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Nonalcoholic fatty liver disease (NAFLD) is a risk factor
for type 2 diabetes (T2D). We aimed to identify the
peripheral blood DNA methylation signature of hepatic
fat. We conducted epigenome-wide association studies
of hepatic fat in 3,400 European ancestry (EA) partici-
pants and in 401 Hispanic ancestry and 724 African

ancestry participants from four population-based cohort
studies. Hepatic fat was measured using computed to-
mography or ultrasound imaging and DNA methylation
was assessed at >400,000 cytosine-guanine dinucleo-
tides (CpGs) in whole blood or CD14+ monocytes using
a commercial array. We identified 22 CpGs associated
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with hepatic fat in EA participants at a false discovery
rate <0.05 (corresponding P = 6.93 1026) with replication
at Bonferroni-corrected P < 8.6 3 1024. Mendelian ran-
domization analyses supported the association of hypo-
methylation of cg08309687 (LINC00649) with NAFLD (P =
2.5 3 1024). Hypomethylation of the same CpG was also
associated with risk for new-onset T2D (P = 0.005). Our
study demonstrates that a peripheral blood–derived DNA
methylation signature is robustly associatedwith hepatic
fat accumulation. The hepatic fat–associated CpGs may
represent attractive biomarkers for T2D. Future studies
are warranted to explore mechanisms and to examine
DNAmethylation signatures of NAFLDacross racial/ethnic
groups.

The estimated global prevalence of nonalcoholic fatty liver
disease (NAFLD) in adults is 24% and has increased sub-
stantially along with the increasing rates of obesity (1).
NAFLD correlates with increased risk of type 2 diabetes
(T2D) (2), and it is the second leading contributor to
hepatic failure necessitating transplantation (3). A prior
study in three family-based cohorts estimated the herita-
bility of hepatic steatosis to be 27%; however, common
genetic variants from genome-wide association studies
(GWAS) account for ,5% of interindividual variance in
hepatic fat (4). Epigenetics may explain part of the in-
terindividual variance of steatosis. Several studies have
demonstrated altered DNA methylation profiles in
liver biopsy samples collected from individuals with
NAFLD (5,6). One study showed that peripheral blood–
derived DNA hypermethylation at one cytosine-guanine

dinucleotide (CpG) (cg06690548) located in an intron of
SLC7A11 may be associated with a lower risk of steatosis
(7). In general, however, prior studies were limited by small
sample sizes to discover DNA methylation sites associated
with hepatic fat accumulation.

To bridge this knowledge gap, we examined the epi-
genome-wide association between DNA methylation
at .400,000 CpGs and hepatic fat in European ancestry
(EA), African ancestry (AA), and Hispanic ancestry (HA)
participants from five population-based cohort studies
with hepatic fat measurements derived from noninvasive
imaging. For hepatic fat–associated CpGs, we further
examined their relations to genetic variants, gene expres-
sion, and regulatory functions and explored potential
relations of DNA methylation to NAFLD and T2D.

RESEARCH DESIGN AND METHODS

Study Population
The current study included multiethnic participants
from five population-based cohorts including the Coro-
nary Artery Risk Development Study in Young Adults
(CARDIA), the FraminghamHeart Study (FHS), the Genetic
Epidemiology Network of Arteriopathy (GENOA), the
Multi-Ethnic Study of Atherosclerosis (MESA), and the
Rotterdam Study (RS) (Supplementary Table 1). All
cohorts excluded participants who consumed a high
amount of alcohol, equivalent to $21 drinks/week in
men or $14 drinks/week in women (8). Cohort-specific
exclusion is detailed in Supplementary Data. Due to poten-
tial differences in DNA methylation patterns between dif-
ferent ethnicities (9), we analyzed the association between

Figure 1—Study design flowchart.
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DNA methylation and hepatic fat separately in EA (n =
3,400), HA (n = 401), and AA (n = 724) participants. The
protocol for each study was approved by the institutional
review board in each cohort. All participants provided
written informed consent.

Study Design
The study design flowchart is presented in Fig. 1. We first
conducted the epigenome-wide association studies of he-
patic fat among EA participants, including both discovery
and replication. We then examined differential DNAmeth-
ylation in relation to hepatic fat in the HA and AA
participants. We further examined the functional and
regulatory annotations for the replicated CpGs and tested
the potential associations of the identified CpGs with
NAFLD and T2D.

Hepatic Fat Assessment
A detailed description for hepatic fat assessment in each
cohort is presented in Supplementary Data. The RS used
ultrasound to estimate hepatic fat and diagnosed steatosis
on a dichotomized scale. The other cohorts used computed
tomography (CT) to quantify hepatic fat on a continuous
scale by using either mean Hounsfield units of the liver
image or the ratio of the Hounsfield units of the liver image
to that of a control.

DNA Methylation Profiling
Methylation profiles were measured by Illumina BeadChip
using DNA derived from all leukocytes or CD14+ mono-
cytes in peripheral blood (Supplementary Table 1). Details
for DNA preparation, bisulfite conversion, methylation
profiling, quality control procedures, and raw data nor-
malization in each cohort are provided in Supplementary
Data. We analyzed either methylation signal M values (in
CARDIA [calculated as logit transformation of b values]) or
b values (in all other cohorts [calculated as methylated
signals divided by the sum of methylated and unmethy-
lated signals]). Nonautosomal probes were excluded from
the current study.

Statistical Analyses

Epigenome-Wide Association Study of Hepatic Fat
We conducted the discovery epigenome-wide association
study (EWAS) in FHS and interrogated the differentially
methylated CpGs at false discovery rate (FDR) ,0.05 in
the replication cohorts (EA samples in CARDIA, MESA,
and RS). Linear regression models or mixed models with
consideration of family structures were conducted to
examine directionality and calculate P values in each co-
hort. Because hepatic fat was measured using different
scales, we meta-analyzed the P values in the replication
cohorts using logit method based on the general fixed
effect model. The statistical significance in the replication
analysis was determined using the Bonferroni-corrected P
value threshold, defined as 0.05 divided by the number of
significant CpGs in the discovery phase. We used sex- and

age-adjusted models (model 1) in the discovery and rep-
lication analyses. Estimated leukocyte composition (10)
and technical variables were also adjusted for in a cohort-
specific manner (Supplementary Data). Included in the
sensitivity analyses, we conducted global meta-analyses in
all EA participants to examine the impact of potential
confounders. We performed the same sex- and age-ad-
justed model (model 1). We additionally adjusted for
lifestyle factors including smoking status, physical activity
levels, and alcohol intake in model 2. We further adjusted
for BMI in model 3. We also performed a discovery and
replication analysis using model 3 in EA participants.
Covariates are assessed using cohort-specific methods
(Supplementary Data). We conducted similar EWAS with
adjustment for the same covariates to identify hepatic fat–
related CpGs inMESAHA participants and AA participants
in CARDIA, GENOA, and MESA. We calculated adjusted R2

using multiple linear regression models with and without
adjustment for the replicated CpGs and used the difference
of the two adjusted R2 values to represent the interindi-
vidual variation of hepatic fat from the replicated CpGs.

Gene Expression Association Analysis
In FHS, we examined the associations between DNA
methylation, hepatic fat, and gene expression. To prioritize
genes in these analyses, we selected Illumina-annotated
genes. For CpGs without annotated genes, we identified
a set of genes by overlapping cis-meQTLs (methylation
quantitative trait loci6500 kilobases [kb] from CpG) with
cis-eQTLs (expression quantitative trait loci residing within
500 kb of a nearby gene) at P value ,5 3 1027. The
association between DNA methylation and gene expres-
sion was analyzed in 4,561 participants in the FHS as
previously described (11). For genes significantly associ-
ated with CpGs (P value,53 1027), we further examined
their association with hepatic fat using similar statistical
procedures in 2,317 FHS participants. For genes that
associated with both CpGs and hepatic fat, we conducted
mediation tests to estimate the proportion of mediation by
gene expression on the association of CpGs and hepatic fat.
We used the R package mediation with sex- and age-
adjusted linear mixed models as described above and
used the quasi-Bayesian Monte Carlo method with 1,000
simulations to calculate CIs (12).

Association With T2D
Owing to the well-documented association between
NAFLD and T2D (13), we conducted cross-sectional and
prospective analyses between replicated CpGs and T2D.
We defined T2D as fasting glucose $7.0 mmol/L,
HbA1c $6.5% (48 mmol/mol), or current use of insulin
or an oral hypoglycemic drug. In the cross-sectional anal-
ysis, we analyzed 4,068 FHS participants who attended the
eighth Offspring cohort examination (2005–2008) or the
second examination of the Third Generation cohort
(2008–2011). In the prospective analysis, we analyzed
1,764 FHS participants who attended both the eighth
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and ninth (2011–2014) Offspring cohort examinations.
In the prospective analysis, prevalent T2D cases at
baseline were excluded. The first model in the cross-
sectional analysis adjusted for sex, age, alcohol intake,
smoking status, physical activity level, DNA methylation
measurement laboratory and technical variables, top
three principal components for DNA methylation mea-
surement, and estimated leukocyte composition. The
first model in the prospectively analysis adjusted for
the same covariates and baseline fasting glucose and
HbA1c. In the second model for both analyses, we
additionally adjusted for BMI. We used generalized
estimating equations to estimate the odds ratio (OR)
after accounting for the family structure in this study
sample.

Mendelian Randomization Analysis
We conducted Mendelian randomization (MR) analyses
(Supplementary Fig. 1) to test for association of the
replicated CpGs with NAFLD. We also examined the
association between these CpGs and T2D. We performed
MR analysis using a two-sample MR approach (14). We
used independent cis-meQTLs (n = 4,170), with pairwise
linkage disequilibrium r2 ,0.1 and F statistics .10, as
instrumental variables (IVs). Using the TwoSampleMR R
package, we performed the primary analysis using the
inverse variance weighted (IVW) method and sensitivity
analysis using the MR-Egger method when association
was significant using IVW. The effect sizes and SEs for
IVs-CpG were obtained from the FHS and the effect size
and SEs were obtained for IVs-NAFLD and for IVs-T2D
from published GWAS (4,15).

Functional and Regulatory Annotation
We conducted hypergeometric tests with Bonferroni cor-
rection to compare the genomic characteristics of the
replicated CpGs with the whole set of CpGs that we
analyzed and calculated the probability for these character-
istics, e.g., whether CpGs were more likely to reside in
a CpG island or gene region, using the Infinium Human-
Methylation450 BeadChip annotation files. We queried cis-
meQTLs in the platform of Functional Mapping and
Annotation of Genome-Wide Association Studies (FUMA
GWAS) (16). Using this platform, we examined the overlap
between cis-meQTLs with signals in the NHGRI-EBI Cat-
alog of published GWAS (17). We also studied genes using
differentially expressed genes measured in human whole
blood and liver samples in the Genotype-Tissue Expression
(GTEx v6) database (18) and visualized the genomic region
for cis-meQTLs. To assess the relevance of the identified
peripheral blood–derived CpGs in liver, we compared DNA
methylation levels in whole blood with that in liver using
data deposited in the Gene Expression Omnibus (GEO
Series accession number GSE48472) (19). Gene Ontology
(GO) biological process enrichment analysis was per-
formed using the GO Consortium website (http://www.
geneontology.org/).

Data and Resource Availability
The data sets analyzed in the current study are available at
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs000285.v3.p2 (CARDIA), https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs000007.v29.p10 (FHS), https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs001238.
v1.p1 (GENOA), and https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000209.
v13.p3 (MESA). Data can be obtained upon request.
Requests should be directed toward the management
team of the RS (secretariat.epi@erasmusmc.nl), which
has a protocol for approving data requests. Because of
restrictions based on privacy regulations and informed
consent of the participants, data cannot be made freely
available in a public repository (RS).

RESULTS

EWAS of Hepatic Fat in EA Participants
Of the 400,129 CpGs analyzed in age- and sex-adjusted
models, 58 CpGs were significantly associated with hepatic
fat in the FHS discovery cohort (n = 1,496) at FDR ,0.05

Figure 2—Circular Manhattan plot of the epigenome-wide associ-
ation of peripheral blood–derived DNA methylation with hepatic fat.
Plot was generated using results from the sex- and age-adjusted
model in the discovery cohort (FHS). Chromosome numbers are
presented in the inner circle. Red, orange, and black dots are
58 CpGs with FDR ,0.05 (corresponding P value 6.9 3 1026 [red
track]) in the discovery stage analysis. Red dots are the 22 indepen-
dent CpGs with Bonferroni-corrected P value,0.05 in the replication
cohorts (CARDIA, MESA, and RS). Black dots are two nonsentinel
CpGs with Bonferroni-corrected P value ,0.05 in the replication
cohorts. Genes annotated to the replicated CpGs were presented
in the outer ring. Plot was drawn in Circos.
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(corresponding P value = 6.9 3 1026 [Manhattan plot in
Fig. 2 and Supplementary Fig. 2, quantile-quantile plot in
Supplementary Fig. 3 and Supplementary Table 2). The t
statistics for the 58 CpGs were correlated between the FHS
and each of the replication cohorts (Supplementary Fig. 4).
The associations between the 58 CpGs and hepatic fat
remained materially unchanged following additional ad-
justment for the time gap between assessments of DNA
methylation and hepatic fat in FHS (Supplementary Fig. 5).
In CARDIA, hepatic fat was measured at the year 25 ex-
amination. The t statistics calculated between hepatic fat
and DNA methylation measured at the year 25 examina-
tion were highly correlated with those calculated using
DNA methylation measured at the year 15 examination
(Supplementary Fig. 5). Twenty-four (41%) CpGs repli-
cated (Bonferroni-corrected P value ,0.05/58 = 8.6 3
1024) in the meta-analysis of the replication cohorts (n =
1,904) (Table 1). We removed two CpGs from the repli-
cation analysis because they were highly correlated (|r|$
0.7) and close to other CpGs with lower P values in the
same chromosome (Supplementary Table 3). Forest plots
for all 22 CpGs using regression coefficients and SEs
(standardized by the cohort-specific SD of the regression
coefficients) are shown in Supplementary Fig. 6.

Sensitivity Analysis
In the global meta-analysis of all EA participants, addi-
tional adjustment for lifestyle factors did not materially
change the association between DNA methylation levels
and hepatic fat (Fig. 3). Further adjustment for BMI, which
is correlated with hepatic fat (Spearman r = 0.45 in FHS),
reduced the strength of the associations (Fig. 3); however,
all 22 CpGs remained nominally associated with hepatic
fat (P value ,0.05) (Table 1). Additionally, two CpGs,
cg06690548 (SLC7A11) and cg19693031 (TXNIP),
remained significant in FHS at FDR,0.05 (corresponding
P value = 1.2 3 1027) (Supplementary Table 4) and in the
replication samples (Bonferroni-corrected P value ,0.05).
Both CpGs were among the replicated CpGs in the sex- and
age-adjusted analysis. Leave-one-cohort-out analysis in EA
participants showed that P values in the global meta-
analysis with exclusion of one cohort were highly corre-
lated with those in all samples, with r ranging from 0.83 to
0.87 (Supplementary Fig. 7). We further examined
whether lipid traits, serum fasting triglycerides (TGs),
and total cholesterol concentrations (TC) affect the asso-
ciations of the 22 CpGs with hepatic fat. As shown in
Supplementary Fig. 8, additional adjustment for TG but
not TC attenuated the associations for most of CpGs in
FHS. Additionally, after Bonferroni correction (corre-
sponding P value ,0.002), TGs significantly mediated
the association with hepatic fat for 12 CpGs, with a medi-
ation percent ranging from 13 to 39% (Supplementary
Table 5). However, the association between all 22 CpGs
and hepatic fat remained significant after additional ad-
justment for TG (all P values,0.002) (Supplementary Fig.
8). Additional adjustment for glycemic traits (T2D, fasting

glucose, and HbA1c) attenuated the associations be-
tween the 22 CpGs and hepatic fat; however, all asso-
ciations remained significant (Supplementary Fig. 8). We
found that adjustment for caloric intake and total di-
etary fat intake did not materially alter the association
between the 22 CpGs and hepatic fat (Supplementary
Fig. 9).

Variation in Hepatic Fat Explained by Differentially
Methylated CpGs
In CARDIA, the 22 replicated CpGs captured 10% of
interindividual variation (i.e., the adjusted R2) in hepatic
fat after we accounted for sex and age (P value = 1.4 3
1027) and 4.3% of interindividual variation after we
additionally accounted for lifestyle factors and BMI (P
value = 0.001). The proportion of variation explained by
the 22 replicated CpGs was similar to that observed in the
discovery cohort (FHS): 14.9% and 5.8%, respectively.
With additional adjustment for serum alanine transami-
nase, serum aspartate transaminase, and a genetic risk
score for NAFLD, the 22 replicated CpGs explained 4.6% of
interindividual variation in hepatic fat in FHS (P value =
1.4 3 10212).

DNA Methylation Profiles in HA and AA Participants
For the 22 CpGs that replicated in the EA participants,
cg19693031 (TXNIP) remained significant in HA partic-
ipants after Bonferroni correction (P value ,2.3 3 1023)
(Supplementary Table 6). Additionally, four CpGs were
nominally significant in HA participants (P value ,0.05)
(Supplementary Table 6) and three CpGs were nominally
significant in the meta-analysis of AA participants (P ,
0.05) (Supplementary Table 7). In epigenome-wide anal-
ysis, no CpG was detected at FDR ,0.05 in HA partic-
ipants. We discovered 26 CpGs at FDR ,0.05
(corresponding P value = 2.7 3 1026) (Supplementary
Table 8) in the meta-analysis of epigenome-wide studies in
AA participants, of which two CpGs were nominally sig-
nificant (P value , 0.05) in the global meta-analysis of EA
participants.

Functional and Regulatory Annotation of Hepatic Fat–
Associated CpGs
The mean whole blood DNA methylation levels of the
22 replicated CpGs in EA participants were moderately
correlated with those measured in liver tissue (19) (r =
0.59) (Supplementary Fig. 10). These CpGs were more
likely to reside in the south shore (0–2 kb downstream
of CpG island; P value = 5.53 1024) or south shelf (2–4 kb
downstream of CpG islands; P value = 4.1 3 1024), in
DNase I hypersensitivity sites (P value = 1.7 3 1023), in
reprogramming-specific differentially methylated regions
(P value = 3.83 1024), and in gene body regions (P value =
2.4 3 1024).

Of the 22 CpGs, 19 CpGs have been annotated to
18 unique genes (Table 1 and Supplementary Table 9).
Based on liver-specific differentially expressed genes in
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GTEx (18), the 18 annotated genes were enriched
with genes that are upregulated in the liver, including
DHCR24, SLC43A1,CPT1A, SREBF1, SC4MOL, and SLC9A3R1
(Bonferroni-corrected P value = 0.005) (Supplementary Table
10). GO analysis showed enrichment for 18 biological pro-
cesses (Supplementary Table 11). The most significant
enriched pathway was positive regulation of the cholesterol
biosynthesis (GO:0045542; ABCG1 and SREBF1;.100-fold
enrichment; FDR adjusted P value = 0.02).

GWAS Analysis
By overlapping cis-meQTL variants with GWAS results in
the NHGRI-EBI Catalog of GWAS (17), we found that cis-
meQTLs or their proxies (linkage disequilibrium R2 .0.8)
for nine CpGs were associated with 26 unique traits in
GWAS (Supplementary Table 12). For example, rs637868
for cg14476101 (PHDGH) was associated in GWAS with
alanine aminotransferase levels (20) and rs2834288 for
cg08309687 (LINC00649) was associated in GWAS with
abundance of gut microbiota (21).

Three-Way Association and Mediation Analysis of
CpGs, Gene Expression, and Liver Fat
In the FHS, 7 of the 22 replicated CpGs were associated
with peripheral blood–derived expression of six annotated
genes (e.g., cg17901584 with DHCR24) at a P value
threshold of ,5 3 1027 (Supplementary Table 13).

Additionally, cg17501210 was associated with expression
of one nonannotated cis-gene, RNASET2 (transcription start
site residing 301 kb downstream from cg17501210; P
value = 9.43 10211). Among these seven genes, expression
levels of ABCG1 and CPT1A were significantly associated
with liver fat (P value = 1.2 3 10230 and 2.0 3 10217,
respectively). Expression of ABCG1 and CPT1A mediated
the association between corresponding CpGs and hepatic
fat by ;20% and 10%, respectively (Fig. 4).

We identified eight cis-genes for cg08309687 (LINC00649)
by overlapping their cis-meQTLs (P value,53 1027) with
cis-eQTLs (P value ,5 3 1027) (regional plot in Supple-
mentary Fig. 11). None of the CpG was associated with
gene expression at the predefined threshold (P value,53
1027). Among the five nominally significant genes (P
value ,0.05) (Supplementary Table 13), expression of
TMEM50B mediated 8% (95% CI 2, 16; P value ,2.2 3
10216) of the association of cg08309687 with hepatic
fat (Fig. 4).

MR Analysis for a Potential Role of DNA Methylation in
NAFLD
The IVW analysis (Supplementary Table 14) showed that
hypomethylation at cg08309687 (LINC00649) was signif-
icantly associated with NAFLD (P value = 2.53 1024) (Fig.
5). Hypomethylation at cg14476101 (PHDGH) was
nominally associated with NAFLD (P value = 0.01)

Figure 3—Comparisons of sequential adjustment models in EA participants. y-axis values are observed2log10(P values) in the global meta-
analysis of all EA participants. x-axis is ordered by CpGs (symbols at same vertical position are same CpG). Blue cross, sex- and age-
adjustedmodel; green square,model with additional adjustment for lifestyle factors (smoking, physical activity, and alcohol intake); red circle,
the fully adjusted model including sex, age, smoking, physical activity, alcohol intake, and BMI.

diabetes.diabetesjournals.org Ma and Associates 7

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/DB18-1193/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/DB18-1193/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/DB18-1193/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/DB18-1193/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/DB18-1193/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/DB18-1193/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/DB18-1193/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/DB18-1193/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/DB18-1193/-/DC1


(Supplementary Fig. 12). Neither CpG was significant in
the sensitivity analysis using the MR-Egger method (P
value = 0.17 and 0.97, respectively). No horizontal plei-
otropy effect was detected (P value = 0.66 and 0.15).

Association With T2D
In the FHS, 18 of the 22 replicated CpGs in EA participants
were cross-sectionally associated with T2D after Bonferroni

correction (P value ,0.002) (Supplementary Table 15). In
addition, 6 of the 18 CpGs were prospectively associated
with incident T2D (P value ,0.05) (Table 2). In analysis
with additional adjustment for BMI, associations remained
significant (P value ,0.05) for 13 CpGs in the cross-
sectional analysis (Supplementary Table 15) and for
4 CpGs in the prospective analysis (Table 2). For all
significant CpG-T2D pairs, the direction of the association
was concordant with the expected direction; e.g., hyper-
methylation at cg08309687 (LINC00649) was expected to
be associated with decreased risk of T2D because hyper-
methylation at this locus was associated with lower hepatic
fat. In concordance with the prospective analysis using
a BMI-adjusted model, MR analysis showed consistent
results for cg21429551 (GARS); i.e., hypermethylation at
this locus was nominally associated with lower risk of T2D
(P value = 0.03) (Supplementary Table 16).

DISCUSSION

We found that differential methylation of peripheral
blood–derived DNA at 22 CpG sites was associated with
hepatic fat in EA participants. These CpGs reside at several
loci regulating key biological processes relevant to the
development of steatosis. The 22 CpGs explained ;10%
of interindividual variation in the sex- and age-adjusted
model, which was larger than that explained by single
nucleotide polymorphisms identified from GWAS (4). In
addition, the current study associated several hepatic

Figure 4—Three-way association of whole blood–derived DNA methylation level at cg06500161, cg27243685, cg00574958, and
cg08309687; whole blood–derived gene expression for ABCG1, CPT1A, and TMEM50B; and CT-derived liver-to-phantom ratio (hepatic
fat) in the FHS. Green, positive association; red, inverse association.

Figure 5—Association of cg08309687 with NAFLD using MR anal-
ysis. Plot depicts IVW (solid line) and MR-Egger estimate (dashed
line). No horizontal pleiotropy effect was detected (P value = 0.66).
SNP, single nucleotide polymorphism.
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fat–associated CpGs with increased risk of new-onset T2D;
e.g., hypomethylation at cg08309687 was associated with
increased hepatic fat and higher risk of T2D.

Previous studies using array-based methods have ex-
amined epigenome-wide DNA methylation patterns in
liver samples of individuals with biopsy-proven NAFLD
(5,6). While these studies showed a strong contrast be-
tween DNA methylation profiles of individuals with non-
alcoholic steatohepatitis compared with control subjects
(i.e., individuals without steatosis or steatohepatitis), dif-
ferences in DNA methylation patterns of individuals with
steatosis (fatty liver alone) versus control subjects were
less obvious (5,6). In contrast to prior studies using liver
biopsies, we used noninvasive imaging to assess hepatic
fat. We therefore had a much larger sample size and
statistical power to detect epigenetic signals associated
with elevated hepatic fat.

Two recent large EWAS identified CpGs associated with
BMI (11,22). The majority (17 of the 22) of the replicated
hepatic fat–associated CpGs in the current study were also
observed in at least one of the two large-scale BMI-DNA
methylation studies. Several CpGs associated with both
liver fat and BMI are annotated to key genes involved in

lipid metabolism pathways, namely, SREBF1, CPT1A,
ABCG1, and DHCR24 (23,24). This is concordant with our
observation that TGs mediated the associations for half of
the replicated CpGs. These genes are in a top gene network
associated with general adiposity identified in a previous
analysis in MESA (25). Therefore, the overlap between
hepatic fat–associated CpGs and those linked to BMI
supports a key role of adiposity and adiposity-related
pathways in the pathogenesis of steatosis.

Our MR analyses implicated cg08309687 as a putatively
causal factor for NAFLD. This CpG is located in a long
intergenic noncoding region (LINC00649) that may play
a role in transcription regulation relevant to steatosis. We
could not examine whether LINC00649 mediated the
observed association between cg08309687 and hepatic
fat because we lacked expression data for LINC00649 in
our study cohorts. However, we observed that cis-meQTL
variants for cg08309687 coincide with cis-eQTLs of several
nearby genes. We also established three-way associations
of cg08309687 methylation, hepatic fat, and gene expres-
sion levels for a nearby gene, TMEM50B (Fig. 3). Together
with data from GTEx, our analysis indicates that DNA
methylation at cg08309687 may affect LINC00649 and

Table 2—Prospective association between hepatic fat–associated CpGs and incident T2D in 1,764 FHS participants

CpG CHR MAPINFO Gene

Model 1 Model 2

OR (95% CI) P OR (95% CI) P

cg09469355 1 2161886 SKI 0.88 (0.61, 1.27) 0.50 0.89 (0.61, 1.30) 0.56

cg17901584 1 55353706 DHCR24 1.19 (0.84, 1.68) 0.32 1.29 (0.91, 1.81) 0.15

cg03725309 1 109757585 SARS 0.54 (0.36, 0.83) 0.005 0.55 (0.36, 0.83) 0.005

cg14476101 1 120255992 PHGDH 0.90 (0.69, 1.19) 0.47 0.93 (0.71, 1.22) 0.60

cg19693031 1 145441552 TXNIP 0.90 (0.70, 1.16) 0.41 0.88 (0.68, 1.15) 0.36

cg06690548 4 139162808 SLC7A11 1.05 (0.86, 1.28) 0.63 1.08 (0.88, 1.32) 0.47

cg05119988 4 166251189 SC4MOL 1.28 (0.94, 1.75) 0.11 1.30 (0.95, 1.78) 0.10

cg03957124 6 37016869 1.05 (0.62, 1.77) 0.86 1.11 (0.66, 1.87) 0.70

cg18120259 6 43894639 1.18 (0.79, 1.77) 0.42 1.23 (0.81, 1.86) 0.33

cg17501210 6 166970252 RPS6KA2 0.73 (0.52, 1.03) 0.07 0.78 (0.55, 1.10) 0.15

cg21429551 7 30635762 GARS 0.71 (0.53, 0.93) 0.01 0.72 (0.55, 0.95) 0.02

cg11376147 11 57261198 SLC43A1 0.80 (0.50, 1.28) 0.35 0.82 (0.51, 1.31) 0.41

cg00574958 11 68607622 CPT1A 0.83 (0.56, 1.23) 0.35 0.90 (0.60, 1.34) 0.59

cg26894079 11 122954435 ASAM 0.69 (0.48, 0.98) 0.04 0.71 (0.49, 1.01) 0.06

cg11024682 17 17730094 SREBF1 1.44 (1.14, 1.81) 0.002 1.39 (1.10, 1.76) 0.006

cg14020176 17 72764985 SLC9A3R1 1.35 (0.95, 1.93) 0.10 1.31 (0.91, 1.88) 0.15

cg19016694 17 80821826 TBCD 0.90 (0.57, 1.43) 0.67 0.94 (0.59, 1.49) 0.79

cg15860624 19 3811194 ZFR2 0.86 (0.62, 1.19) 0.36 0.82 (0.59, 1.16) 0.26

cg02711608 19 47287964 SLC1A5 0.80 (0.56, 1.15) 0.23 0.82 (0.57, 1.18) 0.28

cg08309687 21 35320596 0.68 (0.52, 0.91) 0.008 0.70 (0.53, 0.93) 0.02

cg27243685 21 43642366 ABCG1 1.35 (1.00, 1.83) 0.049 1.34 (0.99, 1.81) 0.06

cg06500161 21 43656587 ABCG1 1.32 (1.02, 1.71) 0.03 1.28 (0.98, 1.66) 0.07

Model 1 adjusted for sex; age; alcohol intake; smoking status; physical activity level; baseline glucose; baseline HbA1c level; laboratory for
DNA methylation assessment; DNA methylation chip ID, row, and column; estimated leukocyte composition; and top three principal
components. Model 2 adjusted for model 1 covariates and BMI. CHR, chromosome.
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alter expression of nearby genes (e.g., TMEM50B) and
impact hepatic fat accumulation. In addition, our data
suggest that cg08309687 may be involved in the regulation
of the gut microbiome, which has been postulated to play
a critical role in the development of NAFLD (26). Future
studies are needed to explore pathways underlying the
observed association between DNA hypomethylation at
cg08309687 and NAFLD.

Using models with additional adjustment for BMI,
we showed that two CpGs, cg06690548 (SLC7A11) and
cg19693031 (TXNIP), are independently associated with he-
patic fat in the EA population. Although cg19693031 (TXNIP)
has not been previously linked to obesity-related traits, several
studies have shown that hypomethylation at cg19693031
(TXNIP) was associated with increased risk of T2D (27). As
NAFLD is strongly associated with T2D (13), these observa-
tions are in accordance with our finding that DNA hypome-
thylation at this locus is associated with increased hepatic fat.

The present analyses included participants from mul-
tiple ancestries, and differences in DNA methylation pat-
terns associated with hepatic fat were observed between
ethnic groups. Such variability is consistent with other
observations that DNA methylation levels differ by race
and/or ethnicity (9). However, the sample size in the
current study may not be sufficient for robust comparisons
of EA with AA and HA participants. TheMR analyses in the
current study may be limited for a few reasons. First, the
effect sizes and SEs for the IVs were estimated using
relatively small-scale GWAS. Second, effect sizes and SEs
for instrument-exposure and instrument-outcome associ-
ations were estimated in partially overlapping study sam-
ples, which may lead to instrument bias (28). Moreover,
one participating cohort (RS) used ultrasound, which could
not be used to quantify liver fat on a continuous scale as
other participating cohorts did. This difference may partly
explain the inconsistency in the direction of regression
coefficients for some of the replicated CpGs in RS com-
pared with the other cohorts. Further, because not all
cohorts measured liver fat using the same scales, we meta-
analyzed P values rather than regression coefficients and
SEs and could not estimate the overall effect size for the
association of DNA methylation and hepatic fat accumu-
lation. However, we observed that DNA methylation sig-
nals were correlated among the cohorts of EA participants.
As demonstrated by accounting for the time gap between
assessments of DNA methylation and hepatic fat in FHS
and CARDIA, DNA methylation signals were relatively
stable over time (Supplementary Fig. 5). In addition,
CpGs measured in monocytes were correlated well with
those measured using whole blood samples (i.e., all leu-
kocytes). This finding is consistent with observations from
one prior BMI-DNA methylation study in which the ob-
served associations between DNA methylation and BMI
were shared across different cell subsets (22).

In conclusion, the current study demonstrates a unique
DNA methylation pattern related to hepatic fat in EA
participants. In addition, our study showed that several

hepatic fat–associated CpGs may be useful biomarkers for
prediction of new-onset T2D. Future studies with larger
and more ethnically diverse sample sizes are needed to
validate our findings and to explore the biological rele-
vance of peripheral DNA methylation in the development
and progression of NAFLD and T2D.
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