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KEY PO INT S

l CD30 signaling drives
the expansion of B1
cells and PBs/PCs in
transgenic mice.

l Chronic CD30
signaling in murine
B cells results in the
development of B-cell
lymphomas.

CD30 is expressed on a variety of B-cell lymphomas, such as Hodgkin lymphoma, primary
effusion lymphoma, and a diffuse large B-cell lymphoma subgroup. In normal tissues, CD30
is expressed on some activated B and T lymphocytes. However, the physiological function
of CD30 signaling and its contribution to the generation of CD301 lymphomas are still
poorly understood. To gain a better understanding of CD30 signaling in B cells, we studied
the expression of CD30 in different murine B-cell populations. We show that B1 cells
expressed higher levels of CD30 than B2 cells and that CD30 was upregulated in IRF41

plasmablasts (PBs). Furthermore, we generated and analyzed mice expressing a consti-
tutively active CD30 receptor in B lymphocytes. Thesemice displayed an increase in B1 cells
in the peritoneal cavity (PerC) and secondary lymphoid organs aswell as increased numbers
of plasma cells (PCs). TI-2 immunization resulted in a further expansion of B1 cells and PCs.

We provide evidence that the expanded B1 population in the spleen included a fraction of PBs. CD30 signals seemed to
enhance PC differentiation by increasing activation of NF-kB and promoting higher levels of phosphorylated STAT3 and
STAT6 and nuclear IRF4. In addition, chronic CD30 signaling led to B-cell lymphomagenesis in aged mice. These
lymphomas were localized in the spleen and PerC and had a B1-like/plasmablastic phenotype. We conclude that our
mouse model mirrors chronic B-cell activation with increased numbers of CD301 lymphocytes and provides experimental
proof that chronic CD30 signaling increases the risk of B-cell lymphomagenesis. (Blood. 2019;133(24):2597-2609)

Introduction
CD30 is a member of the tumor necrosis factor receptor su-
perfamily.1 Initially, CD30 was defined as a marker of Hodgkin
lymphoma (HL),2 but it was later also detected on anaplastic
large-cell lymphoma,2 primary effusion lymphomas,3,4 and
a diffuse large B-cell lymphoma (DLBCL) subgroup.5,6 In addition,
CD30 is expressed on virally infected lymphocytes, including
Epstein-Barr virus (EBV)–infected B cells or HIV-infected T cells, as
well as on lymphocytes of patients with autoimmune diseases.7

Elevated levels of soluble CD30, which arise from the extracel-
lular cleavage of CD30, are often detectable in the sera of
patients with CD301 lymphomas and chronic infections.1,8 In
healthy persons, CD30 is expressed only on a few activated B and
T lymphocytes. CD301 B lymphocytes are generally localized in
the extrafollicular (EF) regions of lymphoid tissues.9-11 A few CD301

B cells are located in germinal centers (GCs) and are considered to
be a subgroup of positively selected centrocytes (CCs).12

The role of CD30 signaling in B lymphocytes is still poorly un-
derstood. Studies in CD30 knockout mice have not revealed
a clear function of CD30 signaling in B cells.13 CD30 knockout
mice had a defect in sustaining GC responses and inducing
secondary immune responses; however, this defect was attrib-
uted to the impaired generation of CD41 memory T cells.14 No
studies have investigated whether CD30-deficient B cells also
contribute to this phenotype. Similarly, although CD30 is highly
expressed on several B-cell lymphomas, it is unclear whether
deregulated CD30 signaling actively drives B-cell lymphoma-
genesis. Because CD301 lymphomas are often correlated with
viral infections,15 there might be a correlation between chronic
immune stimulation and development of CD301 lymphomas.
This hypothesis was strengthened by recent cohort studies
showing that elevated levels of soluble CD30 in immunocom-
petent healthy persons were associated with an increased risk of
developing non-HL.16-20
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To study the role of CD30 signaling in B-cell activation and
lymphomagenesis, we generated a new transgenic mouse strain
(LMP1/CD30flSTOP mice) expressing a constitutive active CD30
receptor upon Cre-mediated recombination. We demonstrate
that B cell–specific expression of LMP1/CD30 led to the ex-
pansion of B1 cells and enhanced plasma cell (PC) differentia-
tion. Furthermore, we provide evidence that chronic CD30
signaling resulted in lymphoma development.

Methods
Mice
The LMP1/CD30 transgene was inserted together with a loxP-
flanked stop cassette into the Rosa26 locus of embryonic stem
cells. Chimeric mice were obtained from the microinjection of
embryonic stem cells into blastocysts and used to establish the
LMP1/CD30flSTOP transgenic mouse line. For the B cell–specific
expression of LMP1/CD30, we used CD19-Cre mice or Cg1-Cre
mice,21,22 which were kindly provided by Klaus Rajewsky. R26/
CAG-CARD1StopF mice were used as reporter mice.23 Mice
were analyzed on a BALB/c background. Mice were bred and
maintained in specific pathogen-free conditions, and experi-
ments were performed in compliance with the German Animal
Welfare Law and were approved by the Institutional Commit-
tee on Animal Experimentation and the government of Upper
Bavaria.

Cell purification
B cells were isolated from splenic-cell suspensions using CD43
MicroBeads or the Pan-B Cell Isolation Kit (Miltenyi-Biotec,
Bergisch-Gladbach, Germany) according to the manufacturer’s
instructions (magnetic-activated cell sorting separation). B1
(CD23lowCD431) and B2 cells (CD231CD432) were sorted with
a BD FACSAria III.

Protein detection
Whole-cell extracts were prepared with NP40 lysis buffer. Nu-
clear and cytoplasmic extracts were generated with the NE-PER
Kit (ThermoScientific,Waltham,MA).Western blot analyses were
performed as described previously24 or with the WES system,
a fully automated western blot system (ProteinSimple, San Jose,
CA), according to the manufacturer’s instructions (additional
information in supplemental Methods).

In vitro cultures
In vitro culture conditions are described in supplemental
Methods.

Flow cytometry
All fluorescence-activated cell sorting antibodies were pur-
chased from BD Biosciences (Heidelberg, Germany), except for
the coxsackie/adenovirus receptor (CAR) antibody (Santa Cruz
Biotechnology, Dallas, TX).

For intracellular fluorescence-activated cell sorting staining, cells
were fixed with 2% paraformaldehyde and permeabilized with
methanol. Analysis was performed with the FACSCalibur (BD
Biosciences) or LSRFortessa (BD Biosciences). Results were an-
alyzed with FlowJo software (version 10; TreeStar).

Histology
Immunohistochemistry was performed by using OCT (VWR
Chemicals, Radnor, PA) or paraffin-embedded tissues. Further
information is given in supplemental Methods.

Statistics
Means, standard deviations, and P values were calculated using
Prism7 software (GraphPad Software) through Student unpaired
t tests, 1- or 2-way analyses of variance, orMann-WhitneyU tests,
where appropriate. Because of their lognormal distribution, values
for some parameters like immunoglobulin titers and protein and
messenger RNA (mRNA) levels were logtransformed before
statistical analysis.

Results
Expression of CD30 on murine B cells
We examined CD30 surface expression on different mature
B-cell populations ex vivo and after in vitro activation. In the
peritoneal cavity (PerC), B1 cells expressed more CD30 than
B2 cells, with slightly higher levels in B1a than B1b cells. These
expression differences were also observed in splenic B cells but
to a lower extent (Figure 1A; supplemental Figure 1A). This was
in accordance with in silico data revealing CD30 mRNA ex-
pression was higher in B1a and B1b cells compared with B2
cells in the PerC and was slightly increased in B1a compared
with follicular B cells and marginal zone B cells in the spleen
(Figure 1B). Mitogenic stimulation of splenic B cells in vitro led
to an upregulation of CD30, with CD30 being upregulated
more strongly in B1 than in B2 cells (Figure 1C; supplemental
Figure 1B-C).

Moreover, in silico analysis revealed upregulation of CD30
mRNA in blasts and PBs after in vitro stimulation (Figure 1D),
in accordance with a higher CD30 surface expression on IRF41

PBs/PCs compared with IRF42 B cells (Figure 1E). These data
show that B1 cells and PBs express more CD30 on their cell
surfaces than naı̈ve B2 cells.

Generation of conditional transgenic mouse
strain LMP1/CD30flSTOP

To study the function of CD30 in B-cell activation and lym-
phomagenesis, we generated mice conditionally expressing
a constitutive active CD30 receptor. We cloned an LMP1/CD30
fusion gene consisting of the transmembrane domain of the
EBV latent membrane protein 1 (LMP1TM) and the intracellu-
lar signaling domain of CD30. LMP1/CD30 exerts ligand-
independent CD30 signaling by self-aggregation of LMP1TM

in the plasma membrane. We have already demonstrated the
efficacy of this approach by generating a constitutive active
CD40 receptor.24,25 The functionality of the LMP1/CD30 fusion
protein was verified by an NF-kB–dependent luciferase activ-
ity assay in HEK293 cells after transient transfection with an
LMP1/CD30 expression construct (supplemental Figure 2A).
The transgene was inserted together with a loxP-flanked stop
cassette into the rosa26 locus. After removal of the stop cas-
sette by Cre, LMP1/CD30 was expressed under the control
of the rosa26 promoter together with the reporter gene hCD2
(supplemental Figure 2B).
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Constitutive CD30 expression in B cells leads to
expansion of mature B cells
To activate LMP1/CD30 in all B cells, we crossed LMP1/
CD30stopfl mice with CD19-Cre mice. In all analyses, we used
mice that were heterozygous for LMP1/CD30 and CD19-Cre,
designated LMP1/CD30 hereafter. Controls were mostly CD19-
Cre1/2 mice. Deletion efficiency of the stop cassette was low
in developing B cells of the bone marrow but reached .94% in
mature B cells (supplemental Figure 3A-B). LMP1/CD30 protein

from splenic B lymphocytes was detected at a size of ;54 kDa
(supplemental Figure 3C).

LMP1/CD30 mice displayed splenomegaly and significantly
increased B-cell numbers in the spleen compared with controls,
whereas T-cell numbers were comparable (Figure 2A). Splenic
sections revealed a normal follicle structure with a B- and T-cell
zone surrounded by a marginal zone. However, more B cells
expressing high levels of IgM were located in the red pulp
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Figure 1. Expression of CD30 on B cells. (A) The histograms show an overlay of CD30 surface expression on B1a (CD51B220lowCD191), B1b (CD5lowB220lowCD191), and B2 cells
(B220highCD191) of the PerC and spleen (n5 3). (B) In silico analysis of immgen.org data showing CD30 (TNFRSF8) mRNA expression in different B-cell populations of the PerC
and spleen. (C) The overlays show CD30 and CD86 surface expression of splenic B cells in the absence of stimulation (day 0) and after 1 or 3 days of CD40 plus IgM stimulation.
Staining of CD86 was used as positive control for B-cell activation (n5 3). (D) CD30mRNA expression at different B-cell activation stages after CD40 and lipopolysaccharide (LPS)
stimulation of unstimulated follicular B (FoB) cells, CD40/IL4 blasts (B2201CD1382), CD40/IL4/IL5 plasmablasts (PBs) (B220lowCD138+), LPS blasts (BLIMP12CD1382), LPS PB SDC2

(Blimp11CD1382), LPS PB SDC11 (BLIMP11CD1381), and splenic PCs. CD30mRNA expression was determined by in silico analysis of expression data published by Shi et al.49 (E)
The histogram shows an overlay of CD30 surface expression of IRF41 vs IRF42 splenic B cells of a control mouse 3 days after immunization with NP-Ficoll. Gating was performed
as shown in the dot plot. Dot plots were pregated on a large lymphocyte gate and Thy1.22 cells. The analysis is representative of 2 independent experiments with 3 mice each.
FPKM, fragments per kilobase of exon per million reads mapped; MZB, marginal zone B cells.
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Figure 2. Constitutive CD30 expression in B cells leads to the expansion of B1 cells and PCs. (A) Splenic weights and absolute splenic B- and T-cell numbers from LMP1/
CD30 mice and controls (ctrl) age 8 to 12 weeks are shown. (B) Splenic sections from LMP1/CD30 and ctrl mice were stained for immunoglobulin M (IgM; brown/red), CD3 (light
blue), and MOMA-1 (dark blue) to visualize B cells, T cells, and metallophilic macrophages, respectively. Slides were analyzed with an Axioskop (Zeiss) with a Zeiss Plan
NEOFLUAR (objective 103/0.3). Images were obtained with an AxioCam MRc5 digital camera in combination with AxioVision rel.4.6.3.0 software (Carl Zeiss MicroImaging
GmbH, Jena, Germany). (C) Splenic B lymphocytes (CD191) were analyzed for the expression of IgM/IgD, distribution of follicular B cells (CD21intCD231) and marginal zone
B cells (CD21highCD23low), distribution of B1 (CD431CD23low) and B2 (CD432CD231) cells, and distribution of B1a (CD51B220low), B1b (CD5lowB220low), and B2 (B2201CD5low) by
flow cytometry (n$ 6). (D) Flow cytometric analysis of splenic and bone marrow lymphocytes stained for PCs (B2202/lowCD1381). Cells were pregated using a large lymphocyte
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compared with control sections (Figure 2B). Analysis of the B-cell
compartment in the spleen revealed an expansion of mature
B cells, with B1 cells and PBs/PCs being the most highly ex-
panded (Figure 2C-D; supplemental Table 2). In all B-cell sub-
populations, expression of endogenous CD30 on the cell surface
was comparable between mutant and control mice (supple-
mental Figure 3D). Increased percentages of PBs/PCs and

B1 cells were also detected in other organs. Thus, percentages
of PCs were elevated in the bone marrow (Figure 2D), and
percentages of B1 cells were elevated in lymph nodes and
blood (supplemental Figure 4A-B). In the PerC, total lympho-
cyte numbers were increased (supplemental Figure 4C), with
a four- to fivefold increase in B1a- andB1b-cell numbers (Figure 2E).
Consequently, constitutive CD30 signaling resulted in the

Figure 2 (continued) gate (n $ 6). Numbers in the fluorescence-activated cell sorting plots indicate the mean and standard deviation values of the percentages of the gated
populations. (E) Total numbers of B lymphocytes (CD191) in the PerC were counted and calculated based on their staining: B1a (CD51B220low), B1b (CD5lowB220low) and
B2 (CD5lowB2201). B cells from LMP1/CD30 mice were gated on hCD2. Data were collected from 8- to 16-week-old mice. *P , .05, **P , .01, ***P 5 .001, ****P , .0001.
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expansion of mature B lymphocytes, with a stronger expansion
of B1 cells and PBs/PCs.

Constitutive CD30 signaling enhances
PC differentiation
The upregulation of CD30 in PBs (Figure 1D-E) and the ex-
pansion of PBs/PCs in LMP1/CD30 mice suggest a role for
CD30 signaling in PC differentiation. In accordance with this,

total IgM, IgG2a, IgG3, and IgA antibody titers in the serum
were elevated (Figure 3A). Moreover, unstimulated and stim-
ulated LMP1/CD301 B cells generated more PBs and secreted
more IgM than controls in in vitro cultures (supplemental Figure
5A-C). Analysis of the expression levels of Blimp1 (Prdm1), Irf4, and
Xbp1, which are upregulated, and Pax5, which is downregulated
during PCdifferentiation,26 revealed that splenic B1 cells of LMP1/
CD30 mice expressed more Prdm1 mRNA and higher IRF4
protein levels comparedwith controls (Figure 3B-C). Furthermore,
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populations in different FACS analyses. (C) CD23lowCD431 and CD231CD432 cells were gated as shown in panel B. B220/CD138 staining of CD23lowCD431 and
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the percentage of CD1381B220low cells within the B1-cell fraction
was higher in LMP1/CD30 mice than in controls (Figure 3D),
suggesting that LMP1/CD30 expression drives PC differentiation
of B1 cells. This was corroborated by our finding that sorted LMP1/
CD30-expressing B1 cells differentiated to PBs in vitro, even in the
absence of additional stimulation (Figure 3E).

In contrast, LMP1/CD30-expressing B2 cells did not spontane-
ously differentiate to PBs in vitro (supplemental Figure 7A-B).
However, PC differentiation was enhanced upon CD40 stimu-
lation in comparison with controls (Figure 4A). Interestingly,
CD40 stimulation of B2 cells generated CD23lowCD431 cells,
and the percentage of this population was higher in LMP1/
CD30-expressing cells compared with control B cells (Figure 4B).
In both genotypes, the CD23lowCD431 population contained
a fraction of CD1381 cells (Figure 4C) and expressed higher
levels of CXCR4 and lower levels of CD22 (Figure 4D), in accor-
dance with a plasmablastic phenotype.27 Therefore, we assume
that the expanded CD23lowCD431 population in LMP1/CD30mice
consisted of a mixture of expanded B1 cells and PC progenitors,
which have a similar gene expression profile (supplemental
Figure 8). PBs could originate spontaneously either from
B1 cells or from CD40-stimulated B2 cells.

Next, we analyzed which signaling pathways were responsible
for this phenotype. We detected higher phosphorylated STAT3

(pSTAT3) and pSTAT6 as well as p65 and IRF4 levels in the
nuclear fractions of CD40-stimulated LMP1/CD30-expressing
splenic B2 cells compared with controls (Figure 4E-G). CD40 has
been shown to interact with JAK3, leading to STAT3 and STAT6
phosphorylation.28,29 Therefore, we studied whether LMP1/
CD30 activates JAK3. Indeed, basal JAK3 phosphorylation was
increased in LMP1/CD301 B cells in comparison with controls
(Figure 4H). These data suggest that the higher basal activation
of JAK3 in LMP1/CD30 B cells enhanced activation of JAK/STAT
signaling by CD40. Interestingly, phosphorylation of STAT3 has
a crucial role in PC differentiation by upregulating BLIMP1,30,31

and IRF4 is a known NF-kB target gene.32,33 Therefore, we
conclude that CD30 signaling in cooperation with CD40 sig-
naling strengthens the upregulation of IRF4 and BLIMP1 by
enhancing JAK/STAT and NF-kB signaling and thus leads to
enhanced PC differentiation.

LMP1/CD30 enhances generation of splenic B1a
cells and PCs upon TI-2 immunization
Next, we analyzed whether the enhanced PC differentiation
resulted in elevated immune responses. Immunization with the
TI-2 antigen NP Ficoll resulted in a further increase in the per-
centages of total PCs and B1a cells in LMP1/CD30 mice but not
in controls (Figure 5A). Moreover, immunized LMP1/CD30 mice
had more NP-specific IgM and IgG3 PCs in the spleen and
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displayed higher NP/IgM titers in the serum than controls (Figure
5B-C). These data show that CD30 signaling drove PC differ-
entiation and expansion of B1a cells upon TI-2 immunization.

To analyze whether CD30 signaling had the same effect during
thymus-dependent immune responses, we immunizedmice with
the thymus-dependent antigen NP-CGG. Strikingly, GC for-
mation was strongly impaired in LMP1/CD30 mice, suggesting
that LMP1/CD30 expression in pre-GC B cells interfered with the
initiation of GCs (Figure 5D; supplemental Figure 9A). To analyze
whether this was due to the antigen that we used for immuni-
zation, we analyzed GCs in Peyer’s patches (PPs), where they are
continuously generated independently of immunization (sup-
plemental Figure 9B). GC B cells were detected in PPs of LMP1/
CD30 mice; however, the percentages of hCD21 B cells were
lower in GC in comparison with non-GC B cells, suggesting
a counter selection of LMP1/CD30-expressing GC B cells in PPs
as well (supplemental Figure 9C). Because a large fraction of
mucosal IgA1 PCs are generated in PPs,34,35 we asked whether
the impaired intestinal germinal center reaction in LMP1/CD30
mice led to a reduction of IgA1 PCs in PPs and the lamina
propria. Percentages of IgA1 PCs in LMP1/CD30 mice and
controls were similar in both the lamina propria and PPs (sup-
plemental Figure 9D). However, in LMP1/CD30 mice, most of
the IgA1 PCs did not express hCD2, suggesting that they were
generated mainly from undeleted GC cells (supplemental
Figure 9C). These findings suggest that the elevated IgA titers in
LMP1/CD30 mice were due to the increased number of B1 cells,
which show efficient class switching to IgA upon TI stimulation.36

Therefore, constitutive CD30 signaling in mature B cells resulted
in enhanced TI immune responses but strongly interfered with
the GC reaction.

LMP1/CD30 expression drives PC differentiation in
GC and non-GC B cells
To restrict LMP1/CD30 expression to GC (and post-GC) B cells,
thereby preventing the blockade of GC establishment by
constitutive CD30 signaling, we crossed LMP1/CD30flSTOP

micewithCg1-Cremice22 (hereafter namedLMP1/CD30//g1-Cre).
For controls, we used the reporter mice R26/CAG-CARD1StopF,
expressing a truncated version of the human CAR upon Cre-
mediated recombination.23 Immunization with NP-CGG resulted
in significant more reporter-positive B cells in LMP1/CD30//g1-
Cre mice than in controls (Figure 6A; supplemental Figure 10A).
Because the percentage of GC B cells within the reporter-positive
cells was lower in LMP1/CD30//g1-Cre mice (supplemental
Figure 10B), the increased number of reporter-positive cells could

be mainly attributed to non-GC B cells (Figure 6A). Total per-
centages of reporter-positive GC and NP1 GC B cells within all
lymphocytes were comparable in LMP1/CD30//g1-Cre and CAR//
g1-Cre mice (Figure 6A; supplemental Figure 10B-C). In addition,
GCs were clearly visible in splenic sections of LMP1/CD30//g1-
Cre mice 14 days postimmunization (Figure 6B). These data in-
dicate that GC B cells were generated if LMP1/CD30 expression
started in GC B cells.

Similar to LMP1/CD30//CD19-Cre mice, percentages of reporter-
positive B220lowCD1381 and CD23lowCD431 cells were higher
in LMP1/CD30//g1-Cre mice than in controls (Figure 6C; sup-
plemental Figure 11A). All CD23lowCD431 cells had a non-GC
phenotype, whereas B220lowCD138high cells were elevatedboth in
theGC and non-GCB cell fractions (supplemental Figure 11B). All
B220lowCD1381 cells were CD23lowCD431 and expressed low
levels of CD19, in accordance with a PB/PC phenotype (supple-
mental Figure 11C). In contrast, CD23lowCD431 cells were either
CD191 or CD192 and therefore may have been (pre) PBs or
reporter-positive B1 cells (supplemental Figure 11C). These data
suggest that the increased percentages of B220lowCD1381 and
CD23lowCD431 cells in LMP1/CD30//g1-Cre mice were due to
enhanced PCdifferentiation inGCB cells. Accordingly, NP-specific
IgM and low-affinity IgG1 PCs in the spleens and antibody titers in
the serum were higher in LMP1/CD30//g1-Cre mice in comparison
with controls, whereas high-affinity NP IgG1 PCs and titers were
comparable between both genotypes (Figure 6D). These data
indicate that the generation of PC-secreting low-affinity antibodies
was enhanced in LMP1/CD30//g1-Cre mice. In contrast, genera-
tion of memory B cells was rather decreased in LMP1/CD30//g1-
Cre mice, as indicated by lower percentages of reporter-positive
IgG11 cells (supplemental Figure 11D). Furthermore, the remaining
IgG11 B cells in LMP1/CD30//g1-Cre mice expressed lower levels
of IgG1 at the cell surface than controls, suggesting an incipient
PC differentiation.37 Because we observed the strong and fast
upregulation of IRF4 upon CD40 stimulation in vitro, we tested
whether LMP1/CD30 expression enhanced PC differentiation
through upregulation of IRF4. LMP1/CD30 expression did not lead
to higher IRF4 expression levels in any reporter-positive lympho-
cytes (data not shown), but it did lead to a higher percentage of
IRF41 cells (supplemental Figure 12A). Interestingly, the percent-
age of IRF41 cells was higher in the fractions of both CBs and
CCs (Figure 6F; supplemental Figure 12B). Five days after im-
munization, IRF41 B cells were localized mainly at the T-/B-cell
border, suggesting that they originated from early GCs, as
described by Zhang et al38 (Figure 6E). Fourteen days post-
immunization, IRF41 B cells were detected at the edge of GCs or

Figure 6. CD30 signaling enhances PC differentiation upon TD immunization with NP-CGG. (A) Displayed are the percentages of reporter-positive lymphocytes,
CD38lowCD95high reporter-positive GC B cells, and NP1 reporter-positive GC B cells in LMP1/CD30//g1-Cre mice and CAR//g1-Cre upon NP-CGG immunization at the indicated
time points. Gating strategy of reporter-positive lymphocytes, GC B cells, and NP1 GC B cells, as well as graphs compiling values of different experiments including the statistics, is
shown in supplemental Figure 10A-C. (B) GCs were clearly visible 14 days after immunization with NP-CGG in LMP1/CD30//g1-Cre and CAR//g1-Cre mice. Splenic sections from
thesemice aswell as fromunimmunized control (ctrl) micewere stained forGCB cells (PNA; blue) and IgM1 cells (IgM; brown). Sliceswere analyzed asdescribed in Figure 2B. (C) Left
graph shows the percentages of CD23lowCD431 cells within the fraction of reporter-positive (CAR1, hCD21) lymphocytes 5 and 14 days postimmunization in LMP1/CD30//g1-Cre
(hCD21) and CAR//g1-Cre (CAR1) mice. Right graph shows the percentages of CD1381B220low PBs and PCs in the fraction of reporter-positive (CAR1, hCD21) lymphocytes.
Corresponding gating strategies are shown in supplemental Figure 11A. (D) Upper row: NP-IgM as well as total (NP13) and high-affinity (NP4) NP-specific IgG1-secreting PCs were
determined by ELISpot analysis 14 days postimmunization using splenocytes from the 2 genotypes. Lower row: serum titers of the indicated antibodies were measured by
ELISA 14 days after immunization with NP-CGG. (E) Splenic sections from LMP1/CD30//g1-Cre and CAR//g1-Cre mice 5 and 14 days after immunization with NP-CGG and
unimmunized (n.i.) ctrlmicewere stained forGCBcells (GL7; green), B cells (B220; red), andPBs (IRF4; cyan). Imagesof immunofluorescenceswereobtainedwith the LeicaTCSSP5 IIwith an
8-kHz resonant scanner andHCX PLAPOCS 203objective and LASAF software. (F) Percentage of IRF41 cells in the fraction of reporter-positive centroblasts (CBs) (CXCR4highCD86low) and
CCs (CXCR4lowCD86high) was determined 14days postimmunization.Graph compiles thepercentages of IRF41 cells inCBs andCCs fromdifferent experiments. Gating strategy of reporter1

CB and CC as well as IRF41 cells is shown in supplemental Figure 12B. *P , .05, **P , .01, ***P 5 .001, ****P , .0001.
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follicles, which suggests that these cells were going to exit the
GC reaction (Figure 6E). These data suggest that LMP1/CD30
expression facilitated the generation of IRF41 B cells in the GC.
Interestingly, CD30 expression was higher on reporter-positiveGCs
and memory B cells (CD381IgG11) as well as on CD381IgG12 cells
from LMP1/CD30//g1-Cre mice in comparison with control mice,
suggesting that LMP1/CD30 influenced either the CD30 stability
or expression of endogenous CD30 if it was induced in GC
B cells (supplemental Figure 13A-B). Thus, in LMP1/CD30//Cg1-
Cre mice, both physiological CD30 stimulation and LMP1/CD30
expression might influence the differentiation of GC B cells. Fur-
thermore, we detected in mutant and control mice a subpopu-
lation of CD30highIgG11 cells, most likely corresponding to
activated memory B cells.

Lymphomas with B1-like/PB phenotype arise in
spleen and PerC of LMP1/CD30 mice
Next, we were interested to investigate whether chronic CD30
signaling had oncogenic potential in B cells. Our results suggest
that upon antigenic stimulation, chronic CD30 signaling resulted
in expansion of B1 cells and PBs, which displayed enhanced
proliferation as indicated by increased Ki-67 levels (supple-
mental Figure 14A). To test whether the expansion of B1 cells
and PB cells led to lymphoma development, we aged cohorts
of mice. LMP1/CD30 mice were analyzed together with age-
matched controls when they showed first signs of morbidity
(supplemental Figure 14B). Compared with young LMP1/CD30
mice and old control mice, aged LMP1/CD30 mice had in-
creased splenomegaly, with elevated B- and T-cell numbers
(Figure 7A). A high percentage of B cells displayed the phe-
notype B220lowCD21lowCD23lowCD431 and were either CD51 or
CD52 (Figure 7B; supplemental Figure 14C) in accordance with
a B1a, B1b, or PB phenotype. Most B cells were CD1382 but
expressed higher levels of IRF4 compared with age-matched
control B cells (Figure 7C; supplemental Figure 14D). T cells
were highly activated and shifted to an effector memory T-cell
phenotype (Figure 7D). In addition, B1b cells were expanded
in the PerC (Figure 7E; supplemental Figure 14E), and the
B220lowCD21lowCD23low population was enriched in the blood
(Figure 7F). Histopathological examination of the spleen
revealed a disrupted structure, nodular infiltration of the white
pulp by lymphocytes, and many intermingled blasts as well as
diffuse infiltration of the red pulp (Figure 7G). Other samples
showed confluent sheets of blasts. Approximately 80% of mice
developed monoclonal lymphomas (Figure 7H; supplemental
Table 3). Finally, we tested whether AID, which may induce
misguided somatic hypermutation or class switch recombina-
tion and thereby contributes to lymphomagenesis, was upre-
gulated in LMP1/CD30-expressing B cells. However, AID was
comparably expressed in LMP1/CD30 and control B cells. Taken

together, because in LMP1/CD30 mice the GC reaction was
impaired and LMP1/CD30-expressing B cells did not aberrantly
induce AID, we suggest that lymphomas arose from B cells with
unmutated immunoglobulin genes. The origin of these lym-
phomas was most likely PBs that arose either spontaneously or
during TI immune responses and were continuously stimulated
by the constitutive active CD30 signal.

Discussion
Until now, the contribution of CD30 signaling to lymphoma
development and its function in B-cell physiology were poorly
understood. Studies in normal B cells were hampered by low
numbers of CD301 B cells in vivo, and CD30-deficient mice did
not reveal a clear phenotype, probably because of the redundancy
of tumor necrosis factor receptor signaling in vivo. We chose an
alternative approach by studying the effect of constitutively active
CD30 signaling in B cells. Here we provide evidence that chronic
CD30 signaling triggered the expansion of B1 cells and PBs,
resulting in B-cell lymphoma development in aged mice.

B1 cell and PC expansion in young LMP1/CD30 mice correlated
well with expression data showing the upregulation of CD30 in
B1 cells and PC progenitors.39 Physiologically, some activated
T cells in the spleen and PerC express CD30L40 and might
stimulate B1 cells, resulting in their proliferation and PC differ-
entiation. B1 cells are known producers of natural antibodies
of the IgM and IgG3 subtypes and are a major source of IgA
antibodies.35,41 Thus, the elevated total antibody titers in LMP1/
CD30 mice may have resulted from higher titers of natural anti-
bodies and IgA antibodies produced by LMP1/CD30-expressing
B1 cells as well as enhanced TI immune responses. Similar per-
centages of IgA1 PCs in the intestine in mutant and control mice
suggest that the elevated IgA titers in LMP1/CD30 mice were
generated from B1 cells in a GC-independent manner.

We suggest that costimulation of the BCR and CD40, as occurs
during initiation of GCs and during positive selection of CCs,
leads to the upregulation of CD30. CD40 signaling is essential
for initiation of GCs, but enhanced or prolonged CD40 stimu-
lation blocks the GC formation.24 CD30/CD40 costimulation
at the initiation of the GC reaction, as occurs in LMP1/CD30
mice, may block the development of GCs by amplifying signals,
thereby driving cells into the direction of EF PC differentiation.

In GCs, PC differentiation seems to be initiated in some CCs.37

Recently, Weniger et al12 provided evidence that CD301 GC
B cells represented positively selected CCs, which returned to
the dark zone to undergo additional rounds of proliferation and
hypermutation. In LMP1/CD30//g1-Cre mice, the percentage of

Figure 7. Lymphomaswith a B1-like phenotype arise in the spleen and PerC of aged LMP1/CD30mice. (A) Splenic weights and B- and T-cell numbers in the spleen of aged
LMP1/CD30 mice compared with old control (ctrl) mice and young LMP1/CD30 mice. (B) Representative flow cytometric analyses of splenic B cells (CD191) for CD43/CD23
and CD21/CD23 surface expression. Graph compiles the percentages of the CD21lowCD23low population of aged mice. (C) Flow cytometric analysis of splenic B cells
to determine the percentage of PCs (B220lowCD1381). Numbers represent means and standard deviations (SDs). (D) T cells in the spleen of aged mice were analyzed to
determine the percentages and SDs of naı̈ve T cells (CD62LhighCD44low), central memory T cells (CD62LhighCD44high), and effector memory T cells (CD62lowCD441). (E) Diagram
showing total B-cell numbers in the PerC. (F) Flow cytometric analysis of the CD21lowCD23low population in blood B lymphocytes (CD191). Numbers in the fluorescence-activated
cell sorting plots indicatemean and SD values of the percentages of the gated populations. (G) Hematoxylin and eosin staining as well as anti-B220 (B cells) and anti-CD3 (T cells)
immunohistochemistry of spleen sections of an aged ctrl and LMP1/CD30 mouse. Sections were scanned with an AxioScan.Z1 digital slide scanner (Zeiss, Jena, Germany)
equipped with a 203magnification objective (EC Plan-Neofluar 203/0.50; Zeiss) and a Hitachi HV-F202SCL 3CCD camera. Imaging acquisition was performed using ZEN 2.3
SP1 blue edition imaging software (Zeiss) and NetScope Viewer Pro (Net-Base Software GmbH, Freiburg, Germany). (H) Kaplan-Meier curve of lymphoma development in
LMP1/CD30 mice. Significance of lymphoma development was calculated by the log-rank (Mantel-Cox) test. *P , .05, **P , .01, ***P 5 .001, ****P , .0001.
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IRF41 B cells was clearly increased in both CBs and CCs. IRF41

cells may also arise in the light zone, when LMP1/CD30-
expressing CCs receive a CD40 signal from T cells in the process
of positive selection. Like CD301 B cells, they may migrate back
to the dark zone but are unable to switch off the CD30 signal and
therefore prematurely leave the GC as IgM PCs or low-affinity
IgG1 PCs. After induction of LMP1/CD30 inGCB cells, increased
numbers of IRF41 blasts were detected at the edge of the GC
and B-cell follicles. In human tonsils of healthy patients,
CD301IRF41 B-cell blasts have been described as located in the
same area.10 It is still unclear whether CD301IRF41 EF blasts in
humans originate from CD301 positively selected CCs or from
activated memory B cells. Our data suggest that at least some
CD301 GCB cells leave the GC and differentiate to CD301IRF41

EF blasts. Interestingly,Weniger et al12 found that STAT3-, STAT6-,
and NF-kB–regulated gene sets were significantly enriched in
CD301 EF blasts, suggesting that these cells were triggered by
CD30L-expressing T cells. This results in activation of the same
signaling pathways as in LMP1/CD30-expressing B cells. CD301

EF blasts are highly proliferative. Physiologically, the CD30 and
other costimulatory signals are switched off after some rounds of
division, and the cells most likely start to differentiate to PCs. In
contrast, CD30 signaling is constitutively active in LMP1/CD30-
expressing B cells, resulting in enhanced proliferation of PBs. In
humans, deregulated CD30 signaling may occur during chronic
B-cell activation, where increased numbers of CD301 B lympho-
cytes are continuously stimulated by infiltrating T cells. Large
numbers of CD301 B cells are found upon EBV infections and in
some patients with rheumatoid arthritis developing an atypical
lymphoproliferative disease. The expanded CD301B lymphocytes
are localized in the interfollicular region, often in combination with
PCs, PBs, and infiltrating T cells.42-46 Interestingly, directly after
infectious mononucleosis, the risk for HL is increased. Moreover,
lymphoproliferative diseases, occuring upon EBV reactivation or in
rheumatoid arthritis patients, may proceed to DLBCL.43,47 This
corroborates our finding that chronic CD30 signaling of B lym-
phocytes is a predisposing factor for B-cell lymphoma de-
velopment. Similarities in expression profiles of HL and some
DLBCLs with CD301 EF blasts suggest that CD301 EF blasts are
the progenitor cells for CD301 lymphomas. Furthermore, hyper-
activation of the JAK/STAT and NF-ĸB signaling pathways is often
found in CD301 DLBCL and HL,48 indicating that deregulation of
these signaling pathways may be a predisposing factor for B-cell
lymphomagenesis. There are several parallels between our
mouse model and human diseases with elevated numbers of
CD301 EF blasts. (1) In the premalignant state, increased
numbers of immunoblasts are localized in the interfollicular
region. (2) Like CD301 EF blasts, activated LMP1/CD30 B cells
show enhanced JAK/STAT and NF-kB signaling. (3) The high
IRF4 levels in lymphomas of LMP1/CD30 mice suggest that
they derive from PBs rather than B1 cells. (4) In some cases, the
histology of LMP1/CD30-expressing lymphomas was reminis-
cent of DLBCL. We therefore conclude that our mouse model

reflects lymphomagenesis in patients with chronic B-cell activa-
tion, resulting in increased numbers of CD301 B cells. However,
our data also indicate that chronic CD30 signaling alone is not
sufficient to induce lymphomagenesis. Indeed, all described
tumors mainly consisted of a monoclonal cell population, indi-
cating that they derived from single secondary mutation events.
It will be interesting to determine which mutations cooperate
with chronic CD30 signaling to drive lymphomagenesis.
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