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Objective Impaired glucose tolerance (IGT) is one of the pre-symptomatic states of type 2 
diabetes mellitus and requires an oral glucose tolerance test (OGTT) for diagnosis. Our aims 
were two-fold: 1) characterize signatures of small molecules predicting the OGTT-response 
and 2) identify metabolic subgroups of participants with IGT.  
Methods Plasma samples from 827 participants of the Study of Health in Pomerania free of 
diabetes were measured utilizing mass spectrometry and proton-nuclear magnetic resonance 
spectroscopy. Linear regression analyses were used to screen for metabolites significantly 
associated with the OGTT-response after two hours adjusting for baseline glucose and insulin 
levels, as well as important confounders. A signature predictive for IGT was established 
using regularized logistic regression. All IGT cases (N=159) were selected and subjected to 
unsupervised clustering using a k-means approach.  
Results and Conclusion: In total, 99 metabolites and 22 lipoprotein measures were 
significantly associated with either 2-hour glucose or 2-hour insulin levels. Those comprised 
variations in baseline concentrations of branched-chain amino keto-acids, acylcarnitines, 
lysophospholipids or phosphatidylcholines largely confirming previous studies. By the use of 
these metabolites, IGT-subjects segregated into two distinct groups. Our IGT prediction 
model combining both clinical and metabolomics traits achieved an AUC of 0.84, slightly 
improving the prediction based on established clinical measures. The present metabolomics 
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approach revealed molecular signatures associated directly to the response of the OGTT and 
to IGT in line with previous studies. However, clustering of IGT subjects revealed distinct 
metabolic signatures of otherwise similar individuals pointing towards the possibility of 
metabolomics for patient stratification. 

Comprehensive molecular profiling of plasma samples improved classification and stratification of IGT 
subjects over and above clinical measures. 

Introduction 

Type 2 diabetes mellitus is one of the major health burdens across the world [1]. It is 
primarily defined by the level of hyperglycaemia associated with an increased risk for 
microvascular and macrovascular disease development. However, type 2 diabetes mellitus 
has a long pre-symptomatic stage. Impaired fasting glucose (IFG) and impaired glucose 
tolerance (IGT) are two states associated with insulin resistance, in which glycaemia is 
disturbed, but not as much to be classified as type 2 diabetes mellitus and therefore also 
referred to as pre-diabetes. Besides determination of HbA1c and measurement of fasting 
plasma glucose (FPG), the OGTT is the gold standard tool to diagnose these pre-diabetic 
conditions [2].  

Although the OGTT is a standard method to diagnose both type 2 diabetes mellitus and 
IGT, it has become progressively unpopular, as it is costly in terms of time and money [3, 4]. 
Also due to its complexity, insufficient reproducibility and overall inconvenience its use in 
clinical practice has declined in the past years [5], making a replacement of the OGTT 
desirable. More importantly, patients’ HbA1c and FPG may be within normal limits while 
glucose tolerance is not, which remains unrecognized without OGTT. However, the OGTT is 
currently the only method to detect isolated IGT and determination of plasma HbA1c and FPG 
are likely to miss patients with isolated IGT [3, 4] and hence those who would benefit from 
early intervention strategies.  

To improve patient care in terms of convenience and diagnostic safety for IGT, 
metabolomics studies are a promising tool. A number of studies have revealed diverse small 
molecules (metabolites) related to type 2 diabetes mellitus or pre-diabetes [4, 6-12]. Elevated 
concentrations of in particular branched-chain amino acids (BCAAs) in blood plasma were 
found to be predictive for incident type 2 diabetes mellitus up to ten years before disease 
onset [7, 8, 11, 13, 14]. Those findings were extended to further downstream metabolites, e.g. 
3-methyl-2-oxovalerate or ketone bodies [15, 16]. In contrast, inverse associations, e.g. with 
the amino acid glycine, have been observed with respect to IGT [4, 8] and the risk of 
developing type 2 diabetes mellitus [6]. Besides glucose other carbohydrates like lactate, 
mannose, malate and arabinose were reported to be linked to insulin resistance [9, 16]. Even 
lipid species like lysophosphatidylcholine (18:2) and linoleoylglycerophosphocholine [4, 8], 
vitamins [4, 6], and other individual molecules such as acetylcarnitine and several yet to be 
identified metabolites were shown to be associated with IGT and/or insulin resistance [4, 6, 8, 
17]. Some metabolites are most likely the result of already existing high insulin levels (e.g. 
glycine) while others may be related to regulatory effects in IGT-affected individuals (e.g. 
lysophosphatidylcholine) [8]. 

Numerous studies have highlighted the great potential of metabolomic approaches to 
improve our understanding of biochemical pathways disturbed years before the clinical 
manifestation of type 2 diabetes mellitus. We aimed to profile a molecular signature 
predictive for the OGTT response in plasma among about 800 non-diabetic subjects from the 
general population. Through integration of diverse metabolomics techniques, targeted and 
untargeted, we further investigated the presence of metabolic subgroups of IGT patients. 
Hence, we pay tribute to the multifaceted origin of impaired glucose homeostasis as has been 
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shown by a number of recent clustering studies [18-20] as well as outlined by the palette 
model emphasizing the different shades of type 2 diabetes mellitus aetiology [21]. 

Methods 

Study Population  
The Study of Health in Pomerania (SHIP-TREND) is a population-based study conducted in 
West Pomerania, a rural region in north-east Germany and a detailed description of the 
sampling procedure and the study population can be found elsewhere [22]. In total, 4420 
subjects chose to participate (50.1% response). All participants gave written informed 
consent before taking part in the study. The study was approved by the ethics committee of 
the University of Greifswald and conformed to the principles of the declaration of Helsinki. 
SHIP data are publicly available for scientific and quality control purposes by application at 
www.community-medicine.de. 

For the first 1000 subjects without self-reported type 1 or 2 diabetes, plasma metabolome 
data based on MS and proton nuclear magnetic resonance (1H-NMR) spectroscopy were 
obtained. Exclusion criteria applied included (overlap exists, Fig. 1): 1) missing values in 
OGTT measures or confounding variables (n=54) 2) fasting time less than eight hours (n=71) 
3) newly diagnosed diabetic subjects (n=26; HbA1c > 6.5 or fasting glucose > 11.1 mmol/L or 
intake of anti-hyperglycemic medication) and 4) exclusion after quality control of 
metabolomics data (n=22). Finally, a total sample of 827 subjects was included in the 
analyses. Despite current guidelines are clearly defining 2-hour glucose measurements of ≥ 
11.1. mmol/L as diabetic conditions [2], we decided to include these subjects (n=23) in the 
analyses as they were identified by OGTT only and the aim of the study was to search for 
spot metabolic markers predicting the dynamic response to a glucose challenge. Figure 1 
summarizes sample compilation and statistical analyses. 

Standard Laboratory Assays  
Fasting blood samples (≥ 8 hours) were collected between 6:00 am and 1:00 pm from the 
cubital vein of subjects in the supine position and analysed immediately or stored at -80°C in 
the Integrated Research Biobank (Liconic, Liechtenstein) at the University Medicine 
Greifswald. Directly thereafter, non-diabetic participants were given a standardized solution 
of glucose containing 75mg (Dextro OGT, Boehringer Mannheim, Mannheim, Germany). 
Serum cystatin C, lipids (total cholesterol, HDL and LDL cholesterol, triglycerides (TG)), 
high-sensitivity C-reactive protein (hsCRP) and catalytic activity concentration of alanine 
aminotransferase (ALT) were measured by standard methods (Dimension VISTA, Siemens 
Healthcare Diagnostics, Eschborn, Germany). Plasma insulin levels were measured (Centaur 
XP by Siemens Healthcare Diagnostics) and the homeostatic model assessment of insulin 
resistance (HOMA-IR) index was calculated as insulin (µU/mL) × glucose (mmol/L)/22.5 
[23]. HbA1c was determined by high-performance liquid chromatography (Bio-Rad, Munich, 
Germany). 

Metabolome Analyses 
A detailed description of all applied measurement techniques has been published before [24]. 
Three different approaches were combined: 1) non-targeted MS-based profiling of plasma 
samples as reported previously 2) targeted MS-based profiling of plasma samples using the 
AbsoluteIDQ p180 Kit (BIOCRATES LifeSciences AG, Innsbruck, Austria) and 3) 1H-
NMR-based profiling of plasma samples to derive measures of lipoprotein particles. 

Quality control 
Differences in metabolite measurements due to day-to-day variation in both MS-based 
techniques were accounted for by median-normalization for each metabolite, i.e. the median 
of each metabolite on each runday was used to rescale the respective metabolite 
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measurements yielding the same median at each runday. To this end samples have been 
assigned to specific runday at random prior measurements. Normalized metabolite 
measurements were subsequently log2-transformed and each data set was submitted to outlier 
identification by robust principle component analysis to exclude samples strongly deviating 
in their global profile. Only metabolites with less than 20% missing values were used to this 
end while imputing missing values with a low value. As a result 13, 4, and 6 samples have 
been excluded for non-targeted MS, targeted MS, and 1H-NMR, respectively. Quality control 
for 1H-NMR-derived measures of lipoproteins was further done in relation to laboratory 
measurements of blood lipids yielding excellent correlation coefficients (r>0.90). 

Data integration  
Most of the metabolites were unique to one of the applied techniques. However, 44 plasma 
metabolites were overlapping with both techniques. Following the grouping of metabolites in 
biochemical classes (i.e. lipids, amino acids and carbohydrates), correlations of those 
metabolites measured on both platforms were computed with all members of the same 
biochemical class. Subsequently, the metabolite with the higher median correlation across all 
class members was kept for further analysis.  

After quality control and pre-processing 613 plasma metabolites were available for 
statistical analyses. Note that some of these could not be unambiguously assigned to a 
chemical identity and are referred to hereafter with the notation “X” followed by a unique 
number. Data on lipoprotein particles comprise 117 measures describing the gradient from 
VLDL particles to HDL particles, including their triglycerides, cholesterol, free cholesterol, 
phospholipid as well as apolipoprotein B, A1 and A2 content. 

Statistical Analysis  
Linear regression models were performed to assess the associations of plasma metabolites 
(independent variables) with 2-hour measures of plasma glucose and insulin (dependent 
variables). To fulfil requirements of linear regression metabolite levels and plasma insulin 
were log-transformed. All models were adjusted for baseline levels of glucose or insulin, age, 
sex, waist circumference, physical activity, smoking behaviour, serum ALT, eGFR and 
hsCRP. To screen for metabolites specifically associated with the presence of IGT we run 
logistic regression models with the same adjustment set for each metabolite as exposure and a 
binary IGT-variable as outcome. To account for multiple testing, the p-values from regression 
analyses were adjusted by controlling the false discovery rate (FDR) at 5% using the 
Benjamini-Hochberg procedure. 

To search for putative metabotypes related to IGT, all cases (n=159) were selected and 
subjected to unsupervised clustering using a k-means and a hierarchical clustering analyses 
(HCA) approach. To this end only significantly associated metabolites in either linear or 
logistic regression with less than 20% missing values were evaluated. Missing values were 
first imputed using a k-nearest neighbour approach. to determine the optimal number of 
clusters, 30 different measures of cluster separation were evaluated as implemented in the R 
package NbClust [25]. To identify metabolites responsible for subdivision into the two 
clusters we created a binary variable identifying cluster belonging among IGT-subjects and 
run random forest analysis to obtain measures of variable importance.  

A signature predictive for IGT (2-hour glucose > 7.8 mmol/L) among the whole study 
population using least absolute shrinkage and selection operator (LASSO) for variable 
selection was compiled. Using a two-staged cross-validation procedure allowed us to test for 
robustness of selected features across random subsets of the population, as well as to assess 
generalizability of the results following previous work [24]. Each variable was scored by 
average area under the curve in the final classification loop in case the variable was included 
in the final model. Three types of variable set ups were used to perform this classification. 
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Considering only clinical variables as presented in Table 1, considering metabolites only, and 
a combination of both. Finally, three sparse logistic regression models were built to predict 
IGT. Performances of the individual models were compared based on receiver operating 
characteristics (ROC) statistics, i.e. comparing the area under the curve (AUC) using a 
Delong test, and by computing the continuous net reclassification improvement (cNRI), 
which is a combined measure of the amount of samples correctly reassigned to either cases or 
controls between a standard and an updated model. Only metabolites with less than 20% 
missing values were included (n=432) in these analyses and imputation of remaining missing 
values was done using k-nearest neighbour imputation. 

We calculated a data-driven metabolic network based on Gaussian graphical models 
using the imputed data set from prediction analyses due to their ability to recreate a sparse, 
biochemical mirroring, network[26].  

Statistical analyses were done using R 3.3.2 (R Foundation for statistical computing, 
Vienna, Austria). 

Results 

Study population  
Table 1 summarizes characteristics of the study population stratified by glucose tolerance 
being either normal (NGT, < 7.8 mmol/L) or impaired (IGT, >7.8 mmol/L). IGT subjects 
were characterized by significantly higher measures of glucose homeostasis, including HbA1c 
and HOMA-IR as well as OGTT results for plasma insulin and glucose. Waist circumference 
and plasma concentrations of TG were higher in IGT subjects, whereas LDL- and total 
cholesterol levels did not differ considerably. A significantly higher proportion of current 
smokers were found in the NGT population compared to IGT subjects. 

Associated metabolites  
In total, plasma concentrations of 99 metabolites showed significant positive or inverse 
associations with 2-hour glucose and/or insulin levels (Fig. 2 and Tab. 2). The majority of 
metabolites were associated with 2-hour glucose levels. In detail, the amino acids glycine, 
betaine and asparagine were inversely associated whereas degradation intermediates of 
branched-chain amino acids (BCAAs), e.g. 3-methyl-2-oxovalerate or alpha-
hydroxyisovalerate, were positively associated with 2-hour glucose concentrations. Members 
of the urea cycle, e.g. citrulline and ornithine, as well as the indoles kynurenine and 
indoleacetate were inversely associated. The glucose metabolites lactate and pyruvate were 
positively associated. Apart from carnitine itself (inversely associated) all plasma 
acylcarnitine species were positively associated with 2-hour glucose levels. Significant 
positive association with NEFAs, comprised saturated fatty acids (SFAs), such as palmitate 
(16:0), and 2-hour glucose/-insulin. Moreover, prominent (poly)unsaturated fatty acids (ω-3/-
6 fatty acids) such as arachidonate and linoleate associated positively to both, glucose and 
insulin. In contrast, significant inverse associations were seen for lysolipids (1-
linoleoylglcerophosphoethanolamine) and several phosphatidylcholines (PCs) with 2-hour 
glucose levels. Plasma levels of two lysophosphatidylcholines (lysoPC) additionally showed 
significant inverse associations to 2-hour insulin. A positive association was found between 
2-hour glucose and peptide fragments of complement component 3 (HWESASLLR and 
HWESASXX*) [27], whereas significant inverse associations were observed with respect to 
xenobiotics including plasma metabolites associated with coffee consumption  (e.g. 4-
vinylphenol-sulfate, catechol sulfate, and trigonelline [28]). 

Adjustment for body mass index instead of waist circumference in linear regression 
analysis had virtually no effect on effect estimates or p-values (Pearson correlation 
coefficient: 0.99). 
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Further, logistic regression analysis for IGT was well in line with results from linear 
regression analysis (Fig. 3). Metabolites unique to IGT-analysis comprised inverse 
associations, i.e. lower odds for IGT, with asymmetric dimethylarginine and stachydrine.  

Lipoprotein subfractions  
In total, 22 measures of lipoproteins were associated with 2-hour glucose levels. Inverse 
associations were seen with the cholesterol content of LDL particles, whereas the TG content 
in large VLDL and small LDL particles was positively associated. Even measures of small 
VLDL particles were positively associated (Fig. 3). 

Clustering of the IGT population  
Within the IGT population, k-means (n=88 and 71) and HCA (n=90 and 69) each revealed 
two clusters with robust agreement between both as indicated from Jaccard indices of 0.73 
and 0.67, respectively (Fig. 4). Based on the assignment of the k-means approach participants 
differed slightly in their 2-hour glucose concentrations as well as in waist circumference. 
Thereby the latter was likely due to a higher number of males in cluster 2 (Fig. 4). All other 
parameters for glucose homeostasis did not differ significantly between the two clusters (Fig. 
4). Random forest analysis revealed a high importance of (un-)saturated fatty acid species for 
the distinction between both groups, which was also evident when drawing standardized 
metabolite levels as a heatmap across all IGT-subjects (Fig. 4) 

Predicting IGT  
Three types of models were established being predictive for IGT. The classification scheme 
consisted of either clinical or metabolic predictors, as well as a combination of clinical and 
metabolic predictors for IGT. The final subset of variables evolved during variable selection 
is presented in Table 3. Models relying on either established clinical variables or metabolites 
showed comparative performance in the ROC-analysis with an AUC of ~0.79 whereas the 
combination of both data sets indicated a significant improvement compared to the only 
clinical- (p<0.002) or metabolite-based (p<0.0001) model with a final AUC of 0.84 (95%-CI: 
0.81; 0.87; Fig. 5). An improvement between the purely clinical and the combined model was 
also obvious from evaluating the cNRI: 0.47 (95%-CI: 0.30 - 0.64), p<0.001. Metabolites 
consistently included in both type of models included alanine, lysoPC C18:2, and 2-
oleoylglycerophosphocholine. Inclusion of 3-methyl-2-oxobutyrate and trigonelline further 
contributed to better discriminative performance. The unknown metabolite X – 11727 might 
be of interest from an aetiological perspective, since it established a link in the data-driven 
metabolic network between the sum of hexoses and urea (Fig. 5B).  

Discussion 

The present study investigated baseline levels of plasma metabolites associated with 2-hour 
glucose and/or 2-hour insulin following an OGTT and identified 99 small molecules to be 
associated independent from steady state glucose homeostasis. We replicated a number of 
already known metabolites related to (pre-)diabetes such as BCAAs-derivatives, 
acylcarnitines, fatty acids or measures of lipoprotein particles, but also observed novel small 
molecules, e.g., a fragments of complement component 3 (C3), several unknown compounds 
or heme degradation products. Based on these metabolomics markers the subjects with 
OGTT-proven IGT segregated into two distinct clusters with only minor differences in 2-hour 
glucose concentrations. The clustering was in particular due to strong differences in plasma 
NEFAs. Compared to readily available clinical measures, incorporation of five metabolites 
slightly but significantly improved classification of IGT-subjects using baseline measures 
only. 

Replication of previously described signatures  
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Elevated plasma levels of BCAAs have been repeatedly reported to be associated with either 
incident diabetes or pre-diabetic states [4, 7, 8, 11-14, 16, 29, 30] and our results with respect 
to BCAA-derivatives, such as 3-methyl-2-oxovalerate, largely confirm these observations. 
We like to note, that BCAAs themselves did not contribute to our IGT prediction models 
which aligns with previous reports [8, 30]. Briefly, a lack of insulin-mediated suppression of 
skeletal muscle proteolysis might explain the elevated levels of BCAAs in (pre)diabetics 
[31]. Even the contribution of gut microbiota, synthetizing BCAA, has been suggested [32]. 
Both mechanisms as well as possible yet to be identified ones raise BCAA concentrations in 
plasma and thereby likely the concentration of their first degradation product: branched-chain 
alpha-keto acids (BCKAs). BCKAs in turn presumably reduce pyruvate dehydrogenase and 
α-ketoglutarate dehydrogenase activity [31], which are essential in the tricarboxylic acid 
cycle [33]. Subsequently, pyruvate metabolism shifts towards lactate and alanine formation, 
which aligns with our observation of elevated baseline levels of these two metabolites. 
Notably, alanine served as a significant variable in the metabolite-based and combined IGT 
prediction model. Alanine is strongly linked to glucose- and BCAA-metabolism [33, 34]. In 
the state of insulin resistance alanine is deliberated by the skeletal muscle cells to maintain 
glucose homeostasis, as it is then converted into pyruvate, a source for augmented 
gluconeogenesis in the liver [33]. The lack of association between primary BCAAs and 2-
hour glucose levels might be due to the mediating effect of hepatic fat accumulation (using 
serum ALT as surrogate marker in linear regression analysis) as has been shown previously 
for the same subjects [24]. However, genetic evidence [35, 36] implies BCAA metabolism to 
be on a causal path to type 2 diabetes via insulin resistance and experimental evidence 
suggested BCAA-mediated impaired signalling through mechanistic target of rapamycin 
(mTOR) uncoupling downstream signal transduction of insulin as one possible mechanism 
[31]. 

Consistent with previous studies [4, 8, 37, 38] baseline levels of lysoPCs (18:1 and 18:2) 
were inversely associated with both 2-hour glucose and -insulin concentrations in the present 
study. Predominantly the lysoPCs 18:2, 18:1 and 18:0 have been reported in diabetes related 
studies, but chiefly lysoPC 18:2, also referred to as linoleoyl-glycerophosphocholine (L-
GPC). Briefly, lysoPCs are catabolites of phosphatidycholines (PCs) present in cell 
membranes or on the surface of lipoprotein particles. PC degradation is catalysed by 
phospholipase A2 (PLA2) [8]. Notably, lower mRNA levels of cytoplasmic PLA2 have been 
observed in whole blood samples of IGT- and type 2 diabetes mellitus-affected subjects [8], 
which might account for the lower concentrations of lysoPCs in (pre-)diabetic patients.  

A number of ether and ester-PCs were significantly inversely associated with 2-hour 
glucose, with the exception of PC aa C36:4 showing a positive association partially 
replication a previous observation among older adults [39]. PCs are essential for the assembly 
and secretion of lipoproteins and even regulate the amount of lipoproteins being released into 
circulation [40]. Hence, they were closely linked to the lipoprotein profiling applied in the 
present study. Insulin resistance is known to have strong effects on lipoprotein metabolism 
including TG-enrichment of small LDL-particles, likely due to an increased hepatic secretion 
of TG-rich VLDL particles. A process tightly linked to a decline in the cholesterol content of 
HDL-particles [41, 42]. The latter, however, was not obvious from the present analyses and 
we observed an increased TG content of HDL3-particles instead. An increase in cholesterol 
ester transfer protein (CETP) activity – which mediates the transfer of cholesterol esters from 
HDLs to TG-rich lipoproteins in exchange for TG [43] – has been suggested in IGT subjects 
[42, 44], and may account for the positive association with the TG-content in HDL3 particles. 
Another cross-link between lipoprotein determination and small molecules might have 
accounted for the positive association between ω-3 and ω-6 polyunsaturated fatty acids 
(PUFAs) and 2-hour glucose and insulin measures. Briefly, the essential ω-3 PUFAs cannot 
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be synthesised by mammals and hence their content in the human body entirely relies on 
exogenous intake, e.g. from fish or plant oil intake. Previous studies already emphasized a 
predictive value over and above the biochemical determination of such food bio makers 
compared to food questionnaires with relation to type 2 diabetes risk prediction [45]. 
However, cross-linking small molecule profiling with high-resolution lipoprotein profiling 
using 1H-NMR allows us to speculate about an additional explanation, namely the increased 
secretion of TG-rich VLDL particles which was strongly positively correlated with plasma 
PUFA levels [24]. Hence, hepatic co-secretion of PUFAs as part of TG-rich VLDL particles 
in states of peripheral insulin resistance might be another explanation for this finding.    

Novel metabolites pointing towards inflammation  
Apart from the previously reported metabolites related to insulin resistance, pre-diabetic 
states and type 2 diabetes mellitus, the present study revealed a few novel species. We 
observed that L-urobilin and bilirubin, degradation products of haemoglobin, were positively 
associated with 2-hour glucose, but not with 2-hour insulin. Bilirubin has previously been 
characterized to be anti-oxidative and anti-inflammatory and therefore being a protective 
factor with respect to peripheral vascular diseases [46, 47]. The heme oxygenase system, 
which is essential for haemoglobin metabolism might be overactive in (pre-)diabetic 
individuals, as it possibly augments insulin sensitivity and glucose uptake [47, 48]. In 
addition, we observed a positive association to 2-hour glucose for fragments of the 
complement component 3 (C3). Notably, a longitudinal study previously found plasma C3 
levels to be positively associated with insulin resistance, 2-hour glucose and fasting plasma 
glucose and even incident type 2 diabetes mellitus [49]. Activation of the innate immune 
system aligns with other pro-inflammatory effects such as toll-like-receptor activation by 
fatty acids [50, 51] and high CRP levels [52] associated with insulin resistance and type 2 
diabetes mellitus, respectively [53]. These findings are somewhat remarkable, since all 
regression models were adjusted for hsCRP levels, which might indicate that proteins like C3 
indicate alternative paths how the inflammatory response interferes with insulin sensitivity.  

Clustering of IGT subjects  
Within the group of participants with IGT, two clusters of subjects were identified using k-
means clustering and partially verified by HCA, which differed by a distinctive fatty acid 
signature. One cluster was characterized by elevated baseline levels of a number of (un-
)saturated fatty acids being long- or medium-chained and additionally several acylcarnitines. 
The clusters did not differ in fasting plasma glucose, HbA1c or insulin resistance (HOMA-
IR). However, 2-hour glucose concentrations were slightly different and hence we cannot 
completely rule out that members of the cluster with higher baseline plasma concentrations of 
fatty acids have already reached an advanced stage of IGT. Notably, the difference in fatty 
acid levels clearly exceeded the difference in 2-hour glucose levels between the clusters (Fig. 
4) but participants with likely diabetic 2-hour glucose concentrations (>11.1 mmol/l) were 
significantly enriched in cluster 1 (Fisher’s exact test, 3.2-fold, p=0.02). Recent studies 
already identified subgroups in type 2 diabetes mellitus-affected individuals [18-20]. These 
clusters differed in disease progression [18] and were characterized by distinct diabetic 
complications such as nephropathy, retinopathy and cardiovascular diseases [18, 19]. Another 
genetic approach, using single nucleotide variants previously associated with an increased 
risk of type 2 diabetes mellitus, found clusters of those variants divergent in beta cell 
function, their features of insulin resistance (BMI, waist circumference, lipoprotein and TG 
profile) and liver lipid metabolism [20]. These findings lead to the assumption that subjects 
of the presented IGT clusters may – when developing diabetes – diverge into distinctive type 
2 diabetes mellitus subgroups. 
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The potential clinical value of this finding, however, could only be verified using 
longitudinal data on important outcome characteristics, including time-of-onset of type 2 
diabetes mellitus and related complications, responsiveness to treatments schemes or more 
importantly effectiveness of prevention schemes including changes in nutrition and lifestyle. 
Successful relation of such longitudinal outcomes for specific IGT subgroups might indicate 
the usefulness of metabolomics characterization of patients at risk for type 2 diabetes mellitus 
in a tailored fashion.  

With respect to a possible mechanistic interpretation it has previously been suggested that 
an incomplete or impaired β-oxidation accompanied by accumulation of NEFAs and 
acylcarnitines is associated with insulin resistance and IGT [54]. Particularly long-chain fatty 
acids such as palmitic acid seem to be a putative mediator [54, 55]. SFAs, such as palmitic 
acid, have been described to activate toll-like receptors leading to inhibition of insulin signal 
transduction among others [50, 51]. Moreover, the stimulation of toll-like receptors is related 
to the activation of the innate immune system. It therefore links to hsCRP as a positive IGT 
predictor and to higher levels of complement component fragments in plasma specimen of 
IGT affected subjects, in line with our observations. However, even insulin resistance could 
be a hidden driver, since a genetic prediction study has suggested a causal effect of insulin 
resistance on plasma levels of palmitoleate and oleate [56]. 

IGT Prediction  
Applying extensive feature selection revealed three IGT prediction models based on different 
clinical and metabolic features. While the two models based on either metabolites or clinical 
traits performed with an approximately equivalent accuracy, our combined feature selection 
approach using metabolome and clinical traits improved prediction of IGT.  

Regarding the clinical traits in our combined model, established diagnostic parameters, 
including fasting plasma glucose, HOMA-IR and advanced age as a risk factor were of 
predictive value whereas HbA1c as a measure long-term exposure to high glucose 
concentrations was not selected. By variable selection, metabolites already discussed in 
previous sections, which have been described as IGT-specific such as lysoPC 18:2 (L-GPC) 
and the BCKA 3-methyl-2-oxobuytrate were included [4, 8, 30]. The strong value of lysoPC 
18:2 might be in close relation to the frequent observation of the influence of a low-grade 
inflammatory state as indicated by higher CRP values on the OGTT outcome [57]. However, 
as already outlined above, the precise interplay between an inflammatory environment, 
PLA(2) activity and insulin signalling remains to be established. High plasma concentrations 
of alanine have been previously described to precede adverse OGTT outcomes by up to 6.5 
years [13] but are less informative for prediction of type 2 diabetes onset [14]. A strong 
relation of plasma concentrations of alanine with glucose homeostasis is likely explainable as 
alanine can be utilized as an alternative source for glucose during gluconeogenesis. States of 
high (intracellular) glucose availability or suppressed gluconeogenesis, for instance in a still 
insulin-sensitive liver despite peripheral insulin resistance, may induce less uptake of alanine 
in peripheral tissues and hence higher concentrations in the circulation. Further, net 
production might be increased as well, as indicated by higher levels of pyruvate in relation of 
2-hour glucose concentrations. In general, the prediction procedure revealed the metabolic 
heterogeneity leading to an impaired response in an OGTT, presumably caused by either 
impaired insulin secretion, i.e. beta-cell function or insulin resistance. 

Strengths and Limitations  
The strength of the present study lies in the non-targeted metabolomics approach regarding 
various metabolic species including novel metabolites and also taking lipoproteins into 
account. Even though we achieved an improvement in the prediction of IGT using 
metabolites, this needs further validation. We have to note that the rather small number of 
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IGT subjects in the present study did not permit us to investigate a further distinction from 
IFG, which might lead to further stratification of patients. In general, replication of our 
results and clinically usefulness of the clustering approach with respect to time-of-onset of 
type 2 diabetes, treatment outcomes or progression of associated co-morbidities specific to 
each cluster have to be validated in independent cohorts. Same holds true for the evaluation 
of the stability over time in candidate metabolites from IGT prediction. 

Conclusion  
The present metabolomics approach provides detailed insights on various metabolites 
associated with the outcome of the OGTT, with a particular focus on BCAA-catabolites, 
acylcarnitines, lysophospholipids, PCs and lipoproteins. Within the IGT-subject group, we 
identified two clusters with a distinctive fatty acid signature, possibly reflecting either 
differently advanced stages of IGT or distinct disease aetiologies. An IGT prediction model 
based on a combination of metabolic and clinical traits was established being superior to 
models including either metabolic or clinical traits but improvement might not be of direct 
clinical relevance. However, further studies are needed to validate our findings and prove the 
applicability of metabolic profiling to improve diagnosis of disturbed glucose metabolism.   
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Genet, 2016. 12(10): p. e1006379. 
57. Pietzner, M., et al., Comprehensive metabolic profiling of chronic low-grade 
inflammation among generally healthy individuals. BMC Med, 2017. 15(1): p. 210. 

Fig. 1 Flow chart of sample compilation and the statistical analysis. Plasma metabolome 
data based on MS and 1H-NMR were available for 1000 subjects. Exclusion criteria applied 
and the number of excluded subjects are indicated. A total sample of 827 subjects was 
included in the analyses using linear regression models to assess associations of plasma 
metabolites with 2-hour measures of plasma glucose and insulin. IGT cases (n=159) were 
selected and subjected to unsupervised clustering using a k-means or hierarchical clustering 
approach (HCA). A signature predictive for impaired glucose tolerance using least absolute 
shrinkage and selection operator (LASSO) for variable selection was compiled. Three types 
of variable set ups were used to perform this classification (only clinical variables, only 
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metabolites significantly associated with IGT, a combination of both). Three sparse logistic 
regression models were built to predict impaired glucose tolerance.  

Fig. 2 Standardized β-estimates with 95%-confidence intervals from linear regression 
analysis predicting either 2-hour glucose (squares) or insulin (circles) concentrations with 
plasma metabolites. All analyses were adjusted for baseline concentrations, age, sex, 
smoking, physical activity, waist circumference, estimated glomerular filtration, serum 
alanine aminotransferase activities and high-sensitivity C-reactive protein. Significant 
associations (controlling the false discovery rate at 5%) are highlighted by darker colours. 
More detailed information on the metabolites could be found in table 2. 

Fig. 3 A) Comparison of effect estimates from linear regression analysis (2-hour glucose 
concentrations as exposure) with odds ratios (OR) form logistic regression analysis for 
impaired glocuse tolearnce (IGT, 2-hour glucose > 7.8 mmol/l). B) Standardized β-estimates 
with 95%-confidence intervals from linear regression analysis predicting either 2-hour 
glucose (squares) or insulin (circles) concentrations with lipoprotein subfraction measures. 
All analyses were adjusted for baseline concentrations, age, sex, smoking, physical activity, 
waist circumference, estimated glomerular filtration, serum alanine aminotransferase 
activities and high-sensitivity C-reactive protein. Significant associations (controlling the 
false discovery rate at 5%) are highlighted by darker colours. VLDL = very low-density 
lipoprotein; LDL = low-density lipoprotein; ApoB = apolipoprotein B; HDL = high-density 
lipoprotein 

Fig. 4 left Heatmap of standardized metabolite levels (x-axis) sorted based on hierarchical 
clustering. Columns next to the heatmap indicate correspondence with k-means clustering 
and indication of subjects with 2-hour glucose concentrations > 11.1 mmol/l reflecting type 2 
diabetes mellitus. right Boxplots of parameters for glucose homeostasis according to cluster 
membership (k-means). Stars indicate significant differences (Welchs t-test).  

Fig. 5 A) Receiver operating characteristics curves and area under the curve (AUC) with 
95%-confidence interval (CI) for the three different models to predict impaired glucose 
tolerance: Clinical variables – dark grey; Metabolites – light grey; Combination of both – 
black. B) Subnetwork of the derived metabolic network centred on X – 11727. Nodes 
indicate metabolites and edges significant partial correlations. Line width corresponds to 
strength of partial correlations.  

Table 1 Characteristics of the study population by glucose tolerance 

Characteristic Normoglycaemic (n = 668) Impaired Glucose Tolerance (n = 159) p* 

Age (years) 49 (40; 58) 60 (50; 68) <0.01 
Females (%) 57.3 52.8 0.35 

Smoking (%)   <0.01 
never smoker 41.4 52.2  
former smoker 36.1 39.6  
current smoker 22.5 8.2  

Physically active (%) 73.3% 75.5% 0.66 

Waist circumference (cm) 86 (77; 95) 95 (85; 102) <0.01 
Glucose 0 hour (mmol/L) 5.3 (5.0; 5.6) 5.8 (5.3; 6.3) <0.01 
Glucose 2 hour (mmol/L) 5.8 (5.1; 6.5) 8.9 (8.2; 10.5) <0.01 
Insulin 0 hour (µU/mL) 8.3 (6.0; 11.9) 13.5 (9.1; 18.1) <0.01 
Insulin 2 hour (µU/mL) 45.0 (30.0; 65.6) 134.0 (76.4; 184.3)  <0.01 
HOMA-IR  1.97 (1.40; 2.90) 3.4 (2.2; 4.9) <0.01 
HbA1c (%) 5.1 (4.8; 5.4) 5.4 (5.1; 5.7) <0.01 
Triglycerides (mmol/L) 1.16 (0.84; 1.61) 1.46 (1.09; 1.96) <0.01 
LDL-cholesterol (mmol/L) 3.36 (2.76; 3.98) 3.47 (2.90; 4.00) 0.27 

Total cholesterol (mmol/L) 5.4 (4.8; 6.2) 5.5 (4.9; 6.1) 0.17 
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hsCRP, mg/L 1.08 (0.57; 2.12) 1.66 (0.94; 3.90) <0.01 
ALT (µkatal/L) 0.36 (0.27; 0.50) 0.42 (0.31; 0.60) <0.01 
eGFR (mL/min/1.73m²) 114 (106; 123) 108 (99; 117) <0.01 

HOMA-IR = homeostatic model of insulin resistance; hsCRP = high-sensitivity C-reactive protein; LDL = low-
density lipoprotein ALT = alanine transaminase; eGFR = estimated glomerular filtration rate; Continuous data 
are expressed as median (25th percentile; 75th percentile); nominal data are given as percentages. *χ2-test 
(nominal data) or Mann-Whitney-U test (interval data) were performed 

Table 2 Additional information for metabolites significantly associated with OGTT-
measures. 

Metabolite HMDB ID P. D. Metabolite HMDB ID P. D. 
Alanine HMDB00161 B + lysoPC a C18:1 HMDB02815 B - 
Asparagine HMDB00168 B - lysoPC a C18:2 HMDB10386 B - 
Betaine HMDB00043 M - 5-dodecenoate (12:1n7) HMDB00529 M + 
Glycine HMDB00123 B - Caprate (10:0) HMDB00511 M + 
3-hydroxyisobutyrate HMDB00336 M + Caprylate (8:0) HMDB00482 M + 
3-methyl-2-oxobutyrate HMDB00019 M + Laurate (12:0) HMDB00638 M + 
3-methyl-2-oxovalerate HMDB03736 M + PC ae C32:1 HMDB13404 B - 
4-methyl-2-oxopentanoate HMDB00695 M + PC ae C32:2 HMDB13411 B - 
Alpha-hydroxyisovalerate HMDB00407 M + PC ae C34:3 HMDB11211 B - 
Beta-hydroxyisovalerate HMDB00754 M + PC ae C36:2 HMDB11243 B - 
Isobutyrylcarnitine HMDB00736 M - PC ae C40:6 HMDB13422 B - 
Indoleacetate HMDB00197 M - PC ae C42:5 HMDB13451 B - 
Kynurenine HMDB00684 B - PC ae C44:5 HMDB13456 B - 
Citrulline 

HMDB00904 B - 
PC aa C30:2 HMDB07999; 

HMDB07903 B - 

Ornithine HMDB00214 B - PC aa C36:2 HMDB00593 B - 
Lactate HMDB00190 M + PC aa C36:4 HMDB07982 B + 
Pyruvate HMDB00243 M + PC aa C38:0 HMDB07893 B - 
Bilirubin (E,E)* HMDB00054 M + Adrenate (22:4n6) HMDB02226 M + 
L-urobilin HMDB04159 M + Arachidonate (20:4n6) HMDB01043 M + 
Trigonelline (N'-methylnicotinate) HMDB00875 M - Dihomo-linoleate (20:2n6) HMDB05060 M + 
Phosphate HMDB01429 M - Dihomo-linolenate (20:3n3 or n6) HMDB02925 M + 
Citrate HMDB00094 M + Docosadienoate (22:2n6) HMDB61714 M + 
Carnitine HMDB00062 B - Docosahexaenoate (DHA; 22:6n3) HMDB02183 M + 
Acetylcarnitine HMDB00201 B + Docosapentaenoate (n3 DPA; 22:5n3) HMDB01976 M + 
Cis-4-decenoyl carnitine 57357170* M + Docosapentaenoate (n6 DPA; 22:5n6) HMDB13123 M + 
Dodecanoylcarnitine HMDB02250 B + Eicosapentaenoate (EPA; 20:5n3) HMDB01999 M + 
Hexanoylcarnitine HMDB00705 M + Linoleate (18:2n6) HMDB00673 M + 
Hydroxybutyrylcarnitine* 

HMDB13127 M + 
Linolenate [alpha or gamma; (18:3n3 
or 6)] HMDB01388 M + 

Octanoylcarnitine HMDB00791 M + SM (OH) C16:1 HMDB13463 B - 
15-methylpalmitate HMDB61709 M + SM (OH) C22:2 HMDB13467 B - 
17-methylstearate HMDB61710 M + SM (OH) C24:1 HMDB12107 B - 
13-HODE + 9-HODE HMDB04667; 

HMDB10223 
M + 

SM C16:0 
HMDB10169 B - 

2-hydroxypalmitate HMDB31057 M + SM C24:1 HMDB12107 B - 
3-hydroxydecanoate HMDB02203 M + Phenylalanyltryptophan HMDB29006 M + 
3-hydroxyoctanoate HMDB01954 M + HWESASLLR Peptide 

fragments 
M + 

3-hydroxybutyrate (BHBA) HMDB00357 M + HWESASXX* M + 
10-heptadecenoate (17:1n7) HMDB60038 M + 4-vinylphenol sulfate HMDB04072 M - 
10-nonadecenoate (19:1n9) HMDB13622 M + Catechol sulfate HMDB59724 M - 
Arachidate (20:0) HMDB02212 M + Hippurate HMDB00714 M - 
Eicosenoate (20:1n9 or 11) HMDB02231 M + X - 11381  M - 
Erucate (22:1n9) HMDB02068 M + X - 11440  M + 
Margarate (17:0) HMDB02259 M + X - 11793  M + 
Myristate (14:0) HMDB00806 M + X - 11977  M + 
Myristoleate (14:1n5) HMDB02000 M + X - 12216  M - 
Nonadecanoate (19:0) HMDB00772 M + X - 12742  M + 
Oleate (18:1n9) HMDB00207 M + X - 12816  M - 
Palmitate (16:0) HMDB00220 M + X - 12855  M + 
Palmitoleate (16:1n7) HMDB03229 M + X - 17357  M + 
Stearate (18:0) HMDB00827 M + X - 17359  M + 
1-
linoleoylglycerophosphoethanolamine* 

HMDB11507 M -     
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HMDB ID = identifier for the human metabolome data base (www.hmdb.ca); P. = platform metabolie was 
measured (M = Metabolon, B = Biocrates); D. = direction of association with 2-hour glucose levels (+ = 
positively; - = inversely); *PubChem identifier, since not listed in HMDB 

Table 3 Summary on predictors selected for the final classification scheme discriminating 
impaired glucose tolerance. 

Clinical 
Traits   Metabolites   Combined   

Variable 
Scor

e 
OR (95%-

CI) Variable 
Scor

e 
OR (95%-

CI) Variable 
Scor

e 
OR (95%-

CI) 
Fasting 
glucose 

0.77 
2.49 

(2.06;3.03) 
Alanine 0.77 

1.63 
(1.36;1.97) 

Fasting glucose 0.80 
2.49 

(2.06;3.03) 

hsCRP 0.75 1.56 
(1.31;1.85) 

lysoPC a C18:2 0.77 0.55 
(0.45;0.65) 

Age 0.75 2.07 
(1.70;2.53) 

Age 0.62 
2.07 

(1.70;2.53) Hexoses 0.69 
2.12 

(1.76;2.58) lysoPC a C18:2 0.72 
0.55 

(0.45;0.65) 

HOMA-IR 0.49 
2.20 

(1.84;2.67) 
X - 11727 0.51 

1.97 
(1.63;2.40) 

Alanine 0.67 
1.63 

(1.36;1.97) 

Current 
smoking 

0.33 
0.63 

(0.48;0.78) 

2-
oleoylglycerophosphochol
ine 

0.33 
0.79 

(0.66;0.94) 
3-methyl-2-oxobutyrate 0.43 

1.89 
(1.57;2.30) 

      HOMA-IR 0.40 
2.20 

(1.84;2.67) 

      trigonelline 0.37 0.75 
(0.63;0.90) 

      
2-
oleoylglycerophosphochol
ine 

0.32 0.79 
(0.66;0.94) 

OR (95%-CI) = crude odds ratio per standard deviation increase for impaired glucose tolerance with 95%-
confidence interval derived from logistic regression models; Score = defined as average area under the curve in 
the final classification loop in case the variable was included in the LASSO model (see Methods); HOMA-IR = 
homeostatic model assessment of insulin resistance; hsCRP = high-sensitivity C-reactive protein; lysoPC = 
Lysophosphatidylcholine 
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