
LETTER OPEN
doi:10.1038/nature12028

Aegilops tauschii draft genome sequence reveals a
gene repertoire for wheat adaptation
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About 8,000 years ago in the Fertile Crescent, a spontaneous hybridi-
zation of the wild diploid grass Aegilops tauschii (2n 5 14; DD) with
the cultivated tetraploid wheat Triticum turgidum (2n 5 4x 5 28;
AABB) resulted in hexaploid wheat (T. aestivum; 2n 5 6x 5 42;
AABBDD)1,2. Wheat has since become a primary staple crop world-
wide as a result of its enhanced adaptability to a wide range of
climates and improved grain quality for the production of baker’s
flour2. Here we describe sequencing the Ae. tauschii genome and
obtaining a roughly 90-fold depth of short reads from libraries with
various insert sizes, to gain a better understanding of this genetic-
ally complex plant. The assembled scaffolds represented 83.4% of
the genome, of which 65.9% comprised transposable elements. We
generated comprehensive RNA-Seq data and used it to identify
43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely
anchored to chromosomes with an integrated high-density genetic
map. Whole-genome analysis revealed gene family expansion in
Ae. tauschii of agronomically relevant gene families that were asso-
ciated with disease resistance, abiotic stress tolerance and grain
quality. This draft genome sequence provides insight into the envir-
onmental adaptation of bread wheat and can aid in defining the
large and complicated genomes of wheat species.

We selected Ae. tauschii accession AL8/78 for genome sequencing
because it has been extensively characterized genetically (Supplemen-
tary Information). Using a whole genome shotgun strategy, we generated
398 Gb of high-quality reads from 45 libraries with insert sizes ranging
from 200 bp to 20 kb (Supplementary Information). A hierarchical,
iterative assembly of short reads employing the parallelized sequence
assembler SOAPdenovo3 achieved contigs with an N50 length (mini-
mum length of contigs representing 50% of the assembly) of 4,512 bp
(Table 1). Paired-end information combined with an additional 18.4 Gb
of Roche/454 long-read sequences was used sequentially to generate
4.23-Gb scaffolds (83.4% were non-gapped contiguous sequences) with
an N50 length of 57.6 kb (Supplementary Information). The assembly
represented 97% of the 4.36-Gb genome as estimated by K-mer analysis
(Supplementary Information). We also obtained 13,185 Ae. tauschii
expressed sequence tag (EST) sequences using Sanger sequencing, of
which 11,998 (91%) could be mapped to the scaffolds with more than
90% coverage (Supplementary Information).

To aid in gene identification, we performed RNA-Seq (53.2 Gb for a
117-Mb transcriptome assembly) on 23 libraries representing eight
tissues including pistil, root, seed, spike, stamen, stem, leaf and sheath

(Supplementary Information). Using both evidence-based and de novo
gene predictions, we identified 34,498 high-confidence protein-coding
loci. FGENESH4 and GeneID models were supported by a 60%
overlap with either our ESTs and RNA-Seq reads, or with homologous
proteins. More than 76% of the gene models had a significant match
(E value # 1025; alignment length $ 60%) in the GenBank non-
redundant database. An additional 8,652 loci were predicted as low-
confidence genes as a result of incomplete gene structure or limited
expression data support (Supplementary Information). We also predicted
a total of 2,505 transfer RNA, 358 ribosomal RNA, 35 small nuclear RNA
and 78 small nucleolar RNA genes (Supplementary Information).

We found that more than 65.9% of the Ae. tauschii genome was
composed of different transposable element (TE) families (Supplemen-
tary Information). About 5 3 106 Illumina reads of Ae. tauschii were
mapped to hexaploid wheat repetitive sequences and we found that a
comparable percentage of reads (more than 62.3%) could be classified
as part of a TE sequence (Supplementary Fig. 6). This estimate is
similar to that derived from a previous survey of Roche/454 sequences5.
There were 410 different TE families, of which the 20 most abundant
contributed more than 50% of the Ae. tauschii genome (Supplemen-
tary Table 9). A single peak of increased insertion activity was estimated
to occur about 3–4 Myr ago by measuring the similarity of the assembled
LTR retrotransposons (Supplementary Information), suggesting that
the expansion of the Ae. tauschii genome was relatively recent and coin-
cided with the abrupt climate change during the Pliocene Epoch6.

We constructed a high-density genetic map using an F2 population
of 490 individuals derived from a cross between the Ae. tauschii
accessions Y2280 and AL8/78. The map, whose total length was
1059.8 centimorgans (cM), consisted of 151,083 single nucleotide poly-
morphism (SNP) markers developed by restriction-site-associated
DNA (RAD) tag sequencing technology (Supplementary Fig. 13).
Together with bin-mapped wheat ESTs7, SNPs and tags8, the genetic
map was used to align 30,303 scaffolds (1.72 Gb; 30,697 genes) to
chromosomes (Supplementary Information). The Ae. tauschii genes
and scaffolds were also anchored to barley9 and Brachypodium chro-
mosome maps10 (Fig. 1 and Supplementary Fig. 17). Calculation of
Ka/Ks ratios (the ratio of non-synonymous substitutions to synony-
mous substitutions) for pairs of conserved orthologous genes showed
that the average values between Ae. tauschii and barley (20,892 genes),
Brachypodium (17,231 genes), rice (16,370 genes) and sorghum
(18,623 genes) were 0.2214, 0.1888, 0.1736 and 0.1726, respectively,
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which indicated that most gene lineages evolved under purifying selec-
tion in Ae. tauschii. A total of 628 genes exhibited Ka/Ks ratios of more
than 0.8 when compared with the other four species, indicating poten-
tial positive selection (innermost circle of Fig. 1). These genes were
assigned to a wide range of molecular functions by using Gene
Ontology (GO) analyses (Supplementary Table 14).

Ae. tauschii proteins were clustered with those of Brachypodium,
rice, sorghum and barley (full-length complementary DNAs), and
formed 23,202 orthologous groups (at least two members; Supplemen-
tary Information). In total, we identified 11,289 (barley/Ae. tauschii)
and 14,675 (Brachypodium/Ae. tauschii) orthologous gene pairs. We
found that 8,443 gene groups contained sequences from all five grass
genomes, and 234 were specific to Pooideae (Ae. tauschii, Brachypo-
dium and barley) and 587 were specific to Triticeae (Ae. tauschii and
barley) (Fig. 2a). Enrichment analyses of both Pfam domains and GO
terms showed that genes encoding NBS-LRR (nucleotide-binding-site

leucine-rich repeat) proteins were over-represented in Ae. tauschii
relative to Brachypodium and rice11,12 (Supplementary Information).
These observations are consistent with those reported in a recent
study13. A total of 1,219 Ae. tauschii genes were similar to NBS-LRR
genes (R gene analogues (RGAs))11,14 (Supplementary Information).
This number is double that in rice (623) and sixfold that in maize
(216)12, indicating that the RGA family has substantially expanded
in Ae. tauschii. We mapped 878 RGAs (72%) to specific positions across
wheat chromosomes by using molecular marker–genome sequence
alignment, which provides a large number of potential disease resist-
ance loci for further investigation.

We found more genes for the cytochrome P450 family in
Ae. tauschii (485) than in sorghum (365), rice (333), Brachypodium
(262) or maize (261). This family of genes is important for abiotic
stress response, especially in biosynthetic and detoxification pathways15.
Using 178 manually curated cold-acclimation-related genes such
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Figure 1 | Comparative analysis of Ae. tauschii ordered scaffolds versus
barley and Brachypodium. The inner circle represents the seven Ae. tauschii
chromosomes scaled according to the genetic map incorporating genome
scaffolds. Red points show the Ka/Ks ratios between anchored Ae. tauschii genes
and their putative orthologues in Brachypodium. Moving outwards, the second
circle compares Ae. tauschii against the seven barley chromosomes9. The

heatmaps show the density distribution of barley cDNA loci that are aligned
with Ae. tauschii genes. The outer two circles illustrate Brachypodium
chromosomes according to conserved synteny with Ae. tauschii. The coloured
lines below each chromosome identify putative orthologous gene pairs between
Ae. tauschii genes, barley genes and Brachypodium genes.

Table 1 | Overall statistics of sequencing and genome assembly
Assembly process Library insert size (bp) Read length (bp) Effective data (Gb) N50 (bp) N50 number Total length (Mb) Gaps (Mb)

Contig assembly 167–764 44, 75, 100, 150 270 4,521 179,145 3,528 –
Scaffolding 2,000–20,000 44, 49, 90 128 58,011 19,405 4,244 1,122
Gap closure 167–764 44, 75, 100, 150 270 57,585 19,455 4,229 701

114–263 65
,600* 18

*Reads from 454 sequencing platform.
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as the CCAAT-binding factor (CBF) transcription factors16, late-
embryogenesis-abundant proteins (LEA) and osmoprotectant biosyn-
thesis proteins (Supplementary Information) as queries, we identified
216 cold-related genes in the Ae. tauschii genome, in contrast to 164
genes in Brachypodium, 132 in rice, 159 in sorghum and 148 in maize.
Some of these genes were specific to Ae. tauschii or to Pooideae, includ-
ing those encoding ice-recrystallization inhibition protein 1 precursor,
DREB2 transcription factor a isoform and cold-responsive LEA/RAB-
related COR protein. Expression analysis of RNA-Seq data showed
that most of these Ae. tauschii-specific and Pooideae-specific genes
were constitutively expressed in Ae. tauschii (Supplementary Fig. 23).
In addition, 1,489 transcription factors (TFs) in 56 families were iden-
tified by using Pfam DNA-binding domains (Supplementary Informa-
tion). Ae. tauschii had an excess of such TFs as MYB-related genes
(103, in contrast with 66 in Brachypodium and 95 in maize), and these
are also thought to be involved in various stress responses17. The M-type
MADS-box genes (58, in contrast with 23 in Brachypodium and 34
in maize) are involved in regulation in plant reproduction18 (Fig. 2b
and Supplementary Table 18). ARACNe19 co-expression analysis using
RNA-Seq data predicted an expression network of 1,283 interactions
(Supplementary Fig. 25), in which 13 TFs were associated with the
expression of drought tolerance genes20 (Supplementary Table 20).

We predicted a total of 159 (133 families) previously undescribed
microRNAs (Supplementary Information), and identified segmental
and tandem duplications in 42 members of the miR2118 family
that were organized into two groups on 15 scaffolds (Supplementary
Fig. 26). The miR399 family, which is involved in the regulation of
inorganic phosphate homeostasis in rice21, was expanded (20 members
in Ae. tauschii, compared with 11 in rice and 10 in maize), and may
contribute to the ability of Ae. tauschii to grow in low-nutrient soils.
The expansion of the miR2275 family (eight members in Ae. tauschii,
compared with two in rice and four in maize) may contribute to
the enhanced disease resistance of Ae. tauschii because phased short
interfering RNAs initiated by miR2275 have been implicated in
these activities22.

The Ae. tauschii genome served as the source for many grain qua-
lity genes in hexaploid wheat, creating a step improvement in the form-
ation of the elastic dough essential for bread making2. Grain quality
genes include high-molecular-weight glutenin subunits (HMW-GS),

low-molecular-weight glutenin subunits (LMW-GS)23, grain texture
proteins (GSP; puroindolines)24 and storage protein activator (SPA)25.
We identified two HMW-GS genes, five LMW-GS genes, one Pina gene,
two Pinb genes, one GSP gene and one SPA gene in the Ae. tauschii
genome sequence (Supplementary Information). As has been shown
for the Hardness (Ha) locus24, the GSP, Pina and Pinb genes were
also organized in a cluster. RNA-Seq analysis showed that these grain
quality genes were expressed predominantly in seeds (Supplemen-
tary Fig. 29).

The anchoring of more than 40% of the scaffold sequences to four
genetic maps and to syntenic regions of other sequenced grass species
provided a structural framework for integrating multiple maps by
using shared markers (Fig. 1 and Supplementary Information). The
co-localization of genes in scaffolds and genetically mapped quanti-
tative trait loci (QTLs) will directly support map-based gene cloning.
On chromosome 2D, for example, the locations of 33 QTLs or genes
were integrated with scaffold information (http://ccg.murdoch.edu.au/
cmap/ccg-live/) (Fig. 3 and Supplementary Information). Alignment
of the Ae. tauschii genetic map with the wheat 2D consensus genetic
map was unambiguous, with the exception of some single crossovers
that were probably due to repetitive elements (dotted lines in Fig. 3).
The genome sequence also provided the basis for the identification
of more than 860,126 simple sequence repeats (SSRs), with trimers
(37.7%) and tetramers (27.5%) as the most abundant SSR types (Sup-
plementary Information). Together with the 711,907 SNPs identified
by resequencing a roughly fivefold coverage of a second accession,
Y2280 (Supplementary Information), the genomic resources reported
here will promote map-based gene cloning and marker-assisted selec-
tion in wheat.

With its high base accuracy and nearly complete set of gene
sequences, the Ae. tauschii draft genome sequence provides an essen-
tial reference for studying D genome diversity by re-sequencing addi-
tional accessions. Over the past half century, the introduction of new
D genome diversity into synthetic wheat has been a major effort to
expand bread wheat genetic diversity and to create environmentally
resilient lines26,27. The Ae. tauschii genome sequence should aid in
identifying new elite alleles for agriculturally important traits to
alleviate the worsening plight of global climate and environment
changes27.
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Figure 2 | Ae. tauschii gene families and transcription factors.
a, Distribution of orthologous gene families in Ae. tauschii, Brachypodium,
sorghum, rice and barley. The number of gene families is represented in each
intersection of the Venn diagram. The first number under the species name
indicates the total number of genes annotated for a particular species, and the

second indicates the number of genes in groups for that organism. The
difference between the two accounts for singleton genes that were not present in
any cluster. b, The composition of transcription factors (TFs) in Ae. tauschii
and Brachypodium composed of more than 30 members.

LETTER RESEARCH

4 A P R I L 2 0 1 3 | V O L 4 9 6 | N A T U R E | 9 3

Macmillan Publishers Limited. All rights reserved©2013

http://ccg.murdoch.edu.au/cmap/ccg-live
http://ccg.murdoch.edu.au/cmap/ccg-live


METHODS SUMMARY
We selected Ae. tauschii (2n 5 14) accession AL8/78 for sequencing. Plants were
grown at 25 uC in a darkened chamber for two weeks; DNA was extracted from leaf
tissue and purified with a standard phenol/chloroform extraction protocol.
Sequencing libraries were constructed and sequenced on Illumina next-generation
sequencing platforms (GAII and HiSequation (2000)). High-quality reads were
assembled with SOAPdenovo3. Repeat sequences were identified by combining de
novo approaches and sequence similarity at the nucleotide and protein levels. Gene
models were predicted by combining homology-based, de novo and RNA-Seq-
based methods. RNA-Seq reads were assembled with CAP3 (ref. 28) and CD-Hit29

and were mapped to the draft genome with Tophat30. See Supplementary
Information for details and additional analyses.

Received 28 March 2012; accepted 20 February 2013.

Published online 24 March; corrected online 3 April 2013 (see full-text HTML

version for details).

1. Salamini, F., Ozkan, H., Brandolini, A., Schafer-Pregl, R. & Martin, W. Genetics and
geography of wild cereal domestication in the near east. Nature Rev. Genet. 3,
429–441 (2002).

2. Dubcovsky, J. & Dvorak, J. Genome plasticity a key factor in the success of
polyploid wheat under domestication. Science 316, 1862–1866 (2007).

3. Li, R. et al. Denovo assembly of human genomes with massively parallel short read
sequencing. Genome Res. 20, 265–272 (2010).

4. Salamov, A. A. & Solovyev, V. V. Ab initio gene finding in Drosophila genomic DNA.
Genome Res. 10, 516–522 (2000).

5. Wicker, T. et al. A whole-genome snapshot of 454 sequences exposes the
composition of the barley genome and provides evidence for parallel evolution of
genome size in wheat and barley. Plant J. 59, 712–722 (2009).

6. Williams,M. et al. Pliocene climate andseasonality inNorthAtlantic shelf seas. Phil.
Trans. R. Soc. A 367, 85–108 (2009).

7. Qi, L. L. et al. A chromosome bin map of 16,000 expressed sequence tag loci and
distribution of genes among the three genomes of polyploid wheat. Genetics 168,
701–712 (2004).

8. Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J. L. Development of high-
density genetic maps for barley and wheat using a novel two-enzyme genotyping-
by-sequencing approach. PLoS ONE 7, e32253 (2012).

9. Mayer, K. F. et al. Unlocking the barley genome by chromosomal and comparative
genomics. Plant Cell 23, 1249–1263 (2011).

10. The International Brachypodium Initiative. Genome sequencing and analysis of
the model grass Brachypodium distachyon. Nature 463, 763–768 (2010).

11. McHale, L., Tan, X., Koehl, P. & Michelmore, R. W. Plant NBS-LRR proteins:
adaptable guards. Genome Biol. 7, 212 (2006).

12. Luo, S. et al. Dynamic nucleotide-binding-site and leucine-rich-repeat-encoding
genes in the grass family. Plant Physiol. 159, 197–210 (2012).

13. Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome
shotgun sequencing. Nature 491, 705–710 (2012).

14. Yue, J. X., Meyers, B. C., Chen, J. Q., Tian, D. & Yang, S. Tracing the origin and
evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-
LRR) genes. New Phytol. 193, 1049–1063 (2012).

15. Schuler, M. A. & Werck-Reichhart, D. Functional genomics of P450s. Annu. Rev.
Plant Biol. 54, 629–667 (2003).

16. Thomashow, M. F. Molecular basis of plant cold acclimation: insights gained from
studying the CBF cold response pathway. Plant Physiol. 154, 571–577 (2010).

17. Lata, C., Yadav, A. & Prasad, M. in Abiotic Stress Response in Plants—Physiological,
Biochemical and Genetic Perspectives (Shanker, A. & Venkateswarlu, B., eds)
269–296 (InTech, 2011).

18. Masiero, S., Colombo, L., Grini, P. E., Schnittger, A. & Kater, M. M. The emerging
importance of type I MADS box transcription factors for plant reproduction. Plant
Cell 23, 865–872 (2011).

19. Margolin, A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinformatics 7 (Suppl. 1), S7
(2006).

20. Mao, X. et al. Transgenic expression of TaMYB2A confers enhanced tolerance to
multipleabioticstresses inArabidopsis. Funct. Integr.Genomics11,445–465 (2011).

21. Hu, B. & Chu, C. Phosphate starvation signaling in rice. Plant Signal. Behav. 6,
927–929 (2011).

22. Shivaprasad, P. V. et al. A microRNA superfamily regulates nucleotide binding site-
leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874 (2012).

23. Gupta, R. B., Singh, N. K. & Shepherd, K. W. The cumulative effect of allelic variation
in LMW and HMW glutenin subunits on dough properties in the progeny of two
bread wheats. Theor. Appl. Genet. 77, 57–64 (1989).

24. Chantret, N. et al. Molecular basis of evolutionary events that shaped the hardness
locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17,
1033–1045 (2005).

25. Ravel, C. et al. Nucleotide polymorphism in the wheat transcriptional activator Spa
influences its pattern of expression and has pleiotropic effects on grain protein
composition, dough viscoelasticity, and grain hardness. Plant Physiol. 151,
2133–2144 (2009).

26. Talbert, L. E., Smith, L. Y. & Blake, N. K. More than one origin of hexaploid wheat is
indicatedbysequence comparison of low-copyDNA. Genome 41, 402–407 (1998).

27. Trethowan, R. M. & Mujeeb-Kazi, A. Novel germplasm resources for improving
environmental stress tolerance of hexaploid wheat. Crop Sci. 48, 1255–1265
(2008).

28. Huang, X. & Madan, A. CAP3: a DNA sequence assembly program. Genome Res. 9,
868–877 (1999).

29. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

30. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank J. M. Wan for support and encouragement; J. Dvorak
and M. C. Luo for the AL8/78 line; C. Y. Jin, X. Y. Li, L. C. Zhang, L. Pan and J. C. Zhang for
material preparation; Y. H. Lv for providing helpful palaeogeological information;
D. M. Appels for producing the CMap database of molecular genetic maps; K. Edwards
for providing the details of the SNP-based map for Avalon 3 Cadenza; L. Goodman for
assistance in editing the manuscript; and M. W. Bevan, Y. B. Xu and C. Zou for critical
readings of the manuscript. This work was supported by grants from the National 863
Project (2012AA10A308 and 2011AA100104), the International S&T Cooperation
ProgramofChina (2008DFB30080), theNationalNatural ScienceFoundationofChina
(31171548 and 31071415), the National Basic Research Program of China
(2010CB125900), the Core Research Budget of the Non-profit Governmental
Research (201013) and the National Program on R&D of Transgenic Plants
(2011ZX08009-001 and 2011ZX08002-002).

Author Contributions J.Z.J., Ji.W., XuL., H.M.Y., Z.H.H., Lo.M., Ju.W., X.Y.K., X.Y.Z., R.L.J.
and Y.Z.M. initiated the project and designed the study. X.Y.K., G.Y.Z., R.A., L.F.G., Qu.H.,
H.H.K., B.K., X.C.X., R.Z.Z. G.M.L. and C.M. performed the research. S.C.Z., Y.R.L., W.M.H.,
M.P., C.Z., D.L., C.G., M.S., K.M., Y.T., F.Y.Z., S.K.P., J.W.L., Q.S.L., Ji.C., C.Y.G., G.Y.H., Y.D.L.,
P.L., J.Y.W., J.Y.X. and J.L.G. generated and analysed the data. Q.J.X., H.F.Z. and Z.W.Q.
developed the high-density genetic map. J.Z.J., S.C.Z., Lo.M., R.A., G.Y.Z., X.Y.K. and T.W.
wrote the paper.

P38/M51-3

bcd410b

wPt-8319

wmc167

gwm349b
fbb251

scaffold33570

glk558

cdo1008

tam8

fba38

scaffold55248

gwm515b
cfd11b

cfd43b

cfd168

cfd44a

wmc170a
bcd1970
scaffold24936

wmc243

wmc112b

barc142

gwm577

scaffold21652

gwm448
P35/M49-140

scaffold41009

gwm30

cfd43a

gwm107
scaffold62600
cfa2141
gwm4815
P44/M54-3

wmc112a

stm544tgag1

scaffold25953

gwm455

wmc111
P41/M54-210 QGne.nfcri-2D.1

QGfrmax.nfcri-2D

Lr39 (leaf rust)

QGt.orst-EF00

Rht8 (reduced height)

QYld.ksu-2D

QFhs.pur-2D

QDta.umc-2D

QGt.orst-2D.1

Tg1

QGba.orst-2D

CID-2D (C isotope disc.)

Qnos.umc-2D

QHt.crc-2D

bh-D1

Acph-D2

QGpc.ccsu-2D.1

QGne.nfcri-2D.2

QTgw.nfcri-2D

QGnu.ipk-2D

Pm43 (powdery mildew)

QGwe.ipk-2D.4

Ppo-D1

QHt.ipk-2D

QGwe.ipk-2D.1

QEet.ipk-2D

QGwe.ipk-2D.3

QRg.ipk-2D

QGYld.agt-2D

TGWM

SWSCF

QTwt.crc-2D

scaffold33570

scaffold57273

scaffold75930

scaffold46967

scaffold11136

scaffold55248

scaffold6213

scaffold13117

scaffold33259

scaffold22577

scaffold24936

scaffold27870

scaffold37271

scaffold37507

scaffold59483

scaffold21652

scaffold65995

scaffold27530

scaffold56089

scaffold62600

scaffold22687

scaffold25399

scaffold24535

scaffold96535

scaffold63424

scaffold25953

scaffold29330

scaffold97729

scaffold20333

scaffold12219

scaffold41249

scaffold41009

2D
[2323]

2D
[302]

scaffold22569

scaffold4617

scaffold16374

scaffold20333

Ppd-D1

Figure 3 | An integrated genetic map of Ae. tauschii chromosome 2D. The
Ae. tauschii genetic map was integrated with markers, scaffolds and mapped
QTLs to assist in marker development and map-based cloning. Left: the
Ae. tauschii molecular map used for synteny alignment in Fig. 1 was aligned to
chromosome 2D (November 2011 consensus map, CMap; http://
ccg.murdoch.edu.au/cmap/ccg-live) where sequence information was available.
The original marker at a location is retained in CMap as a synonym. Right:
within CMap, details for QTL locations are provided at a greater magnification
to show all the markers in the regions of interest. The dotted lines indicate an
ambiguous relationship that is most probably due to repetitive sequences.
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