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Summary 

This review takes the reader through 45 years of islet autoantibody research, from the 

discovery of islet-cell antibodies in 1974 to today’s population-based screening for 

presymptomatic early-stage type 1 diabetes. The review emphasizes the current practical 

value of, and factors to be considered in, the measurement of islet autoantibodies. 

 

1. Historical perspectives 

1.1 Discovery of islet-cell antibodies 

The concept of autoimmunity as a pathogenetic mechanism in a subgroup of patients with 

diabetes was first raised in the 1960s and early 1970s with the observation of insulitis [1], 

and the association of juvenile-onset diabetes with certain human leukocyte antigen (HLA) 

alleles and T-cell abnormalities [2-6]. The definitive autoimmune pathogenetic discovery 

was made in 1974, when two research groups in the UK reported the identification of islet-

cell antibodies (ICA) in patients with so-called ‘multiple organ-specific autoimmunity’ [7, 8]. 
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The first of these publications was by Gian Franco Bottazzo and Deborah Doniach. This 

research group had discovered thyroid autoimmunity almost 20 years earlier [9] and several 

other autoantibodies [10-12], and had a treasure chest of samples from patients with 

various and multiple endocrine autoimmune diseases. Using indirect immunofluorescence, 

Bottazzo et al. detected ICA in these human pancreas samples (Figure 1a). The manuscript 

was published in The Lancet in November 1974 [7]. The abstract stated: “Antibodies to 

pancreatic islet cells were found by immunofluorescence in the sera of 13 patients with 

multiendocrine deficiencies associated with organ-specific autoimmunity. 10 of these 

patients were diabetic… The presence of organ-specific pancreatic antibodies supports the 

hypothesis of an autoimmune form of diabetes mellitus put forward to explain the 

histological ‘insulitis’ found in selected cases of this disease.” 

 

The second publication was by William J. Irvine’s research group,  which had previously 

reported T-cell responses against pancreatic antigens in patients with diabetes [6]. His 

group also examined a collection of samples from polyendocrine patients, and published 

their work in The Lancet one month after the study by Bottazzo et al. [8]. Their abstract 

stated: “Using an indirect immunofluorescence technique, circulating antibodies to 

pancreatic islet cells were found in the sera of 5 patients with insulin-dependent diabetes 

mellitus and coexistent autoimmunity… These findings provide further direct evidence to 

support the hypothesis of an autoimmune form of diabetes mellitus.” 

 

Thus, the discovery and validation of ICA were reported by two independent research 

groups within the space of a month. These were discovered in polyendocrine patients rather 

than in typical patients with type 1 diabetes. Moreover, the classification of diabetes into 
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type 1 and type 2, which had been introduced decades earlier, had not yet taken root, and 

terms such as ‘juvenile’, ‘adult-onset’, ‘insulin-dependent’, and ‘noninsulin-dependent’ were 

used to distinguish age- and therapy-related forms of the disease. In 1975, Lendrum et al. 

reported ICA in the sera of 51 of 105 children with recent-onset diabetes [13], revealing an 

autoimmune pathogenetic component in a large proportion of childhood cases of diabetes. 

 

1.2 Prediabetes 

Perhaps the most important discoveries were those that led to the notion of a ‘prediabetic’ 

stage of the disease. Lendrum et al. examined ICA in the diabetic twin cohort of David Pyke 

and in 1976, reported that the antibodies could be present years before the onset of 

diabetes [14]. Also in 1976, Irvine et al. reported that the antibodies could precede diabetes 

onset by several years [15]. In 1981, Gorsuch et al. measured ICA in the first-degree relatives 

of patients with insulin-dependent diabetes and discovered that patients who developed 

insulin-dependent diabetes had ICA up to 30 months before the onset of diabetes [16]. 

These early findings eventually led to the notion that type 1 diabetes is a chronic 

autoimmune disease, as described by George Eisenbarth in 1986 [17]. 

 

1.3 Standardization 

The number of methods for detecting ICA and reports of ICA has increased rapidly since the 

pivotal studies described above. These reports discussed complement-fixing antibodies [18], 

bovine-pancreas-positive ICA [19], the two-colour fluorescence detection method [20], the 

protein-A detection method [21], islet-cell-surface antibodies [22], among many others. 

What started as a clear concept soon became complex and confused. A workshop to 

standardize ICA measurements was convened, and after the sobering realization of how 
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variable these measurements could be [23], an exemplary standardization program that 

introduced common standards [24] and international units [25, 26] was established and was 

subsequently used for antigen-specific islet autoantibody measurements [27-29]. 

Importantly, the program gave credibility to the antibodies as markers of prediabetes [30-

32] and many poorly performing detection methods became obsolete. 

 

1.4 Islet-cell antibodies are heterogeneous and target multiple antigens 

The ICA immunofluorescence test had become standard, but the identification of their 

target antigens became an urgent undertaking (Figure 1a). MacCuish et al. had 

demonstrated T-cell responses to insulin fragments in patients with and without insulin 

treatment in 1975 [33]. In 1983, Palmer et al. showed that children who developed type 1 

diabetes had insulin autoantibodies (IAA) before they were treated with insulin [34]. This 

was an important breakthrough in the field. It also signalled the presence of multiple 

autoantibodies because insulin is only expressed in pancreatic islet β cells, whereas all islet 

cells stained for ICA [7, 8].  

 

In 1982, Baekkeskov et al. reported autoantibodies against a  64-kDa islet protein [35, 36] 

and in 1990; Christie et al. described autoantibodies against 40-kDa and 37-kDa fragments 

of islet proteins [37]. The 64-kDa target of autoantibodies was later identified as GAD65 

[38], a known antigenic target of autoantibodies in the neurological disorder stiff-person 

syndrome [39]. The 40-kDa and 37-kDa fragments were identified as ICA512 (now also 

known as IA-2) [40] and the related protein phogrin (also known as IA-2β) [41], respectively, 

both of which were identified separately as the targets of autoantibodies in type 1 diabetes 

[42, 43]. GAD65-directed autoantibodies (GADA) were shown to be part of the ICA reaction, 
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with a β-cell-specific staining pattern [44]. The IA-2-directed autoantibodies (IA-2A) were 

shown to be part of the pan-islet-cell staining of ICA [45]. Other proteins, such as ICA69, 

were claimed to be targets of ICA [46], but were not confirmed by other groups or in 

standardization workshops [47]. The lipid antigens GM2-1 and sulfatides were also reported 

to be targeted by ICA [48, 49], but no methods have been developed for robust assessment 

of their validity. In contrast, the β-cell zinc transporter 8 (ZnT8) protein has been confirmed 

to be a target of autoantibodies (ZnT8A) in over 50% of patients with type 1 diabetes [50, 

51], and tetraspanin 7 was identified as the 38-kDa target of autoantibodies against glima 

[52, 53]. These autoantibodies were present in over 30% of patients with type 1 diabetes 

[54]. 

 

1.5 Prediction of clinical disease 

The notion that ICA and other islet autoantibodies precede the onset of type 1 diabetes 

allows the prediction of future disease. As early as 1977, Irvine’s group showed that the 

presence of ICA identified adult patients treated with oral hypoglycaemic agents who would 

later require insulin treatment [55]. Numerous studies, including a prominent study in 

triplets [56], had identified occasional cases of ICA-positive individuals who later developed 

diabetes, but it was not until 1988 that an analysis of the Barts-Windsor Family Study 

showed that it was indeed possible to estimate the risk in ICA-positive relatives of patients 

with type 1 diabetes [57]. This was followed by the establishment of risk estimates using the 

standardized international units for ICA [30]. The higher the titre of ICA, the higher the risk 

that an ICA-positive relative would develop type 1 diabetes. The risk reached 100% within 

10 years in relatives who had ICA titres of > 80 JDF units/ml. These studies provided the 

foundation for later prevention trials in ICA-positive first-degree relatives [58]. 
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The inclusion of IAA, GADA, and IA-2A further improved our ability to stratify the risk of type 

1 diabetes. The first reported use of autoantibody combinations to improve diabetes 

prediction was in twins in 1992, when a combination of ICA, IAA, GADA, and antibodies 

against the 37 kDa and 40 kDa fragments was used [59]. This was followed in 1994 by a 

study in relatives of patients with type 1 diabetes, which found that 8% of relatives with ICA 

only and 88% of those with ICA plus IAA, GADA, or antibodies to the 37 kDa or 40 kDa 

fragments developed diabetes [60]. It is noteworthy that not all the antibodies are useful in 

every situation. For example, the prediction of insulin requirement in adult-onset diabetes is 

made by testing for ICA [61], GADA [62], and IA-2A [63], but IAA are rare in patients in this 

age group [64]. 

 

Antibody combinations were subsequently used to select at-risk relatives for clinical trials 

[58, 65], and it is now well established that the diabetes risk associated with the presence of 

multiple islet autoantibodies (two or more of IAA, GADA, IA-2A, and ZnT8A) is markedly 

greater than the risk in people with a single autoantibody [66-69]. A landmark study that 

involved combined analysis of over 13,000 individuals from three birth cohorts, 

demonstrated that almost all children with genetic susceptibility to type 1 diabetes who 

developed multiple islet autoantibodies progressed to diabetes (Figure 1b) [70]. This has 

paved the way for population-based screening [71]. 

 

1.6 Natural history of islet autoantibodies 

Prospective birth-cohort studies have made invaluable contributions to our knowledge of 

the appearance and progression of islet autoantibodies in childhood, including the German 

BABYDIAB Study [72], the Finnish DIPP Project [73], the DAISY from Colorado [74], and the 
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TEDDY Study [75], which have now been running for up to three decades. These studies 

have shown that in genetically predisposed children, autoantibody seroconversion occurs 

relatively frequently between the ages of 6 months and 3 years, with the incidence of 

autoantibodies peaking at an age of 1 year [76-78]. The typical natural history of type 1 

diabetes in children is the appearance of the first high-affinity autoantibody [79], which is 

usually IAA in the youngest children, followed by the appearance of other islet 

autoantibodies [80], usually within 3 years [81], and eventually the development of 

diabetes. Two islet-autoimmunity endotypes are distinguished [82]. One is characterized by 

the first appearance of IAA in children carrying HLA-DR4, and occurs in the first years of life. 

The second is characterized by the first appearance of GADA in children carrying HLA-DR3, 

and is the endotype most frequently observed in children who seroconvert after an age of 2 

years. Based on the different associations of the two endotypes and environmental factors, 

it has been suggested that the endotypes have different aetiologies [82]. However, age is an 

important confounder and it is possible that these differences are merely age related. In 

contrast to IAA and GADA, IA-2A usually occurs together with autoantibodies against other 

β-cell antigens and is therefore a very specific and highly predictive immune marker for 

progression to clinical type 1 diabetes [83, 84], particularly if its reactivity spreads to 

epitopes on the homologous protein IA-2β [84-86]. ZnT8A also usually appears later in the 

development of the disease [87].  

 

2. Practical perspectives 

2.1 Antibody titre, affinity, and specificity 

There are differences in the target autoantigens and epitopes, the titres, affinities, and 

subclasses of islet autoantibodies. These characteristics are associated with the subject’s 
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age and HLA genotype, and in some cases, can help distinguish diabetes-associated islet 

autoantibodies from non-disease-associated autoantibody signals [88]. 

 

The intensity and maturity of the antibody response are reflected in the antibody titre, 

affinity, IgG subclass, and target epitopes on single or multiple islet autoantigens. Islet 

autoantibodies with high titres usually involve multiple IgG subclasses and are directed 

against multiple epitopes on the target antigen. Similar to ICA [30], high titres of IAA [64, 84] 

or IA-2A [84] are associated with faster progression to clinical type 1 diabetes. Moreover, 

IAA or IA-2A responses that include IgG2, IgG3, and/or IgG4 as well as IgG1 are associated 

with an increased risk, even if the antibody titres are not high. By combining these antibody 

characteristics, the 5-year diabetes risk in islet-autoantibody-positive relatives can be 

stratified from less than 10% to over 90% [84]. 

 

The affinity (binding strength) of the autoantibody to the target antigen is closely related to 

the intensity of the antibody response. Accordingly, high-affinity islet autoantibodies are 

associated with progression to clinical type 1 diabetes, even if the antibody titre is relatively 

low, whereas low-affinity antibodies are unrelated to the development of diabetes, even if 

the capacity and titre of the antibody are high [79, 89-92]. Consistent with their high disease 

specificity, IA-2A are characterized by high affinity [92]. In contrast, both IAA and GADA can 

range in affinity by more than 1000-fold [79, 89-91]. The highest affinities are > 1011 L/mol. 

For IAA and GADA the low- and high-affinity autoantibodies appear to bind to different 

epitopes [79, 90, 91]. For example, high-affinity IAA require the preservation of amino acids 

8–13 in the insulin A chain to bind to human insulin, and also bind proinsulin. In contrast, 

the majority of low-affinity IAA are dependent on the COOH-terminal residues of the insulin 
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B chain and usually do not bind proinsulin [79]. Low-affinity antibodies are seen more 

frequently in individuals who do not have a strong genetic susceptibility to type 1 diabetes 

and in children who remain positive for only IAA or GADA [79, 80, 93]. The affinities and 

epitope specificities of IAA and GADA can be used to stratify the progression to type 1 

diabetes [79, 90, 94, 95], and those for GADA can predict insulin therapy in individuals with 

adult-onset diabetes [96, 97]. The spread of IA-2A reactivity against epitopes on the 

homologous IA-2β protein is associated with the rapid development of diabetes [84-86]. 

 

Therefore, it is useful to identify and/or exclude low-affinity signals in risk screening for 

clinical trials, particularly in individuals with only IAA or GADA, who may be in an early stage 

of the disease process and may progress to producing multiple islet autoantibodies [79, 80, 

90]. The identification of markers associated with the risk of progression from single to 

multiple islet autoantibodies has been investigated in studies within the TrialNet 

Consortium [68, 98-103]. Genetic risk may also be used to select single-islet-autoantibody-

positive children who are most likely to progress to producing multiple islet autoantibodies 

[68, 102, 103]. A low GAD autoantibody titre is associated with a low risk of progression to 

multiple islet autoantibodies [98]. 

 

2.2 Why do multiple antibodies or multiple tests work? 

Multiple antibodies and multiple tests have the mathematical advantage of increasing the a 

priori probability of a true result in the samples selected for the second measurement, as 

may be expected from Bayes’ theorem [104]. This can be illustrated theoretically in the 

example shown in Figure 2. The example assumes that 0.3% of preschool children are true 

positives and will develop type 1 diabetes. In a population of 100,000, this corresponds to 
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300 children. A single islet autoantibody measurement (e.g., IAA) with a sensitivity of 70% 

will identify 1000 children when its threshold is set to the 99th percentile of the population. 

These children will have a 21% risk (positive predictive value) of developing type 1 diabetes. 

A second test with similar characteristics will identify a similar number of children with a 

similar risk. However, there will be a marked enrichment of future cases of type 1 diabetes 

in the children who have both autoantibodies: there would be 155 children with both IAA 

and GADA, 147 of whom would develop diabetes (95% risk; 49% sensitivity); and of 1690 

with only IAA or GADA, 126 would develop diabetes (7.5% risk; 42% sensitivity). Adding 

more antibodies, such as IA-2A, would identify multiple islet autoantibodies in another 70% 

(88) of children with a single IAA or GADA who will develop diabetes, thereby increasing the 

sensitivity (78%) with only a slight reduction in the risk. Adding another antibody (e.g., 

ZnT8A) will provide a limited improvement in test performance. In reality, IAA and GADA 

etc. are not completely independent and there are age relationships, so it is not quite this 

simple. Nevertheless, for many children who develop the disease, the high risk associated 

with multiple antibodies has more to do with Bayes’ theorem and perhaps less to do with a 

multiple-hit disease process that progresses from single to multiple antibodies. A similar 

principle applies when a second test is performed (e.g., an electrochemiluminescence assay 

[105, 106], luciferase immunoprecipitation system assay [107, 108], or IAA affinity assay 

[109, 110]) using samples that were previously identified as positive on a radiobinding 

assay. A very similar outcome would also be expected if the order of the tests were 

reversed. The thresholds for the different antibodies can also be adjusted to obtain the best 

possible combination of sensitivity and risk [111]. 
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2.3 Modelling islet autoantibody profiles 

Prospective studies have shown that the natural progression to type 1 diabetes is not 

uniform in children and adolescents. Based on the individuals’ different genetic 

backgrounds and environments, islet autoimmunity may develop at different ages, show 

different longitudinal autoantibody profiles, and progress to clinical diabetes at various 

rates. Today, we are unable to predict the individual’s progression exactly or to link 

aetiological factors to the dynamics of islet autoantibody patterns over time. However, 

recent studies have started to develop mathematical algorithms to model complex 

longitudinal autoantibody profiles and stratify progression rates [112, 113]. Children who 

develop multiple islet autoantibodies can be clustered according to their longitudinal 

profiles, and it has been shown that the likelihood of progressing from seroconversion to 

clinical diabetes within 5 years ranges in these clusters from below 10% to above 80%. 

Those children who seroconverted in the first years of life and expressed stable IAA and IA-

2A responses had the highest risk of diabetes. Interestingly, this risk was unaffected by the 

child’s GADA status [113]. A cluster analysis also revealed that losing IAA reactivity was 

associated with delayed progression to type 1 diabetes in children who were positive for 

multiple islet autoantibodies [112]. Mathematical approaches applied to data from 

prospective cohorts have strong potential utility as novel tools for the stratification of islet-

autoantibody-positive individuals and offer new opportunities to clarify the disease 

mechanisms. 
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2.4 Islet autoantibodies used to select for trials and as study outcomes 

Clinical trials to investigate the treatment of type 1 diabetes commonly use the participant’s 

autoantibody positivity as an inclusion criterion (Figure 1c) [58, 65, 114]. In trials that recruit 

individuals with clinical diabetes, islet autoantibodies are used to distinguish type 1 diabetes 

from other types. In addition to the recruitment of trial participants, islet autoantibodies 

have been used as outcome markers in several studies (Figure 1c). These include natural 

history studies such as TEDDY [115] and primary prevention studies such as BABYDIET [116], 

TRIGR [117] and POInT [118]. The availability of high-quality, high-throughput, and 

harmonized autoantibody tests [119] mean that stable longitudinal measurements of the 

outcomes are possible. As discussed in Section 2.2, the definition of outcome can be 

improved by including confirmation with a second laboratory test or the use of multiple 

assays. 

 

The age at screening is also important. For first-degree relatives of patients with type 1 

diabetes, the risk of developing islet autoantibodies decreases exponentially with age, with 

a half-life of 3–4 years [120]. This has practical implications. First, if we consider that the 

peak incidence of islet autoantibody seroconversion occurs in the first 3 years of life, 

screening is likely to be most effective in preschool years. Second, relatives who remain 

negative through to their teenage years will have an 8-fold lower risk of developing islet 

autoantibodies than they had when they were born. 
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2.5 Extension to the population at large 

The development of multiple islet autoantibodies has long been recognized as a critical step 

in the pathogenesis and diagnosis of type 1 diabetes [59, 60], culminating in the finding that 

almost all children who develop multiple islet autoantibodies will develop clinical 

symptomatic diabetes, regardless of whether they have an a priori family history of the 

disease [70]. This has led to a new staging strategy for type 1 diabetes, in which the 

presence of multiple islet autoantibodies is now used as a criterion for the diagnosis of 

presymptomatic early-stage type 1 diabetes [121]. An early diagnosis of type 1 diabetes can 

prevent the severe metabolic decompensation that is frequently observed at the onset of 

clinical diabetes [122-124]. Screening for islet autoantibodies can be done with capillary 

blood samples or dried blood spots [125-128]. The Fr1da Study started in 2015 as a model 

project investigating public-health screening for early-stage type 1 diabetes (confirmed with 

positivity for multiple islet autoantibodies) in Bavaria, Germany [71]. It assesses: (1) whether 

the early diagnosis of type 1 diabetes in the context of regular medical check-ups in 

childhood is feasible and efficient; (2) whether ketoacidosis and the hospitalization of 

children can be prevented by screening; and (3) whether psychological distress can be 

reduced with the early diagnosis of diabetes, education, and care. Similar studies have 

already commenced in Lower Saxony, Germany, with additional screening for low-density 

lipoprotein–hypercholesterolemia (Fr1dolin Study) [129], and in Colorado, with additional 

screening for celiac disease (ASK Study) [130]. 
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3. The future 

We envisage two areas of activity in the next few years (Figure 1d). From a practical 

perspective, a technology is required that facilitates the widespread use of islet 

autoantibody testing for the diagnosis of presymptomatic type 1 diabetes in the public-

health context [131]. From the research perspective, activities to identify modified protein 

targets, both to generate better assays and to identify pathogenetic disease mechanisms, 

are highly likely. 

 

Technological advances should drive down costs and allow simple high-throughput 

screening, which will favour its widespread application. Cost is a clear factor because 

population-based screening requires that tens or hundreds of thousands of children be 

tested, of whom over 99% will be negative. This will require a sensitive first-line test that 

covers the majority of the major islet autoantibodies (IAA, GADA, IA-2A, ZnT8A), with 

follow-up tests for those who are positive to confirm and stratify their risk [71, 127, 132, 

133]. Point-of-care testing may be one approach to achieving this. This technology should 

be coupled to careful application of Bayes’ modelling, including additional risk factors such 

as genetics [134], family history, and age. This sort of modelling will be possible once much 

larger numbers of children have been tested and followed, emphasizing the need to 

introduce broad testing programs in many regions and countries. 

 

Modified islet antigens have been reported in the literature [135, 136], but we conclude 

that a number of these are unlikely to be validated because of weaknesses in the assays. 

Increased antibody binding to a modified form of the tetraspanin 7 protein was observed in 

some patients [137], but it is difficult to determine whether this is a favoured in vivo target 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

or an artificial in vitro modification. Smart systems that reliably identify antibodies that bind 

to proteins from unperturbed and perturbed islets should be possible and will probably 

reveal a range of variations in the autoantibody–autoantigen targets that we know today. 

 
Figure legends  

Figure 1. (A) Discovery of ICA and subsequent identification of major β-cell autoantigen 

targets has provided diagnostic markers with which to distinguish autoimmune type 1 

diabetes from other non-autoimmune types. (B) Probability of developing clinical type 1 

diabetes increases with increasing numbers of different islet autoantibodies, and children 

with multiple islet autoantibodies will develop clinical diabetes. (C) Currently, islet 

autoantibody measurements are used to recruit study participants for natural history 

studies; as outcome markers in primary prevention trials; and for the recruitment of 

individuals to prevention trials. (D) Future requirements for islet autoantibody diagnostics 

are stated. 

 

Figure 2. Illustration of how the application of Bayes’ theorem to islet autoantibodies can 

confer high positive predictive values in the diagnosis of future type 1 diabetes using 

multiple islet autoantibodies. A population of 100,000 unselected children, including 300 

(0.3%) who will develop type 1 diabetes, is tested for IAA with a test that has a threshold 

selected at the upper 99th percentile (1% positive) and 70% sensitivity. Under these 

assumptions, 210 of the true future cases of type 1 diabetes will be identified (filled red box) 

and 790 of the 99,700 who will not develop type 1 diabetes will be positive (filled blue box). 

This provides a positive predictive value (PPV or risk) of 21%. A second test with a similar 

threshold and sensitivity (e.g., for GADA), applied to the same 100,000 children, will yield a 
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similar number of positives and predictive value. However, among the IAA-positive children, 

there will be a marked enrichment of true positives who are also GADA positive, yielding a 

PPV of 95%. 
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