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Objective Impaired glucose tolerance (IGT) is one of the praptomatic states of type 2
diabetes mellitus and requires an oral glucoseante test (OGTT) for diagnosis. Our aims
were two-fold: 1) characterize signatures of smmadlecules predicting the OGTT-response
and 2) identify metabolic subgroups of participamith IGT.

M ethods Plasma samples from 827 participants of the Stdidyealth in Pomerania free of
diabetes were measured utilizing mass spectroraattyproton-nuclear magnetic resonance
spectroscopy. Linear regression analyses weretassteen for metabolites significantly
associated with the OGTT-response after two hadjissting for baseline glucose and insulin
levels, as well as important confounders. A sigreapredictive for IGT was established
using regularized logistic regression. All IGT caig=159) were selected and subjected to
unsupervised clustering using a k-means approach.

Results and Conclusion: In total, 99 metabolites and 22 lipoprotein measuvere
significantly associated with either 2-hour glucos-hour insulin levelsThose comprised
variations in baseline concentrations of branchealrcamino keto-acids, acylcarnitines,
lysophospholipids or phosphatidylcholines largepfrming previous studies. By the use of
these metabolites, IGT-subjects segregated intaltetonct groups. Our IGT prediction
model combining both clinical and metabolomicstgraichieved an AUC of 0.84, slightly
improving the prediction based on established cdinmeasures he present metabolomics
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approach revealed molecular signatures associatstilg to the response of the OGTT and
to IGT in line with previous studies. However, ¢kring of IGT subjects revealed distinct
metabolic signatures of otherwise similar individuaointing towards the possibility of
metabolomics for patient stratification.

Comprehensive molecular profiling of plasma samples improved classification and stratification of IGT
subjects over and above clinical measures.

I ntroduction

Type 2 diabetes mellitus is one of the major healitdens across the world [1]. It is
primarily defined by the level of hyperglycaemis@siated with an increased risk for
microvascular and macrovascular disease developidentever, type 2 diabetes mellitus
has a long pre-symptomatic stage. Impaired fagiingose (IFG) and impaired glucose
tolerance (IGT) are two states associated withlimsesistance, in which glycaemia is
disturbed, but not as much to be classified as 2/gmbetes mellitus and therefore also
referred to as pre-diabetes. Besides determinafiéibA;. and measurement of fasting
plasma glucose (FPG), the OGTT is the gold staneido diagnose these pre-diabetic
conditions [2].

Although the OGTT is a standard method to diagimtbk type 2 diabetes mellitus and
IGT, it has become progressively unpopular, asdoistly in terms of time and money [3, 4].
Also due to its complexity, insufficient reproduidity and overall inconvenience its use in
clinical practice has declined in the past yea}sraking a replacement of the OGTT
desirable. More importantly, patients’ Hp/and FPG may be within normal limits while
glucose tolerance is not, which remains unrecognghout OGTT. However, the OGTT is
currently the only method to detect isolated IG@ determination of plasma Hhfand FPG
are likely to miss patients with isolated IGT [3,aéhd hence those who would benefit from
early intervention strategies.

To improve patient care in terms of conveniencea@iagnostic safety for IGT,
metabolomics studies are a promising tool. A nuntbetudies have revealed diverse small
molecules (metabolites) related to type 2 diabetelitus or pre-diabetes [4, 6-12]. Elevated
concentrations of in particular branched-chain angicids (BCAAS) in blood plasma were
found to be predictive for incident type 2 diabetesdlitus up to ten years before disease
onset [7, 8, 11, 13, 14]. Those findings were edgehto further downstream metabolites, e.g.
3-methyl-2-oxovalerate or ketone bodies [15, li6lcdntrast, inverse associations, e.g. with
the amino acid glycine, have been observed withagsto IGT [4, 8] and the risk of
developing type 2 diabetes mellitus [6]. Besidesxgse other carbohydrates like lactate,
mannose, malate and arabinose were reported toKeel lto insulin resistance [9, 16]. Even
lipid species like lysophosphatidylcholine (18:2pdinoleoylglycerophosphocholine [4, 8],
vitamins [4, 6], and other individual moleculesisas acetylcarnitine and several yet to be
identified metabolites were shown to be associatéd IGT and/or insulin resistance [4, 6, 8,
17]. Some metabolites are most likely the resuliladady existing high insulin levels (e.g.
glycine) while others may be related to regulatffects in IGT-affected individuals (e.qg.
lysophosphatidylcholine) [8].

Numerous studies have highlighted the great p@teotimetabolomic approaches to
improve our understanding of biochemical pathwagtudbed years before the clinical
manifestation of type 2 diabetes mellitus. We ainteprofile a molecular signature
predictive for the OGTT response in plasma amormays800 non-diabetic subjects from the
general population. Through integration of diversgtabolomics techniques, targeted and
untargeted, we further investigated the presenceetébolic subgroups of IGT patients.
Hence, we pay tribute to the multifaceted originnopaired glucose homeostasis as has been
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shown by a number of recent clustering studiesZ@Bas well as outlined by the palette
model emphasizing the different shades of typeaBeties mellitus aetiology [21].

M ethods

Study Population

The Study of Health in Pomerania (SHIP-TREND) moaulation-based study conducted in
West Pomerania, a rural region in north-east Geynaawd a detailed description of the
sampling procedure and the study population caoulmed elsewhere [22]. In total, 4420
subjects chose to participate (50.1% responsepaiticipants gave written informed
consent before taking part in the study. The study approved by the ethics committee of
the University of Greifswald and conformed to timpiples of the declaration of Helsinki.
SHIP data are publicly available for scientific aphlity control purposes by application at
www.community-medicine.de.

For the first 1000 subjects without self-reportgaket 1 or 2 diabetes, plasma metabolome
data based on MS and proton nuclear magnetic raser{#-NMR) spectroscopy were
obtained. Exclusion criteria applied included (daprexists, Fig. 1): 1) missing values in
OGTT measures or confounding variables (n=54) KAjrfg time less than eight hours (n=71)
3) newly diagnosed diabetic subjects (n=26; k{3A6.5 or fasting glucose > 11.1 mmol/L or
intake of anti-hyperglycemic medication) and 4)lagmon after quality control of
metabolomics data (n=22). Finally, a total sampl82y subjects was included in the
analyses. Despite current guidelines are clearipidg 2-hour glucose measurements>of
11.1. mmol/L as diabetic conditions [2], we decidedclude these subjects (n=23) in the
analyses as they were identified by OGTT only dedaim of the study was to search for
spot metabolic markers predicting the dynamic raspdo a glucose challenge. Figure 1
summarizes sample compilation and statistical aesly

Standard Laboratory Assays

Fasting blood samples 8 hours) were collected between 6:00 am and In@@r@m the
cubital vein of subjects in the supine position andlysed immediately or stored at -80°C in
the Integrated Research Biobank (Liconic, Liechisn} at the University Medicine
Greifswald. Directly thereafter, non-diabetic pagants were given a standardized solution
of glucose containing 75mg (Dextro OGT, Boehringnnheim, Mannheim, Germany).
Serum cystatin C, lipids (total cholesterol, HDIddrDL cholesterol, triglycerides (TG)),
high-sensitivity C-reactive protein (hsCRP) andabic activity concentration of alanine
aminotransferase (ALT) were measured by standattiode (Dimension VISTA, Siemens
Healthcare Diagnostics, Eschborn, Germany). Plassudin levels were measured (Centaur
XP by Siemens Healthcare Diagnostics) and the hetago model assessment of insulin
resistance (HOMA-IR) index was calculated as ims(lU/mL) x glucose (mmol/L)/22.5
[23]. HbA;. was determined by high-performance liquid chrometphy (Bio-Rad, Munich,
Germany).

Metabolome Analyses

A detailed description of all applied measuremenhhiques has been published before [24].
Three different approaches were combined: 1) nayetad MS-based profiling of plasma
samples as reported previously 2) targeted MS-basdiling of plasma samples using the
AbsolutelDQ p180 Kit (BIOCRATES LifeSciences AGnbbruck, Austria) and 3H-
NMR-based profiling of plasma samples to derive sneas of lipoprotein particles.

Quality control

Differences in metabolite measurements due to dalay variation in both MS-based
techniques were accounted for by median-normatimdtir each metabolite, i.e. the median
of each metabolite on each runday was used tolesearespective metabolite
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measurements yielding the same median at eachyundahis end samples have been
assigned to specific runday at random prior measenes. Normalized metabolite
measurements were subsequently log2-transformedaiddata set was submitted to outlier
identification by robust principle component an&y® exclude samples strongly deviating

in their global profile. Only metabolites with lesgn 20% missing values were used to this
end while imputing missing values with a low valés.a result 13, 4, and 6 samples have
been excluded for non-targeted MS, targeted MSHaAdMR, respectively. Quality control
for 'H-NMR-derived measures of lipoproteins was furttiene in relation to laboratory
measurements of blood lipids yielding excellentelation coefficients (r>0.90).

Dataintegration

Most of the metabolites were unique to one of fhaiad techniques. However, 44 plasma
metabolites were overlapping with both technigi@dlowing the grouping of metabolites in
biochemical classes (i.e. lipids, amino acids artd@hydrates), correlations of those
metabolites measured on both platforms were cordpwii all members of the same
biochemical class. Subsequently, the metabolite thieé higher median correlation across all
class members was kept for further analysis.

After quality control and pre-processing 613 plasnetabolites were available for
statistical analyses. Note that some of these amatithe unambiguously assigned to a
chemical identity and are referred to hereaftehwhe notation “X” followed by a unique
number. Data on lipoprotein particles comprise diEasures describing the gradient from
VLDL particles to HDL particles, including theingtycerides, cholesterol, free cholesterol,
phospholipid as well as apolipoprotein B, A1 andodatent.

Statistical Analysis

Linear regression models were performed to ashesasisociations of plasma metabolites
(independent variables) with 2-hour measures afmpéaglucose and insulin (dependent
variables). To fulfil requirements of linear regges metabolite levels and plasma insulin
were log-transformed. All models were adjusteddfaseline levels of glucose or insulin, age,
sex, waist circumference, physical activity, smgkoehaviour, serum ALT, eGFR and
hsCRP. To screen for metabolites specifically aassed with the presence of IGT we run
logistic regression models with the same adjustreentor each metabolite as exposure and a
binary IGT-variable as outcome. To account for iptéttesting, the p-values from regression
analyses were adjusted by controlling the falseadiery rate (FDR) at 5% using the
Benjamini-Hochberg procedure.

To search for putative metabotypes related to B Icases (n=159) were selected and
subjected to unsupervised clustering using a k-swa@ad a hierarchical clustering analyses
(HCA) approach. To this end only significantly asated metabolites in either linear or
logistic regression with less than 20% missing @alwere evaluated. Missing values were
first imputed using a k-nearest neighbour approtxdetermine the optimal number of
clusters, 30 different measures of cluster semaratere evaluated as implemented in the R
packageNbClust[25]. To identify metabolites responsible for siviglon into the two
clusters we created a binary variable identifyihgster belonging among IGT-subjects and
run random forest analysis to obtain measures ridibi@ importance.

A signature predictive for IGT (2-hour glucose 8 fimol/L) among the whole study
population using least absolute shrinkage and setecperator (LASSO) for variable
selection was compiled. Using a two-staged cro$idatzgon procedure allowed us to test for
robustness of selected features across randomtsulitke population, as well as to assess
generalizability of the results following previowsrk [24]. Each variable was scored by
average area under the curve in the final clasdifin loop in case the variable was included
in the final model. Three types of variable set wpse used to perform this classification.
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Considering only clinical variables as presented@iable 1, considering metabolites only, and
a combination of both. Finally, three sparse logistgression models were built to predict
IGT. Performances of the individual models were pamad based on receiver operating
characteristics (ROC) statistics, i.e. comparirggdtea under the curve (AUC) using a
Delong test, and by computing the continuous ngassification improvement (cNRI),
which is a combined measure of the amount of sasrqaerectly reassigned to either cases or
controls between a standard and an updated modgi.n@tabolites with less than 20%
missing values were included (n=432) in these a®@alyand imputation of remaining missing
values was done using k-nearest neighbour imputatio

We calculated a data-driven metabolic network base@aussian graphical models
using the imputed data set from prediction analgsssto their ability to recreate a sparse,
biochemical mirroring, network[26].

Statistical analyses were done using R 3.3.2 (Ré&ation for statistical computing,
Vienna, Austria).

Results

Study population

Table 1 summarizes characteristics of the studyladipn stratified by glucose tolerance
being either normal (NGT, < 7.8 mmol/L) or impai@@T, >7.8 mmol/L). IGT subjects
were characterized by significantly higher measofegucose homeostasis, including HbA
and HOMA-IR as well as OGTT results for plasma limsand glucose. Waist circumference
and plasma concentrations of TG were higher in $80jects, whereas LDL- and total
cholesterol levels did not differ considerably. igrsficantly higher proportion of current
smokers were found in the NGT population compaod@iT subjects.

Associated metabolites
In total, plasma concentrations of 99 metabolitesrged significant positive or inverse
associations with 2-hour glucose and/or insulirle\Fig. 2 and Tab. 2). The majority of
metabolites were associated with 2-hour glucoseldeyn detail, the amino acids glycine,
betaine and asparagine were inversely associatetbas degradation intermediates of
branched-chain amino acids (BCAAs), e.g. 3-methgkavalerate or alpha-
hydroxyisovalerate, were positively associated \2Hfmour glucose concentrations. Members
of the urea cycle, e.g. citrulline and ornithing veell as the indoles kynurenine and
indoleacetate were inversely associated. The ghuoeabolites lactate and pyruvate were
positively associated. Apart from carnitine itq@hiversely associated) all plasma
acylcarnitine species were positively associatet @4hour glucose levels. Significant
positive association with NEFAs, comprised satwdiadty acids (SFAs), such as palmitate
(16:0), and 2-hour glucose/-insulin. Moreover, proant (poly)unsaturated fatty acids-8/-
6 fatty acids) such as arachidonate and linolesgeaated positively to both, glucose and
insulin. In contrast, significant inverse associas were seen for lysolipids (1-
linoleoylglcerophosphoethanolamine) and severasphatidylcholines (PCs) with 2-hour
glucose levels. Plasma levels of two lysophospiltblines (lysoPC) additionally showed
significant inverse associations to 2-hour insulirpositive association was found between
2-hour glucose and peptide fragments of complermemiponent 3 (HWESASLLR and
HWESASXX*) [27], whereas significant inverse asstidns were observed with respect to
xenobiotics including plasma metabolites associafiigtl coffee consumption (e.g. 4-
vinylphenol-sulfate, catechol sulfate, and trigdinel [28]).

Adjustment for body mass index instead of waistuomference in linear regression
analysis had virtually no effect on effect estinsate p-values (Pearson correlation
coefficient: 0.99).
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Further, logistic regression analysis for IGT wadln line with results from linear
regression analysis (Fig. 3). Metabolites uniquExt-analysis comprised inverse
associations, i.e. lower odds for IGT, with asymmeedimethylarginine and stachydrine.

Lipoprotein subfractions

In total, 22 measures of lipoproteins were assediatith 2-hour glucose levels. Inverse
associations were seen with the cholesterol cooferDL particles, whereas the TG content
in large VLDL and small LDL particles was positiyedssociated. Even measures of small
VLDL particles were positively associated (Fig. 3).

Clustering of the | GT population

Within the IGT population, k-means (n=88 and 71d &CA (n=90 and 69) each revealed
two clusters with robust agreement between bothdisated from Jaccard indices of 0.73
and 0.67, respectively (Fig. 4). Based on the assamt of the k-means approach participants
differed slightly in their 2-hour glucose concetiias as well as in waist circumference.
Thereby the latter was likely due to a higher nundenales in cluster 2 (Fig. 4). All other
parameters for glucose homeostasis did not diiggnifecantly between the two clusters (Fig.
4). Random forest analysis revealed a high impogani (un-)saturated fatty acid species for
the distinction between both groups, which was aisdent when drawing standardized
metabolite levels as a heatmap across all IGT-sth{€ig. 4)

Predicting IGT

Three types of models were established being predifor IGT. The classification scheme
consisted of either clinical or metabolic predistas well as a combination of clinical and
metabolic predictors for IGT. The final subset afiables evolved during variable selection
is presented in Table 3. Models relying on eitletalelished clinical variables or metabolites
showed comparative performance in the ROC-analyisisan AUC of ~0.79 whereas the
combination of both data sets indicated a sigmfiéaprovement compared to the only
clinical- (p<0.002) or metabolite-based (p<0.000m)del with a final AUC of 0.84 (95%-ClI:
0.81; 0.87; Fig. 5). An improvement between thespuclinical and the combined model was
also obvious from evaluating the cNRI: 0.47 (95%<C80 - 0.64), p<0.001. Metabolites
consistently included in both type of models inéddlanine, lysoPC C18:2, and 2-
oleoylglycerophosphocholine. Inclusion of 3-metBybxobutyrate and trigonelline further
contributed to better discriminative performanclkee Tinknown metabolite X — 11727 might
be of interest from an aetiological perspectivecsiit established a link in the data-driven
metabolic network between the sum of hexoses asal (fiig. 5B).

Discussion

The present study investigated baseline levelsasipa metabolites associated with 2-hour
glucose and/or 2-hour insulin following an OGTT adentified 99 small molecules to be
associated independent from steady state glucosedsiasis. We replicated a number of
already known metabolites related to (pre-)diabstet as BCAAs-derivatives,
acylcarnitines, fatty acids or measures of lipogiroparticles, but also observed novel small
molecules, e.g., a fragments of complement compdhéd3), several unknown compounds
or heme degradation products. Based on these nletalss markers the subjects with
OGTT-proven IGT segregated into two distinct clustgith only minor differences in 2-hour
glucose concentrations. The clustering was in @agr due to strong differences in plasma
NEFAs. Compared to readily available clinical measuincorporation of five metabolites
slightly but significantly improved classificatiai IGT-subjects using baseline measures
only.

Replication of previousy described signatures
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Elevated plasma levels of BCAAs have been repeategbrted to be associated with either
incident diabetes or pre-diabetic states [4, 71,1814, 16, 29, 30] and our results with respect
to BCAA-derivatives, such as 3-methyl-2-oxovalerédegely confirm these observations.
We like to note, that BCAAs themselves did not dbnte to our IGT prediction models
which aligns with previous reports [8, 30]. Brieflylack of insulin-mediated suppression of
skeletal muscle proteolysis might explain the etieddevels of BCAAs in (pre)diabetics
[31]. Even the contribution of gut microbiota, dyetizing BCAA, has been suggested [32].
Both mechanisms as well as possible yet to beiftlhbnes raise BCAA concentrations in
plasma and thereby likely the concentration ofrtfiest degradation product: branched-chain
alpha-keto acids (BCKAs). BCKAs in turn presumatgguce pyruvate dehydrogenase and
a-ketoglutarate dehydrogenase activity [31], which @ssential in the tricarboxylic acid
cycle [33]. Subsequently, pyruvate metabolism shdtvards lactate and alanine formation,
which aligns with our observation of elevated bagelevels of these two metabolites.
Notably, alanine served as a significant variabléhe metabolite-based and combined IGT
prediction model. Alanine is strongly linked to gbse- and BCAA-metabolism [33, 34]. In
the state of insulin resistance alanine is deltieerdy the skeletal muscle cells to maintain
glucose homeostasis, as it is then converted yriovpte, a source for augmented
gluconeogenesis in the liver [33]. The lack of agsiton between primary BCAAs and 2-
hour glucose levels might be due to the mediatifeceof hepatic fat accumulation (using
serum ALT as surrogate marker in linear regresaimalysis) as has been shown previously
for the same subjects [24]. However, genetic eviddB5, 36] implies BCAA metabolism to
be on a causal path to type 2 diab&iasnsulin resistance and experimental evidence
suggested BCAA-mediated impaired signalling throogchanistic target of rapamycin
(mTOR) uncoupling downstream signal transductiomsiilin as one possible mechanism
[31].

Consistent with previous studies [4, 8, 37, 38ktias levels of lysoPCs (18:1 and 18:2)
were inversely associated with both 2-hour gluaose -insulin concentrations in the present
study. Predominantly the lysoPCs 18:2, 18:1 an@ h8ve been reported in diabetes related
studies, but chiefly lysoPC 18:2, also referredddinoleoyl-glycerophosphocholine (L-
GPC). Briefly, lysoPCs are catabolites of phosplyatiolines (PCs) present in cell
membranes or on the surface of lipoprotein pagidRC degradation is catalysed by
phospholipase A2 (PLA2) [8]. Notably, lower mRNAvéds of cytoplasmic PLA2 have been
observed in whole blood samples of IGT- and typkabetes mellitus-affected subjects [8],
which might account for the lower concentration$ysbPCs in (pre-)diabetic patients.

A number of ether and ester-PCs were significantrgrsely associated with 2-hour
glucose, with the exception of PC aa C36:4 showipgsitive association partially
replication a previous observation among oldertad@B]. PCs are essential for the assembly
and secretion of lipoproteins and even regulatatheunt of lipoproteins being released into
circulation [40]. Hence, they were closely linkede lipoprotein profiling applied in the
present study. Insulin resistance is known to Istinang effects on lipoprotein metabolism
including TG-enrichment of small LDL-particles, dily due to an increased hepatic secretion
of TG-rich VLDL particles. A process tightly linked a decline in the cholesterol content of
HDL-particles [41, 42]. The latter, however, was abvious from the present analyses and
we observed an increased TG content of HDL3-padioistead. An increase in cholesterol
ester transfer protein (CETP) activity — which nages the transfer of cholesterol esters from
HDLs to TG-rich lipoproteins in exchange for TG [43has been suggested in IGT subjects
[42, 44], and may account for the positive assamatith the TG-content in HDL3 patrticles.
Another cross-link between lipoprotein determinatmd small molecules might have
accounted for the positive association betweehandw-6 polyunsaturated fatty acids
(PUFASs) and 2-hour glucose and insulin measurasfliarthe essentiab-3 PUFAs cannot
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be synthesised by mammals and hence their comtéimé¢ ihuman body entirely relies on
exogenous intake, e.g. from fish or plant oil i®aRrevious studies already emphasized a
predictive value over and above the biochemicameination of such food bio makers
compared to food questionnaires with relation et diabetes risk prediction [45].
However, cross-linking small molecule profiling wihigh-resolution lipoprotein profiling
using*H-NMR allows us to speculate about an additionalaxation, namely the increased
secretion of TG-rich VLDL particles which was stghypositively correlated with plasma
PUFA levels [24]. Hence, hepatic co-secretion ofFRE as part of TG-rich VLDL particles
in states of peripheral insulin resistance mighabether explanation for this finding.

Novel metabolites pointing towardsinflammation

Apart from the previously reported metabolites tedeto insulin resistance, pre-diabetic
states and type 2 diabetes mellitus, the presedy sevealed a few novel species. We
observed that L-urobilin and bilirubin, degradatpmoducts of haemoglobin, were positively
associated with 2-hour glucose, but not with 2-hosulin. Bilirubin has previously been
characterized to be anti-oxidative and anti-inflaaony and therefore being a protective
factor with respect to peripheral vascular disef4@s47]. The heme oxygenase system,
which is essential for haemoglobin metabolism miggbveractive in (pre-)diabetic
individuals, as it possibly augments insulin sevisytand glucose uptake [47, 48]. In
addition, we observed a positive association to@-lglucose for fragments of the
complement component 3 (C3). Notably, a longitudstady previously found plasma C3
levels to be positively associated with insuling&sice, 2-hour glucose and fasting plasma
glucose and even incident type 2 diabetes me[8F Activation of the innate immune
system aligns with other pro-inflammatory effeaists as toll-like-receptor activation by
fatty acids [50, 51] and high CRP levels [52] assted with insulin resistance and type 2
diabetes mellitus, respectively [53]. These findiage somewhat remarkable, since all
regression models were adjusted for hsCRP levéighamight indicate that proteins like C3
indicate alternative paths how the inflammatorypoese interferes with insulin sensitivity.

Clustering of IGT subjects

Within the group of participants with IGT, two ctess of subjects were identified using k-
means clustering and partially verified by HCA, aihdiffered by a distinctive fatty acid
signature. One cluster was characterized by eldJzdeeline levels of a number of (un-
)saturated fatty acids being long- or medium-chéimed additionally several acylcarnitines.
The clusters did not differ in fasting plasma gleoHbA or insulin resistance (HOMA-

IR). However, 2-hour glucose concentrations weghgy different and hence we cannot
completely rule out that members of the clustehwigher baseline plasma concentrations of
fatty acids have already reached an advanced sfd@a. Notably, the difference in fatty
acid levels clearly exceeded the difference in @rfgducose levels between the clusters (Fig.
4) but participants with likely diabetic 2-hour ghse concentrations (>11.1 mmol/l) were
significantly enriched in cluster 1 (Fisher’'s exgedt, 3.2-fold, p=0.02). Recent studies
already identified subgroups in type 2 diabeteditusiaffected individuals [18-20]. These
clusters differed in disease progression [18] aateveharacterized by distinct diabetic
complications such as nephropathy, retinopathycamndiovascular diseases [18, 19]. Another
genetic approach, using single nucleotide varipresiously associated with an increased
risk of type 2 diabetes mellitus, found clustershafse variants divergent in beta cell
function, their features of insulin resistance (BMahist circumference, lipoprotein and TG
profile) and liver lipid metabolism [20]. Thesedings lead to the assumption that subjects
of the presented IGT clusters may — when develogiabetes — diverge into distinctive type
2 diabetes mellitus subgroups.
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The potential clinical value of this finding, howesy could only be verified using
longitudinal data on important outcome charactessincluding time-of-onset of type 2
diabetes mellitus and related complications, respemness to treatments schemes or more
importantly effectiveness of prevention schemetugiog changes in nutrition and lifestyle.
Successful relation of such longitudinal outconwsspecific IGT subgroups might indicate
the usefulness of metabolomics characterizatiggatients at risk for type 2 diabetes mellitus
in a tailored fashion.

With respect to a possible mechanistic interpreteiti has previously been suggested that
an incomplete or impairefgtoxidation accompanied by accumulation of NEFAs and
acylcarnitines is associated with insulin resiséaand IGT [54]. Particularly long-chain fatty
acids such as palmitic acid seem to be a putatediator [54, 55]. SFAs, such as palmitic
acid, have been described to activate toll-likeptars leading to inhibition of insulin signal
transduction among others [50, 51]. Moreover, thrawdation of toll-like receptors is related
to the activation of the innate immune systemhétéfore links to hsCRP as a positive IGT
predictor and to higher levels of complement congmriragments in plasma specimen of
IGT affected subjects, in line with our observasioHowever, even insulin resistance could
be a hidden driver, since a genetic predictionyshak suggested a causal effect of insulin
resistance on plasma levels of palmitoleate arat®l6].

IGT Prediction

Applying extensive feature selection revealed thé&E prediction models based on different
clinical and metabolic features. While the two medssed on either metabolites or clinical
traits performed with an approximately equivalesdwaacy, our combined feature selection

approach using metabolome and clinical traits im@doprediction of IGT.

Regarding the clinical traits in our combined mo@skablished diagnostic parameters,
including fasting plasma glucose, HOMA-#Rd advanced age as a risk factor were of
predictive value whereas Hhfas a measure long-term exposure to high glucose
concentrations was not selected. By variable seleatnetabolites already discussed in
previous sections, which have been described assfigtific such as lysoPC 18:2 (L-GPC)
and the BCKA 3-methyl-2-oxobuytrate were includédg, 30]. The strong value of lysoPC
18:2 might be in close relation to the frequentenlaation of the influence of a low-grade
inflammatory state as indicated by higher CRP \@lethe OGTT outcome [57]. However,
as already outlined above, the precise interplaydsen an inflammatory environment,
PLA(2) activity and insulin signalling remains te bstablished. High plasma concentrations
of alanine have been previously described to preeelderse OGTT outcomes by up to 6.5
years [13] but are less informative for predictairtype 2 diabetes onset [14]. A strong
relation of plasma concentrations of alanine witicgse homeostasis is likely explainable as
alanine can be utilized as an alternative sourcgltose during gluconeogenesis. States of
high (intracellular) glucose availability or suppsed gluconeogenesis, for instance in a still
insulin-sensitive liver despite peripheral insuksistance, may induce less uptake of alanine
in peripheral tissues and hence higher conceniitiothe circulation. Further, net
production might be increased as well, as indicaietigher levels of pyruvate in relation of
2-hour glucose concentrations. In general, theigtied procedure revealed the metabolic
heterogeneity leading to an impaired response @@ T, presumably caused by either
impaired insulin secretion, i.e. beta-cell functmminsulin resistance.

Strengthsand Limitations

The strength of the present study lies in the mogeted metabolomics approach regarding
various metabolic species including novel metabsldand also taking lipoproteins into
account. Even though we achieved an improvemethieiprediction of IGT using
metabolites, this needs further validation. We hawveote that the rather small number of
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IGT subjects in the present study did not permitousivestigate a further distinction from
IFG, which might lead to further stratification jpétients. In general, replication of our
results and clinically usefulness of the clusteapgroach with respect to time-of-onset of
type 2 diabetes, treatment outcomes or progressiansociated co-morbidities specific to
each cluster have to be validated in independdmirt® Same holds true for the evaluation
of the stability over time in candidate metabolitesn IGT prediction.

Conclusion

The present metabolomics approach provides detiaigeghts on various metabolites
associated with the outcome of the OGTT, with dipalar focus on BCAA-catabolites,
acylcarnitines, lysophospholipids, PCs and lipogiret. Within the IGT-subject group, we
identified two clusters with a distinctive fattyidsignature, possibly reflecting either
differently advanced stages of IGT or distinct dseaetiologies. An IGT prediction model
based on a combination of metabolic and clinictsrwas established being superior to
models including either metabolic or clinical tsalitut improvement might not be of direct
clinical relevance. However, further studies aredssl to validate our findings and prove the
applicability of metabolic profiling to improve djaosis of disturbed glucose metabolism.
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Fig. 1 Flow chart of sample compilation and the statistical analysis. Plasma metabolome
data based on MS afH-NMR were available for 1000 subjects. Exclusioitecia applied
and the number of excluded subjects are indic#tedtal sample of 827 subjects was
included in the analyses using linear regressiodetsato assess associations of plasma
metabolites with 2-hour measures of plasma glueosensulin. IGT cases (n=159) were
selected and subjected to unsupervised clustesimg & k-means or hierarchical clustering
approach (HCA). A signature predictive for impaigddcose tolerance using least absolute
shrinkage and selection operator (LASSO) for vdgiaelection was compiled. Three types
of variable set ups were used to perform this dlaason (only clinical variables, only
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metabolites significantly associated with IGT, andenation of both). Three sparse logistic
regression models were built to predict impairaccgke tolerance.

Fig. 2 Standardize@-estimates with 95%-confidence intervals from linesgression
analysis predicting either 2-hour glucose (squave&)sulin (circles) concentrations with
plasma metabolites. All analyses were adjustetdseline concentrations, age, sex,
smoking, physical activity, waist circumferencejreated glomerular filtration, serum
alanine aminotransferase activities and high-seitgiC-reactive protein. Significant
associations (controlling the false discovery &it8%) are highlighted by darker colours.
More detailed information on the metabolites cdagdfound in table 2.

Fig. 3A) Comparison of effect estimates from linear regogsanalysis (2-hour glucose
concentrations as exposure) with odds ratios (OR) fogistic regression analysis for
impaired glocuse tolearnce (IGT, 2-hour glucose8nimol/l).B) Standardize@-estimates
with 95%-confidence intervals from linear regreasamalysis predicting either 2-hour
glucose (squares) or insulin (circles) concentratiwith lipoprotein subfraction measures.
All analyses were adjusted for baseline concewinatiage, sex, smoking, physical activity,
waist circumference, estimated glomerular filtratiserum alanine aminotransferase
activities and high-sensitivity C-reactive proteBignificant associations (controlling the
false discovery rate at 5%) are highlighted by dadolours. VLDL = very low-density
lipoprotein; LDL = low-density lipoprotein; ApoB apolipoprotein B; HDL = high-density
lipoprotein

Fig. 4 left Heatmap of standardized metabolite levels (x-asosded based on hierarchical
clustering. Columns next to the heatmap indicateespondence with k-means clustering
and indication of subjects with 2-hour glucose @riations > 11.1 mmol/l reflecting type 2
diabetes mellitusight Boxplots of parameters for glucose homeostasigrdot to cluster
membership (k-means). Stars indicate significafféinces (Welchs t-test).

Fig. 5 A) Receiver operating characteristics curves andwardar the curve (AUC) with
95%-confidence interval (CI) for the three differemodels to predict impaired glucose
tolerance: Clinical variables — dark grey; Metatasli— light grey; Combination of both —
black.B) Subnetwork of the derived metabolic network centredX — 11727. Nodes
indicate metabolites and edges significant pactatelations. Line width corresponds to
strength of partial correlations.

Table 1 Characteristics of the study populatiomlogose tolerance

Characteristic Normoglycaemic (n = 668) Impaired Glucose Tolerance (n = 159) p*
Age (years) 49 (40; 58) 60 (50; 68) <0.01
Females (%) 57.3 52.8 0.35
Smoking (%) <0.01

never smoker 41.4 52.2

former smoker 36.1 39.6

current smoker 22.5 8.2
Physically active (%) 73.3% 75.5% 0.66
Waist circumference (cm) 86 (77; 95) 95 (85; 102) <0.01
Glucose 0 hour (mmol/L) 5.3 (5.0; 5.6) 5.8 (5.3; 6.3) <0.01
Glucose 2 hour (mmol/L) 5.8 (5.1; 6.5) 8.9 (8.2; 10.5) <0.01
Insulin 0 hour (LU/mL) 8.3 (6.0; 11.9) 13.5(9.1; 18.1) <0.01
Insulin 2 hour (uU/mL) 45.0 (30.0; 65.6) 134.0 (76.4; 184.3) <0.01
HOMA-IR 1.97 (1.40; 2.90) 3.4(2.2;4.9) <0.01
HbA;. (%) 5.1(4.8;5.4) 5.4 (5.1;5.7) <0.01
Triglycerides (mmol/L) 1.16 (0.84; 1.61) 1.46 (1.09; 1.96) <0.01
LDL-cholesterol (mmol/L) 3.36 (2.76; 3.98) 3.47 (2.90; 4.00) 0.27
Total cholesterol (mmol/L) 5.4 (4.8;6.2) 5.5(4.9;6.1) 0.17
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hsCRP, mg/L 1.08 (0.57; 2.12) 1.66 (0.94; 3.90) <0.01
ALT (pkatal/L) 0.36 (0.27; 0.50) 0.42 (0.31; 0.60) <0.01
eGFR (mL/min/1.73m?) 114 (106; 123) 108 (99; 117) <0.01

HOMA-IR = homeostatic model of insulin resistanbeCRP = high-sensitivity C-reactive protein; LDlow-
density lipoprotein ALT = alanine transaminase; BGfestimated glomerular filtration rate; Continsaata
are expressed as median'{Z®rcentile; 7% percentile); nominal data are given as percentag@stest
(nominal data) or Mann-Whitney-U test (intervalaawere performed

Table 2 Additional information for metabolites significéytassociated with OGTT-

measures.
M etabolite HMDB 1D P. | D. | Metabolite HMDB ID P. | D.
Alanine HMDB00161| B| +| IlysoPCaC18:1 HMDB02815 |B -
Asparagine HMDBO00168| B - lysoPC a C18:2 HMDB10386 |B-
Betaine HMDB00043| M| -| 5-dodecenoate (12:1n7) HMDBZ® | M| +
Glycine HMDB00123| B - | Caprate (10:0) HMDB0OO5f1 M |
3-hydroxyisobutyrate HMDBO0033q4 M # Caprylate (8:0) HMDB00482 | M| +
3-methyl-2-oxobutyrate HMDB00019 W Laurate (12:0) HMDB00638 | M| +
3-methyl-2-oxovalerate HMDBO03734 n 4 PC ae C32:1 bB13404 | B -
2 4-methyl-2-oxopentanoate HMDBO0069b M t PCae C32:2 HMDB13411 | B -
5 Alpha-hydroxyisovalerate HMDB00407T NI 4 PC ae C34:3 HMDB11211 | B| -
g ?:_’ Beta-hydroxyisovalerate HMDBO0O0754 N 1+ PCaeC36:2 MDBB11243 | B| -
z4 Isobutyrylcarnitine HMDB00736] M -| PC ae C40:6 HVDBR2 | B| -
o Indoleacetate HMDB00197 M : PC ae C42:5 HMDB134p1 B-
6§ Kynurenine HMDB00684| B -| PCae C44:5 HMDB134%6 |B -
% g Citrulline HMDBoogo4 | B - PC aa C30:2 HHMI\gI%%%ggQ Bl -
8; § Ornithine HMDB00214| B PC aa C36:2 HMDB00593 |B -
wa Lactate HMDBO00190| M| +| PC aaC36:4 HMDBO07982 |B [+
= Pyruvate HMDB00243[ M| +| PC aaC38:0 HMDB078%93 [B -
E Bilirubin (E,E)* HMDBO00054 | M| + | Adrenate (22:4n6) HNB02226 | M| +
L-urobilin HMDBO04159 [ M| + | Arachidonate (20:4n6) HMDRO43 | M| +
m Trigonelline (N'-methylnicotinate) HMDB0087% N Bomo-linoleate (20:2n6) HMDBO0506 N E
U Phosphate HMDB01429 M -| Dihomo-linolenate (20:3n31®) HMDB02925| M| +
Citrate HMDBO00094| M| +| Docosadienoate (22:2n6) HMDBG4 | M| +
| Carnitine HMDB00062| B| -| Docosahexaenoate (DHA; B3)6 HMDB02183| M| +
Acetylcarnitine HMDB00201| Bf +| Docosapentaenoate@#\; 22:5n3) HMDB01976] M| +
- Cis-4-decenoyl carnitine 57357170 W } Docosapemate (n6 DPA; 22:5n6) |  HMDB13128 N1
LIJ Dodecanoylcarnitine HMDB02250  H 4+ Eicosapentaen(aRA; 20:5n3) HMDB01999] M +
_I Hexanoylcarnitine HMDB00705 H Linoleate (18:2n6) HMDB00673 | M| +
O Hydroxybutyrylcarnitine* uvbB13127 | M1 + I;ng)llenate [alpha or gamma; (18:3n3 nuvoeo1sss | M| +
[— Octanoylcarnitine HMDBO00791 +{ SM (OH) Cl16:1 HMDB463 | B -
|_ 15-methylpalmitate HVMDB6170d M 4 SM (OH) C22:2 HVD8467 | B -
m 17-methylstearate HMDB6171 \ (. SM (OH) C24:1 HMDBO7 B -
13-HODE + 9-HODE HH'\z/IDDBB:‘LOO4262%7 YR SM C16:0 HMDB10169 B R
< 2-hydroxypalmitate HMDB31057] H SMC24:1 HMDB121(7 B -
3-hydroxydecanoate HMDB02203 | 1 Phenylalanyltrygbtan HMDB29006| M| +
LIJ 3-hydroxyoctanoate HMDB01954 ' 4+ HWESASLLR Peptide M| +
O 3-hydroxybutyrate (BHBA) HMDB00357] M + HWESASXX* fragments | M | +
10-heptadecenoate (17:1n7) HMDB60038 [M |+  4-vinyipieulfate HMDB04072| M| -
Z 10-nonadecenoate (19:1n9) HMDB13632 [M [+  Catechédtsu HMDB59724 | M| -
Arachidate (20:0) HMDB02212 4+ Hippurate HMDBO00734M | -
< Eicosenoate (20:1n9 or 11) HMDB02231 M B X -11381 M| -
> Erucate (22:1n9) HMDB0206§ M 4 X-11440 M o
Margarate (17:0) HMDB02259 M H X-11793 1 3
D Myristate (14:0) HMDB008B06| M +| X-11977 VIRE
Myristoleate (14:1n5) HMDB0200d M 4 X-12216 1
< Nonadecanoate (19:0) HMDBOO77R M | X-12742 M [+
Oleate (18:1n9) HMDB00204 WM H X-12816 1
Palmitate (16:0) HMDB00220 M H X-12855 N 3
L HH Palmitoleate (16:1n7) HMDB0322 4 X - 17357 M
‘il Stearate (18:0) HMDBO00821 Nl 4 X -17359 M |+
1-
linoleoylglycerophosphoethanolaming* HMDB11507 | M| -

=NDOGIN=
SOCIETY

15

6102 1SNBNY €1, UO JoSN YoUI0QIIEUSZ - HGWS JOUPUNSSS) PuUn JoMwin Jon) Wnijuszsbunyosio4-489 Ad LOSyPSS/70110-610Z 000121 01/I0pAdESqE-5]0IE-90UBADE/WSOl/WOo"dNO"OILSPEDE//:SAY WO, PAPEOjUMOC



THE JOURNAL OF CLINICAL
ENDOCRINOLOGY & METABOLISM

=
L
O
ﬁ

ADVANCE ARTICLE:

ENDOCRINE =
SOCETY Ema

The Journal of Clinical Endocrinology & Metabolis@ppyright 2019

DOI: 10.1210/jc.2019-01104

HMDB ID = identifier for the human metabolome datse (www.hmdb.ca); P. = platform metabolie was
measured (M = Metabolon, B = Biocrates); D. = di@t of association with 2-hour glucose levels (+ =
positively; - = inversely); *PubChem identifiernse not listed in HMDB

Table 3 Summary on predictors selected for the final di&sgion scheme discriminating
impaired glucose tolerance.

Clinical

Traits Metabolites Combined
0/ - 04 - 0 -
Variable Scor | OR (95% Variable Scor | OR (95% Variable Scor | OR (95%
e Cl) e Cl) e Cl)
Fasting 2.49 . 1.63 . 2.49
glucose 0.77 (2.06:3.03) Alanine 0.77 (1.36:1.97) Fasting glucose 0.8p (2.06:3.03)
1.56 . . 0.55 2.07
hsCRP 0.7§ (1.31:1.85) lysoPC a C18:2 0.7 (0.45:0.65) Age 0.75 (1.70:2.53)
2.07 2.12 0.55
q . p
Age 0.62 (1.70,2.53) Hexoses 0.64 (1.76:2.58) lysoPC a C18:2 0.72 (0.45:0.65)
2.20 1.97 . 1.63
HOMA-IR 0.49 (1.84:2.67) X-11727 0.51 (1.63:2.40) Alanine 0.67 (1.36:1.97)
2-
Current 0.63 0.79 1.89
smoking 0.33 (0.48:0.78) ic;:goylgcherophosphochcI0.33 (0.66:0.94) 3-methyl-2-oxobutyrate 0.48 (1.57:2.30)
2.20
HOMA-IR 0.40 (1.84:2.67)
. : 0.75
trigonelline 0.37 (0.63:0.90)
(2)I-eo Iglycerophosphochql 0.32 0.79
yiglycerophosp =21 (0.66:0.94)

ine

OR (95%-CIl) = crude odds ratio per standard dengiticrease for impaired glucose tolerance with 95%
confidence interval derived from logistic regressinodels; Score = defined as average area undeutkie in
the final classification loop in case the variabkes included in the LASSO model (see Methods); HORA=
homeostatic model assessment of insulin resistdrs&&RP = high-sensitivity C-reactive protein; ly§&oP
Lysophosphatidylcholine
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[ N=1000 ]

Exclusion criteria (overlap exist):
e Missing values (n=54)

* Fasting <8h (n=71)

* Newly diabetics (n=26)
* QC metabolome (n=22)

(v )

v v

—>

Linear regression Classification
2hr Glucose/Insulin (2hr glucose >7.8 mmol/L):
* Clinical variables
* Metabolites
* Combination

Associated metabolites

v

Clustering IGT-subjects
* K-means
* HCA
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5‘ B 2hr Glucose O not significant 1 - Amino Acid 3 - Cofactors and Vitamins 5 - Lipid 7 — Xenobiotics
= 2 @ 2h Insulin O not significant 2 - Carbohydrate 4 - Energy 6 - Peptide 8 — Uknown
on Alanine B TysoPC a C18:1 o=
£ Asparagine —— lysoPC a C18:2 | —=—

5‘ o3 betaine —m— 5-dodecenoate (12:1n7) e
[ 6 Glycine —_ = caprate (10:0) o—
8 le) 3-hydroxyisobutyrate e caprylate (8:0) =
< 6 3-methyl-2-oxobutyrate o — laurate (12:0) e
% z 3-methyl-2-oxovalerate = PC ae C32:1 —=
oo 4-methyl-2-oxopentanoate — PC ae C32:2 —a—
98 alpha—hydroxyisovalerate e PC ae C34:3 —
wa beta—hydroxyisovalerate sl PC ae C36:2 ——
i & isobutyrylcarnitine — PC ae C40:6 —
indoleacetate —— PC ae C42:5 —u-
Kynurenine —a— PC ae C44:5 ——
Citrulline —a PCaaC30:2| —®—
1 Ornithine —a— PC aa C36:2 —
m Tactate o PC aa C36:4 b
2 pyruvate Lo W PC aa C38:0 —8—
U Birubin (E,E)F = adrenate (22:4n6) o
L-urobilin e arachidonate (20:4n6) =
H 3 trigonelline (N'-methylnicotinate) | ——#—_ dihomo-linoleate (20:2n6) e T
phosphate —= dihomo-linolenate (20:3n3 or n6) =
4 citrate = docosadienoate (22:2n6) e
o o Carnitine —— docosahexaenoate (DHA; 22:6n3) ==
I I I Acetylcarnitine L — docosapentaenoate (n3 DPA; 22:5n3) —
cis—4-decenoyl carnitine I docosapentaenoate (n6 DPA; 22:5n6) e
I Dodecanoylcarnitine —— eicosapentaenoate (EPA; 20:5n3) Pl
hexanoylcarnitine == linoleate (18:2n6) =
hydroxybutyrylcarnitine* - linolenate [alpha or gamma; (18:3n3 or 6)] e
< ) octanoylcarnitine e SM (OH) C16:1 ——
15-methylpalmitate —— SM (OH) C22:2 —
17-methylstearate e SM (OH) C24:1 —
I— 13-HODE + 9-HODE —— SM C16:0 —8—
2-hydroxypalmitate —— 5 SM C24:1 =
I 3-hydroxydecanoate - phenylalanyltryptophan o —
3-hydroxyoctanoate o HWESASLLR L g —
3-hydroxybutyrate (BHBA) = 6 HWESASXX* B —
< 10-heptadecenoate (17:1n7) = Z-vinylphenol sulfate —_——
10-nonadecenoate (19:1n9) —e— catechol sulfate | —®—, __
arachidate (20:0) = 7 hippurate ——
I I I eicosenoate (20:1n9 or 11) e X -11381 %
erucate (22:1n9) e — X - 11440 iy
margarate (17:0) e X -11793 =
myristate (14:0) = X -11977 s
myristoleate (14:1n5) e — W X-12216 | —=—
Z nonadecanoate (19:0) e X —12742 L e ——
oleate (18:1n9) e — X -12816 ——
palmitate (16:0) = X - 12855 =
palmitoleate (16:1n7) e 8 X -17357 o
5 stearate (18:0) —— X - 17359 e
> 1-linoleoylglycerophosphoethanolamine* 2
D -0.2 00 01 02 03 -0.2 00 01 02 03
standardized - 3 standardized -
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OR Impaired glucose tolerance

20 25 30

1.5

Pearson cor. = 0.97 l

o
* o —
‘vz/:.

L}t St

2o

DMA

drine

e Sign. in both models

o Sign. in linear regr:

ession

o Sign. in logistic regression
.

-0.4 -0.2

0.0 0.2 0.4 0.

B 2hr Glucose

6

B) B 2hr Glucose O not significant
@ 2hr Insulin QO not significant
Total Triglycerides e
LDL-2 particle | —®*——
VLDL Triglycerides e
VLDL Phospholipids —————
HDL Triglycerides —
VLDL1 Triglycerides ——
VLDL1 Cholesterol =
VLDL1 Free Cholesterol ————
VLDL1 Phospholipids e
VLDL3 Free Cholesterol I e—————
VLDL6 Triglycerides =
VLDL6 Free Cholesterol i ———
VLDL6 Phospholipids =
LDL1 Cholesterol e —
LDL1 Free Cholesterol e
LDL2 Cholesterol | —®——
LDL2 Free Cholesterol | —®——
LDL2 Phospholipids | —®*—
LDL2 ApoB | —&*——
LDL5 Triglycerides P——
LDL6 Triglycerides —
HDL3 Triglycerides P

-0.1

T

0.0 0.1 0.2

standardized —8
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True positive rate
0.4 0.6 0.8

0.2

0.0

g l Clinical - AUC (95%—Cl) : 0.79 (0.76;0.83)
[ Metabolites - AUC (95%—Cl) :0.79 (0.75;0.83)
B Combined - AUC (95%-Cl) :0.84 (0.81;0.87)

0.0

0.2 0.4 0.6 0.8 1.0
False positive rate

B)

2-methylbutyrylcarnitine (C5)

X - 11727 X-17629

X-17628

isobutyrylcarnitine Hexoses

3-hydroxybutyrate (BHBA)

propionylcarnitine

hydroxybutyrylcarnitine*
Carnitine

Acetylcarnitine
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