - sigma for viability data

With this notation, the synthetic and noisy relative data was generated by:

ȳrel = h(θ̂, ŝ) + εrel, εrel ∼ N (0, σ̂2
viability)

To get synthetic absolute data, the simulated relative data was first divided by the estimated scalings ŝ to make
them absolute and then noise was added:

ȳabs =
h(θ̂, ŝ)

ŝ
+ εabs, εabs ∼ N

(
0,

(
σ̂viability

ŝ

)2
)

4.7.2 Parameter estimation

Parameters were estimated for three different settings:

1. Using ȳabs as synthetic data

2. Using ȳrel as synthetic data with standard optimization

3. Using ȳrel as synthetic data with hierarchical optimization

Each time, Ipopt was used with 20 initial parameters and 150 maximal iterations. Each setting used the same
initial dynamic parameters.

4.7.3 Making relative data absolute

The relative simulations were made absolute by:

h̃ =
yrel, sim(θ∗, s∗)

s∗
,

where ∗ indicates the here optimized parameters. As measurements, the absolute measurements ȳabs were used. So
the correlations were computed by:

corr(ȳabs, h̃)

4.7.4 Analysis of simulated data

Here, we assess the quality of the simulated data. First, we compared the absolute data with and without added
noise (Figure S2A) showing a substantial amount of noise. Next, we looked at the simulated absolute data, before
adding noise and the real measured data from CCLE (Figure S2B). This reveals, that there is a poor agreement
between the simulated absolute and the measured relative data. Therefore, it is necessary to estimate the scaling
parameters. After scaling the simulated data and adding noise, we see that the simulated data is a realistic
representation of the real measurements (Figure S2C).
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Figure S2: A: Simulated absolute data before and after adding noise. B: Simulated absolute data, before noise was added
and relative measured data from CCLE. C: Relative simulated data with noise and relative measured data. Related to main
Figure 2.
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