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Background and Aims: Exaggerated hepatic triglyceride accumulation (i.e., hepatic steatosis)
represents a strong risk factor for type 2 diabetes mellitus and cardiovascular disease. Despite the
clear association of hepatic steatosis with impaired insulin signaling, the precise molecular
mechanisms involved are still under debate. We combined data from several metabolomics
techniques to gain a comprehensive picture of molecular alterations related to the presence of
hepatic steatosis in a diabetes-free sample (N = 769) of the population-based Study of Health
in Pomerania.

Methods: Liver fat content (LFC) was assessed usingMRI.Metabolomemeasurements of plasma and
urine samples were done by mass spectrometry and nuclear magnetic resonance spectroscopy.
Linear regression analyses were used to detect significant associations with either LFC or markers of
hepatic damage. Possible mediations through insulin resistance, hypertriglyceridemia, and in-
flammationwere tested. A predictivemolecular signature of hepatic steatosis was established using
regularized logistic regression.

Results: The LFC-associated atherogenic lipid profile, tightly connected to shifts in the phospholipid
content, and a prediabetic amino acid cluster were mediated by insulin resistance. Molecular
surrogates of oxidative stress and multiple associations with urine metabolites (e.g., indicating
altered cortisol metabolism or phase II detoxification products) were unaffected in mediation
analyses. Incorporation of urine metabolites slightly improved classification of hepatic steatosis.

Conclusions: Comprehensive metabolic profiling allowed us to reveal molecular patterns ac-
companying hepatic steatosis independent of the known hallmarks. Novel biomarkers from urine
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Abbreviations: ALT, alanine aminotransferase; Apo, apolipoprotein; AST, aspartate
aminotransferase; BCAA, branched-chain amino acid; BCKDH, branched-chain ketoacid
dehydrogenase; BMI, body mass index; GGT, g-glutamyl transpeptidase; HDL, high-
density lipoprotein; HOMA-IR, homeostatic model assessment of insulin resistance;
hsCRP, high-sensitivity C-reactive protein; LDL, low-density lipoprotein; LFC, liver fat
content; MS, mass spectrometry; NMR, nuclear magnetic resonance spectroscopy; SHIP,
Study of Health in Pomerania; TG, triglyceride; VLDL, very-low-density; XO, xanthine
oxidase.
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(e.g., cortisol glucuronide) areworthwhile for follow-up in patients suffering frommore severe liver
impairment compared with our merely healthy population-based sample. (J Clin Endocrinol Metab
103: 3856–3868, 2018)

The inflated hepatic accumulation of triglycerides
(TGs), typically above 5%, represents a pathophysio-

logical condition defined as hepatic steatosis, which can
proceed to steatohepatitis and even cirrhosis. The latter is
associated with an increased risk for hepatocellular carci-
noma (1).

Obesity is a major contributor to the development of
hepatic steatosis (2). Estimates of its prevalence vary
greatly between 10% and 35% depending on the defi-
nition used (based on ultrasonography examination, liver
biopsy, MRI, and/or serum markers) and ethnicity (3).
Furthermore, hepatic steatosis was found in 70% of
patients with type 2 diabetes mellitus (4). Despite its high
correlation with obesity, hepatic steatosis is an in-
dependent predictor for insulin resistance (5) and car-
diovascular risk and hence mortality (6, 7).

The pathophysiological mechanisms underlying hepatic
steatosis are still incompletely understood. In general, de-
velopment is thought to be caused by increased release of free
fatty acids from adipose tissue as a result of nutritional
overload and possibly impaired insulin sensitivity (8). As the
amount of fatty acids subsequently taken up by the liver
exceeds the hepaticmetabolic capacities for oxidation, excess
TGs are stored as lipid droplets in the hepatocyte cytoplasm.

Apart from the classic hallmarks of hepatic steatosis (i.e.,
hypertriglyceridemia, insulin resistance, and inflammation), a
number of metabolome analyses [for review see (9)] have
greatly broadened our understanding of the underlying
pathology and have suggested novel biomarkers. Briefly,
metabolomics approaches done primarily in a case-control
setting have revealed alterations in simple (10, 11) and
complex (12, 13) lipids, amino acidmetabolism (14–16), and
amides (17), as well as shifts in metabolites produced by
microbiota (18). Exemplarily, surrogatemarkers of oxidative
stress, namely g-glutamyl dipeptides, have been shown to
discriminate between different stages of liver disease (19).
More recently, Alonso et al. (20) described three distinct
molecular profiles of fatty liver disease based on the com-
bination of an animal model and patient data. However, up
to now such studies have been restricted mostly to matched
case-control designs including (morbidly) obese subjects (9)
and are thus of only limited generalizability. Therefore, in the
current study, we analyzed the association between liver fat
content (LFC) determined byMRI andmetabolites present in
fasting plasma as well as urine samples from 769 selected
nondiabetic subjects from the population-based Study of
Health in Pomerania (SHIP)-TREND. Bymeans of statistical
mediation analyses, we were able to distinguish between

thosemolecular signatures assignable to the classic hallmarks
accompanying hepatic steatosis and putative novel ones.

Methods

Study population
SHIP-TREND is a population-based study conducted in

West Pomerania, a rural region in northeast Germany; detailed
descriptions of the sampling procedure and the study pop-
ulation can be found elsewhere (21). In total, 4420 subjects
chose to participate (50.1% response). All participants gave
written informed consent before taking part in the study. The
study was approved by the ethics committee of the University of
Greifswald and conformed to the principles of the Declaration
of Helsinki. SHIP data are publicly available for scientific and
quality control purposes by application at www.community-
medicine.de.

For a subsample of 1000 subjects, plasma as well as urine
metabolome data based onmass spectrometry (MS) and nuclear
magnetic resonance spectroscopy (NMR) were available. Of
these, 203 patients had to be excluded because of missing
exposure or confounder data. Two participants were excluded
because of a reported history of liver disease, and 28 were
excluded because of diagnosed diabetes. Finally, a total sample
of 769 subjects was included in the analyses. Figure 1 sum-
marizes the sample compilation and statistical analyses.

Participants’ characteristics and medical histories were
recorded using computer-aided personal interviews. Smoking

Figure 1. Flowchart of the procedures for the analyses. ALT,
alanine aminotransferase; AST, aspartate aminotransferase; GGT,
g-glutamyl transpeptidase; HOMA-IR, homeostatic model
assessment of insulin resistance; hsCRP, high-sensitivity
C-reactive protein.
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status was categorized as current, former, or never smoker.
Daily alcohol consumption was calculated using beverage-
specific pure ethanol volume proportions averaged across
30 days before the interview. Subjects exercising for at least 2
hours a week were classified as physically active. Waist cir-
cumference was measured midway between the lower rib
margin and the iliac crest in the horizontal plane. Body mass
index (BMI) was calculated as weight (kg) / height2 (m2).

Standard laboratory assays
Fasting blood samples ($8 hours) were collected between

6:00 AM and 12:00 PM from the cubital vein of subjects in the
supine position and were analyzed immediately or stored
at 280°C in the Integrated Research Biobank (Liconic,
Liechtenstein). Serum cystatin C, lipids [total cholesterol, high-
density lipoprotein (HDL), and low-density lipoprotein (LDL)
cholesterol, and TGs], high-sensitivity C-reactive protein (hsCRP),
albumin, and serum activities of alanine aminotransferase (ALT),
aspartate aminotransferase (AST), and g-glutamyl transpeptidase
(GGT) were measured by standard methods (Dimension VISTA;
Siemens Healthcare Diagnostics, Eschborn, Germany). Plasma
insulin levels were measured (Centaur XP; Siemens Healthcare
Diagnostics), and the homeostatic model assessment of insulin
resistance (HOMA-IR) indexwas calculated as insulin (mU/mL)3
glucose (mmol/L)/22.5 (22).We calculated the AST/ALT ratio, the
NAFLD-score (23), and the FIB4-score (24) to include surrogates
of liver fibrosis. Cystatin C‒based estimated glomerular filtration
rate was calculated using the CKD-EPI equation (25).

MRI examinations were performed on a 1.5-Tesla MR
system (Magnetom Avanto; Siemens Healthcare; software
version Syngo MR B15) using a body phased-array coil. As-
sessment of LFC was performed using calculation of the proton
density fat fraction according to chemical shift‒encodedMRI as
previously described in detail (26).

Metabolome analyses
A detailed description of all applied measurement techniques

is given in the Supplemental Material. Briefly, four different
approaches were combined: (1) nontargeted MS-based profiling
of plasma and urine samples as reported previously (27), (2)
targeted MS-based profiling of plasma samples using the
AbsoluteIDQ p180 Kit (BIOCRATES LifeSciences AG, Inns-
bruck, Austria), (3) NMR-based profiling of urine samples as
reported previously (28), and (4)NMR-based profiling of plasma
samples to derive lipoprotein particles.

After quality control and preprocessing (see Supplemental
Material), 613 plasma (Supplemental Table 1) and 587 urine
(Supplemental Table 2) metabolites were available for statistical
analyses. Note that some of these could not be unambiguously
assigned to a chemical identity and are referred to hereafter with the
notation “X” followed by a unique number. Data on lipoprotein
particles comprise 117 measures describing the gradient from very-
low-density lipoprotein (VLDL) particles to HDL particles, in-
cluding their TG, cholesterol, free cholesterol, and phospholipid as
well as apolipoprotein (Apo) B, Apo-A1, and Apo-A2 content.

Statistical analysis
Linear regression models were performed to assess the

associations of LFC as well as serum activities of ALT, AST,
and GGT (independent variables) with plasma (including lipo-
protein particles) and urine metabolites (dependent variables).

To fulfill requirements of linear regression, ALT, AST, LFC,
and metabolite levels were log-transformed. Serum activities of
GGT were transformed to 21/GGT. All models were adjusted
for age, sex, BMI, alcohol consumption, and physical activity.
Of note, we combined men and women in the present analyses,
as no strong evidence for an interaction between sex and one of
the liver traits became obvious. The same analyses were done
for the fibrosis scores. In a second step, a possible mediation of
significant associations by HOMA-IR, serum glucose, total
TGs (not for lipoproteins), and hsCRP was performed. Analyses
were implemented using the R package mediate to obtain
bootstrap P values (N = 2000 samples) for the mediation effect
as well as CIs for the proportion mediated. We defined a sig-
nificantmediationwhen the P valuewas,0.01 and at least 10%
of the association was mediated through one of the four vari-
ables. Sensitivity analyses were done by excluding subjects
reporting heavy drinking (n = 53; men .30 g/d and women
.20 g/d). To combine the metabolome data with lipoproteins,
linear regression models were run with the lipoprotein as ex-
posure and the metabolite as outcome controlling for age,
sex, and BMI. To account for multiple testing, we adjusted the
P values from regression analyses by controlling the false dis-
covery rate at 5% using the Benjamini-Hochberg procedure.

Integration of multifluid data was achieved by computation
of metabolic networks using Gaussian graphical modeling. The
procedure is outlined in the Supplemental Material.

A signature predictive for hepatic steatosis (LFC . 5%)
using least absolute shrinkage and selection operator for vari-
able selection was compiled. Use of a two-stage cross-validation
procedure allowed us to test the robustness of selected features
across random subsets of the population as well as to assess the
generalizability of the results (see SupplementalMaterial). Briefly, a
scorewas calculated by counting each time a feature survived the
feature selection using the least absolute shrinkage and se-
lection operator in the test set and weighted by the discrim-
inative ability (area under the ROC curve) on the independent
validation set. The score could be seen as the mean dis-
criminative ability of the final sparse model to predict the
presence of hepatic steatosis if the specific variable was in-
cluded. Three types of variable setups were used to perform
this classification: first, considering only clinical variables as
presented in Table 1; second, only metabolites significantly
associated with LFC; and third, a combination of both. Fi-
nally, three sparse logistic regression models were built to
predict hepatic steatosis. The latter ones were further assessed
for generalization in a Monte Carlo cross-validation pro-
cedure. Statistical analyses were done using R 3.3.2 (R
Foundation for Statistical Computing, Vienna, Austria).

Results

General characteristics of the study population are displayed
in Table 1. Briefly, 34.7% of the participants presented with
hepatic steatosis. These participants were characterized by
an adverse metabolic profile, comprising higher concen-
trations of glycemic parameters (e.g., fasting glucose or
HOMA-IR), higher LDL cholesterol and lower HDL cho-
lesterol concentrations, and higher hsCRP concentrations, as
well as higher serum activities of liver enzymes and higher
fibrosis scores (with the exception of the AST/ALT ratio).
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Lipoprotein particles and mediation by HOMA-IR
An atherogenic lipoprotein particle profile was associated

with LFC in linear regression analyses (Fig. 2). In detail, LFC
was positively associated with total TG levels, as well as
with VLDL and small LDL particles. In contrast, LFC as-
sociated inversely with large LDL particle and HDL particle
measures. ALT, AST, and, GGT serum activities partially
mirrored these associations but with less-pronounced asso-
ciation strengths. Small HDL particles were uniquely posi-
tively associated with ALT, GGT, or AST activity.

The vast majority of the associations with respect to
LFC, ALT, and GGTwere mediated by HOMA-IR (Fig. 2;
Supplemental Table 3). The highest proportion of media-
tion was observed for LDL2, LDL3, and large VLDL
particle measures (all .50%). The associations between
LFC and large LDL particles as well as those between ALT
and small-dense HDL particles were unaffected.

Small molecules and mediation by HOMA-IR and
total TGs

Linear regression analyses revealed that 179 and 103
metabolites in plasma and urine, respectively, were associated
with at least one of the measures of liver function (Fig. 3A;

Supplemental Tables 4 and 5). LFC was the most prominent
trait, with 129 and 93 significantly associated metabolites in
plasma and urine, respectively.

Approximately half of the associations in plasma (N =
79) and about one-third of those in urine (N = 26) were at
least partially mediated, thereby making total TGs and
HOMA-IR the most important mediators (Fig. 3B).

With respect to plasma, total TGs accounted in part for
positive associations between LFC and lipid species (e.g.,
lysolipids and diacyl PCs) as well as inverse associations
with sphingolipids or serine. Positive associations between
LFC and branched-chain amino acid (BCAA) catabolites
(e.g., 3-methyl-2-oxobutyrate), alanine, or carbohydrates as
well as the inverse association with sphingolipids or glycine
were mediated by HOMA-IR. The inverse association be-
tween LFC and lysoPC C18:2 was mediated by HOMA-IR
and hsCRP. Similar mediations became apparent with re-
spect to ALT and GGT, whereas associations with AST
were far less affected (Fig. 3; Supplemental Table 6).

The positive association between LFC/ALT and
urine 3-sialyllactose was affected by all mediators to a
degree of up to 53%. Similar strong mediating effects in
urine were noted for the unknown X-02249 (inversely

Table 1. General Characteristics of the Study Population

Characteristic
Whole Sample

(n = 769)
Liver Fat Content <5%

(n = 502)
Liver Fat Content ‡5%

(n = 267) P Valuea

Age, y 51 (41; 61) 47 (38; 57) 57 (48; 64) ,0.01
Females, % 56.0 62.3 44.2 ,0.01
Smoking, % ,0.01
Never smoker 42.1 44.0 38.6
Former smoker 36.4 31.6 45.3
Current smoker 21.4 24.3 16.1

Physically active, % 73.6 73.7 73.4 0.99
Alcohol consumption, g/d 4.03 (1.30; 10.36) 3.70 (1.14; 8.65) 4.91 (1.40; 14.69) ,0.01
Waist circumference, cm 86 (78; 96) 82 (74; 89) 97 (88; 105) ,0.01
Body mass index, kg/m2 26.7 (23.9; 29.6) 25.3 (22.9; 27.8) 29.5 (27.2; 32.4) ,0.01
Glucose, mmol/L 5.3 (4.9; 5.7) 5.2 (4.9; 5.5) 5.5 (5.1; 6.0) ,0.01
HOMA-IR 2.04 (1.41; 3.20) 1.68 (1.22; 2.33) 3.33 (2.28; 4.90) ,0.01
Insulin, mU/L 8.6 (6.0; 12.9) 7.2 (5.4; 10.0) 13.5 (9.8; 18.4) ,0.01
Triglycerides, mmol/L 1.21 (0.86; 1.70) 1.04 (0.76; 1.41) 1.56 (1.17; 2.12) ,0.01
LDL cholesterol, mmol/L 3.36 (2.76; 3.98) 3.24 (2.63; 3.83) 3.60 (3.04; 4.11) ,0.01
HDL cholesterol, mmol/L 1.44 (1.22; 1.72) 1.53 (1.30; 1.78) 1.30 (1.11; 1.55) ,0.01
Total cholesterol, mmol/L 5.4 (4.8; 6.2) 5.3 (4.7; 6.1) 5.6 (4.9; 6.3) ,0.01
hsCRP, mg/L 1.13 (0.61; 2.21) 0.94 (0.54; 1.77) 1.55 (0.90; 2.91) ,0.01
Liver fat content, % 3.43 (2.16; 6.59) 2.45 (1.89; 3.35) 9.2 (6.4; 14.9) —

Hepatic steatosis,b % 34.7 0 100 —

ALT, mkatal/L 0.37 (0.27; 0.52) 0.32 (0.25; 0.43) 0.49 (0.37; 0.67) ,0.01
AST, mkatal/L 0.29 (0.23; 0.36) 0.27 (0.21; 0.33) 0.33 (0.27; 0.41) ,0.01
GGT, mkatal/L 0.48 (0.38; 0.66) 0.43 (0.36; 0.56) 0.62 (0.48; 0.88) ,0.01
AST/ALT 0.74 (0.59; 0.94) 0.80 (0.64; 1.00) 0.66 (0.53; 0.79) ,0.01
NAFLD score 22.11 (22.86; 21.34) 22.38 (23.03; 21.58) 21.62 (22.29; 20.89) ,0.01
FIB4 score 0.81 (0.56; 1.08) 0.76 (0.51; 1.02) 0.90 (0.67; 1.19) ,0.01
eGFRcys, mL/min/1.72 m2 114 (105; 122) 117 (108; 124) 109 (100; 118) ,0.01

Continuous data are expressed as median (25th percentile; 75th percentile); nominal data are given as percentages.

Abbreviation: eGFRcys, estimated glomerular filtration rate based on cystatin C measurement.
ax2 test (nominal data) or Mann-Whitney U test (interval data) was performed to test for difference by liver fat content.
bDefined as liver fat content . 5%.
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with LFC) and X-17340, tetrahydrocortisone, or ala-
nine (positively with LFC).

After mediated associations were discarded, only
plasma xanthine levels remained significantly positively
associated with all traits. However, even plasma levels
of adrenate, docosapentaenoate, g-glutamylleucine, and
g-glutamylphenylalanine were positively associated with
all traits but were slightly mediated (maximum, 15%) by
serum glucose (LFC) or HOMA-IR (ALT).

Metabolic fingerprint of LFC
The largest number of nonmediated associations

remained for LFCwith a comparable amount of significantly
associatedmetabolites in plasma (N= 58) and urine (N = 68)
(Fig. 3C). In plasma, two prominent metabolite signatures
were detected: (1) decreased levels of ether-PCs (hereafter
referred to as PC ae CXX:Y) and (2) increased levels of
BCAAs and aromatic amino acids as well as dipeptide de-
rivatives (Fig. 2). Inverse associations with LFC were re-
stricted to these lipid species, with the additional exceptions
of 3-phenylpropionate, stachydrine, and some unknown
compounds. Further positive associations with LFC were
detected for the levels of proline, tryptophan, indoleacetate,
urate, piperine, and 7-a-hydroxy-3-oxo-4-cholestenoate
(Supplemental Table 3).

Associations with urine metabolites were almost ex-
clusively detected for LFC (Fig. 3C). In line with the
increased plasma levels mentioned previously, the urine
levels of BCAA derivatives as well as lactate were also
positively associated with LFC. In contrast, several
glycine conjugates, such as isovalerylglycine and iso-
butyrylglycine as well as g-glutamylthreonine, exhibited
an inverse association (Supplemental Table 2). In ad-
dition, LFC was inversely associated with the urine
levels of several xenobiotic species (e.g., 4-vinylphenol
sulfate, hippurate, and cinnamoylglycine). Almost one-
third of the LFC-associated metabolites in urine were of
unknown identity.

Metabolite associations with serum markers of
hepatic damage

Only a few plasma metabolites were associated solely
with one of the liver enzymes but not with LFC. Briefly,
serumAST activities were positively associated with several
acylcarnitine species and monounsaturated fatty acids.
ALTwas uniquely positively associated with two ether-PCs
(PC ae C36:0 and PC ae C38:6). Inverse associations with
2-aminoheptanoate and citrate were specific for GGT.
Only a few weak metabolite associations with liver enzyme
serum activities were observed in urine (Fig. 3C).

Figure 2. Color-coded corrected P values [controlling the false discovery rate (FDR) at 0.05; dashed lines] from linear regression analyses using
LFC, ALT, AST, and GGT as explanatory variables and lipoprotein particles as outcome. Models were adjusted for age, sex, BMI, smoking, alcohol
consumption, and physical activity. Orange shadings indicate positive associations, whereas blue shadings indicate the opposite direction.
Hatched boxes indicate mediation of the association by at least one of the following measures: insulin resistance (HOMA-IR), hsCRP, or serum
glucose. IDL, intermediate-density lipoprotein.
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Fibrosis scores and exclusion of heavy drinkers
Similarities between the NAFLD and the FIB4 scores

with LFC were restricted to inverse associations with
large LDL particle measures (Supplemental Fig. 2).

In general, both scores were associated with lower
concentrations of almost all LDL measures. Compared
with LFC, only a few metabolites in plasma (Supple-
mental Fig. 3) or urine (Supplemental Fig. 4) were

Figure 3. (A) Corrected P values [controlling the false discovery rate (FDR) at 0.05; dashed lines] from linear regression analyses using LFC
(orange), ALT (purple), AST (green), or GGT (blue) as explanatory variables and plasma (upper panel) or urine metabolites (lower panel) as
outcome. Results were separated by association direction: positive (b . 0) or negative (b , 0). Corresponding b estimates and FDR values
are given in Supplemental Tables 1 and 2. Metabolites marked with a triangle exceeded the plotting range. (B) Box plots for the estimated
proportion mediated between the exposure and metabolites by serum glucose, hsCRP, a measure of insulin resistance (HOMA-IR), and total
TGs. (C) Color-coded FDR values from linear regression analyses using LFC, ALT, AST, or GGT as explanatory variables and plasma or urine
metabolites as outcome, limited to nonmediated metabolites. Significant associations (FDR , 0.05) are framed black. Orange shading
indicates positive associations, and blue shading indicates negative associations. Hatched boxes indicate mediation of the association by at
least one of the following measures: insulin resistance (HOMA-IR), total TGs, hsCRP, or serum glucose. *Metabolites were annotated based on
in silico prediction.
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associated with either the NAFLD or the FIB4 score,
partially being residual from either ALT or AST.

The exclusion of participants who reported heavy
drinking changed the strength of the associations be-
tween traits under investigation and lipoproteins or
metabolites only minimally (Supplemental Figs. 5 and 6).
Only associations between AST and lipoprotein mea-
sures changed markedly.

Interrelation between lipoproteins and lipid species
Supplemental Fig. 1 depicts the pairwise associations

between lipoprotein measures and lipid species using
linear regression analysis. Only lipoproteins and lipid
species significantly associated with LFC were consid-
ered. Briefly, strong positive associations became obvious
between ether-PCs and large LDL particles as well as
small, dense HDL particles. The TG content of small
VLDL particles (VLDL6) was positively associated with
various free fatty acid species.

A metabolite signature with predictive value for
hepatic steatosis

Our procedure for classifying hepatic steatosis (LFC.

5%) exclusively on the basis of metabolites performed
comparably to that of clinical variables (ROC‒area
under the curve, ;0.89) (Fig. 4; Table 2). A combined
feature selection approach usingmetabolome and clinical
data led to a moderate but significant improvement in the
ROC‒area under the curve (P = 0.002) from 0.89 to 0.91
(Fig. 4). These results were confirmed using a Monte

Carlo cross-validation procedure (Supplemental Fig. 8).
Even the net reclassification index improved significantly
(0.62; 95% CI: 0.47 to 0.76; P , 0.001). Urine levels of
X-20643, X-12407, and uracil as well as plasma levels of
glycine were associated with decreased odds for hepatic
steatosis, whereas HOMA-IR, age, waist circumference,
ALT serum activities, and hsCRP levels were associated
with increased odds (Table 2).

Discussion

The current study aimed to characterize early (i.e.,
subclinical) molecular signatures of hepatic fat accu-
mulation in a sample from the general population. The
broad panel of detected metabolites that were associated
with LFC partly reflects physiological aspects of hepatic
fat accumulation apart from established comorbidities
(i.e., insulin resistance, hypertriglyceridemia, or inflam-
mation). In particular, several urine metabolites were
exclusively associated with LFC. The corresponding
signature, which indicates among other things altered
cortisol degradation, enabled moderate improvement in
the classification of hepatic steatosis.

Insulin sensitivity partially mediates an atherogenic
lipoprotein profile

The most obvious hallmark of hepatic steatosis is im-
paired TG metabolism manifested by dyslipidemia that is
likely accompanied by insulin resistance and hepatic in-
flammation (8). Indeed, more than half of the detected

Figure 4. (Left panel) ROC curves and AUC with 95% CIs for the three different models to predict fatty liver disease: clinical variables, green;
metabolites, purple; combination of both, orange. (Right panel) Subnetwork of the derived GGM with emphasis on the unknown urinary predictors
X-20643 and X-16774. On each node, the results from linear regression analysis for LFC (orange), serum ALT (purple), AST (green), and GGT (blue) were
mapped as portions of the association strength given as 2log10(FDR value). Significant results in at least one trait, FDR below 5%, are highlighted by
colors. Node sizes were chosen as maximum association strength of the single traits. The prefix P denotes plasma metabolites, whereas U indicates urine
metabolites. Edges represent significant partial correlations (par. cor.) between metabolites. Type and color represent metabolite and fluid dependencies.
Solid lines indicate significant partial correlations between distinct metabolites, whereas dashed lines indicate a connection between the same metabolite
in plasma and urine. Line widths correspond to the strength of partial correlation, and colors indicate connections within one fluid (gray) or across fluids
(black). AUC, area under the curve; FDR, false discovery rate; GGM, Gaussian graphical modeling; Met., metabolite; sign., significant.
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associations with lipoproteins were mediated to a significant
amount by HOMA-IR. Possible responsible mechanisms
include increased hepatic uptake of fatty acids, either re-
leased from adipose tissue or from remnant VLDL particles,
and hepatic de novo lipogenesis ultimately increasing VLDL
secretion as a consequence of peripheral insulin resistance
(29). Increased availability of plasma fatty acids from
remnants is further supported by our cross-metabolomics
analyses linking an increase in the TG content of small (i.e.,
remnant) VLDL particles (VLDL6) to increased levels of a
broad range of plasma fatty acids (Supplemental Fig. 1). Of
note, the associations between the TG content of VLDL6 or
plasma levels of monounsaturated fatty acidswith LFCwere
notmediated byHOMA-IR. The latter nicely aligns with the
recent report of an insulin-independent positive correlation
between plasma levels of palmitoleate and hepatic phos-
phorusmetabolism inmetabolically healthy individuals (30).

TG-rich LDL particles are either taken up by hepatocytes
via LDL receptors or further hydrolyzed by hepatic lipase,
yielding small, dense LDL particles (31). Our observation of
an LFC-associated decrease in large LDL particles together
with an increase in small, dense LDL particles argues for a
prolonged dwelling time of LDL particles in the circulation,
including shrinkage by hepatic lipase activity (31), making
them prone to oxidation. In line with this hypothesis, hepatic
steatosis was characterized by diminished LDL-receptor
expression (32). Oxidized LDL particles in turn mediate
the adverse, proinflammatory setting implicated in the onset
of cardiovascular disease (33). It has to be noted that the
proatherogenic LDL signature was mediated by HOMA-IR
(Fig. 2). In contrast, the inverse association between
LFC and large LDL particles (LDL1) was independent of
HOMA-IR and therefore might represent an early event

in the adverse relation between hepatic steatosis, insulin
resistance, and cardiovascular disease. Of note, the
same mechanism likely accounts for the inverse asso-
ciations between LFC and ether-PCs, as both strongly
associate (Supplemental Fig. 1) and PCs are integral for
the monolayer surrounding lipoprotein particles. This
observation emphasizes the particular value of multiplat-
form metabolomics approaches to contextualize findings.

Altered small, dense HDL composition as a hint
toward progression to steatohepatitis

The transition from hepatic steatosis to steatohepatitis
constitutes a continuum rather than a discrete event; hence,
we also identified molecular signatures described in more
advanced stages of liver impairment (e.g., an accumulation
of PCs in the circulation) (11, 34). With respect to ALT
activities but not LFC, our results partially confirmed these
observations, and our multiplatform metabolomics ap-
proach once more allowed us to link these findings to li-
poprotein metabolism. Briefly, we observed consistent
positive associations between PCs and small, dense HDL
particles (HDL3), both uniquely associated with ALT
(Fig. 3). Enriched PC content of HDL particles has been
shown to increase efflux of free cholesterol from scavenger
receptor BI‒expressing cells (35). Because scavenger recep-
tor BI, theHDL receptor, is highly expressed on hepatocytes,
this may indicate altered reverse cholesterol transport in
relation to hepatic steatosis or steatohepatitis given the
unique association with elevated liver enzyme activities.

BCAA catabolites are linked by insulin sensitivity
with liver fat

A frequently published link between obesity, hepatic
steatosis, and impaired glucose homeostasis involves an

Table 2. Summary of Predictors Selected in at Least One-Third of the Loops in the Classification Scheme for
Fatty Liver Disease

Clinical Traits Metabolites Combined

Variable Score OR (95% CI) Selected Variable Score OR (95% CI) Selected Variable Score OR (95% CI) Selected

ALT 0.87 2.79 (2.31, 3.40) 30 P::Glycine 0.86 0.65 (0.55, 0.76) 30 HOMA-IR 0.88 4.38 (3.48, 5.60) 30
HOMA-IR 0.87 4.38 (3.48, 5.60) 30 U::X-20643 0.80 0.58 (0.49, 0.68) 28 U::X-20643 0.88 0.58 (0.49, 0.68) 30
Waist

circumference
0.84 4.58 (3.66, 5.83) 29 P::Butyrylcarnitine 0.75 2.27 (1.89, 2.76) 26 Waist

circumference
0.85 4.58 (3.66, 5.83) 29

Age 0.67 2.04 (1.72, 2.43) 23 P::Tyrosine 0.72 2.69 (2.20, 3.32) 25 ALT 0.76 2.79 (2.31, 3.40) 26
Total TGs 0.64 2.90 (2.39, 3.57) 22 U::X-15472 0.66 2.33 (1.95, 2.81) 23 Age 0.73 2.04 (1.72, 2.43) 25
hsCRP 0.61 1.75 (1.49, 2.07) 21 U::Uracil 0.66 0.60 (0.51, 0.71) 23 P::Glycine 0.68 0.65 (0.55, 0.76) 23
Alcohol intake 0.47 1.36 (1.17, 1.58) 16 U::X-16774 0.58 2.33 (1.94; 2.82) 20 U::X-12407 0.56 0.80 (0.68, 0.93) 19

P::LysoPC a C18:2 0.58 0.65 (0.55, 0.76) 20 U::Uracil 0.56 0.60 (0.51, 0.71) 19
P::PC ae C42:5 0.55 0.54 (0.45, 0.63) 19 hsCRP 0.53 1.75 (1.49, 2.07) 18
P::Glutamate 0.49 2.54 (2.10, 3.10) 17 P::Butyrylcarnitine 0.44 2.27 (1.89, 2.76) 15

P::g-Glutamylphenylalanine 0.46 2.62 (2.17, 3.20) 16 P::PC aa C32:1 0.41 1.55 (1.32, 1.82) 14
P::PC aa C32:1 0.40 1.55 (1.32, 1.82) 14 P::PC ae C42:5 0.35 0.54 (0.45, 0.63) 12
P::PC aa C40:6 0.40 1.59 (1.36, 1.88) 14 U::X-16581 0.30 0.71 (0.61, 0.83) 10
U::X-16581 0.38 0.71 (0.61, 0.83) 13 P::Glutamate 0.29 2.54 (2.10, 3.10) 10
P::X-01911 0.31 1.98 (1.67, 2.37) 11
P::Valine 0.31 2.37 (1.97, 2.88) 11

U::X-12407 0.29 0.80 (0.68, 0.93) 10

OR (95% CI) = crude odds ratio per SD increase for hepatic steatosis with 95% CI; Score = average area under the curve in the final classification loop in
case the variable was included (see Methods); Selected = number of times the variable was selected for the final classifier (maximum = 30). Metabolites
depicted in bold were used to build the final classifier. P, plasma metabolite; PC, phosphatidylcholine; U, urine metabolite.
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accumulation of BCAAs and aromatic acids (36–40).
Consistently, we observed a BMI-independent associa-
tion with all of these amino acid species and LFC. In
addition to increased proteolysis, responsible mecha-
nisms for BCAA accumulation may include decreased
catabolism in adipose tissue (41) or skeletal muscle (42)
because the first step of BCAA catabolism is facilitated by
branched-chain ketoacid dehydrogenase (BCKDH) in
nonhepatic tissues. Accumulation of such catabolites,
including 3-methyl-2-oxobutyrate, is thought to mediate
the adverse effects of BCAAs (43) [e.g., suppressing
pyruvate dehydrogenase activity, which catalyzes the
formation of acetyl-CoA from pyruvate (44)]. Notably, a
subsequent shift in pyruvate utilization toward lactate
and alanine formation aligns well with our observation
of positive associations between LFC and these metab-
olites. Further, increased activity of the BCKDH kinase,
and hence diminished BCKDH activity due to hyper-
phosphorylation, has been shown to integrate BCAA
catabolism with stimulated hepatic de novo lipogenesis
as a result of phosphorylation of ATP-citrate lyase gen-
erating substrates for lipogenesis (45). Importantly, the
associations with BCAA catabolites (but not primary
BCAAs), lactate, and alanine were all significantly me-
diated by HOMA-IR (Supplemental Table 4).

In conclusion, our BMI-independent observations as
well as confirmative results from previous studies (15, 46)
strongly argue for hepatic (or at least ectopic) fat accu-
mulation as a key mechanism for impaired BCAA catab-
olism. Although diminished BCAA metabolism seems to
integrate hepatic lipogenesis, the pathophysiological event
linking it to insulin resistance remains elusive; however, a
solitary increase in BCAAs in plasma does not seem to be a
sufficient criterion. The latter aligns with a recent study by
Gaggini et al. (40), who reported less-prominent alterations
in plasma BCAA concentrations among patients with
hepatic steatosis without type 2 diabetes.

A signature of increased oxidative stress is a
hallmark of hepatic steatosis

Surrogates of oxidative stress with respect to hepatic
steatosis have been noted in several previous studies, with
g-glutamyl amino acids and glutamate [precursors of
the antioxidant glutathione] being the most prominent
examples (19, 40). Notably, these markers indicated
progressive liver disease (i.e., fibrosis) (40). Intensified
mitochondrial respiration causing accumulation of re-
active oxygen species has consistently been described
with liver biopsies in patients with hepatic steatosis and
steatohepatitis (47). In addition to antioxidant glutathione
synthesis, residual serum activity of GGT may also ac-
count for these observations, as the latter association was
not attributable to any of the tested mediators. Beyond

biomarker research, the application of genome-scale
metabolic modeling revealed the crucial importance of
the further upstream metabolites glycine and serine (48).
In general, these observations align well with our findings;
however, we observed in these associations a strong de-
pendence on insulin sensitivity (i.e., these were mediated
to a great extent by HOMA-IR). Interestingly, among
patients with hepatic steatosis, plasma glycine concen-
trations strongly correlated with hepatic but not periph-
eral insulin resistance (40). Hence, it would be of
particular interest to determinewhether diminished insulin
sensitivity causes (hepatic) oxidative stress or vice versa.

In contrast, the strong positive association of plasma
xanthine with all liver traits not only was unaffected by
HOMA-IR adjustment but also points toward an aug-
mented defense against systemic/hepatic oxidative stress.
Xanthine is an intermediate in purine degradation, ul-
timately resulting in the formation of urate, one of the
most important antioxidants in human blood. The re-
action is catalyzed by xanthine oxidase (XO), and recent
cellular andmouse models (49) showed increased activity
of XO in hepatic steatosis, which is supported by ob-
servational studies (50, 51). The far less-pronounced
association with plasma urate compared with that of
xanthine levels in the current study may be due to the
oxidation of urate in a state of high oxidative stress
accompanying hepatic steatosis. Subsequently, the con-
sistently positive association with xanthine may be a
surrogate for increased XO activity to provide urate as
an antioxidant.

Urinary fingerprint of LFC
The significant associations between LFC and urine

metabolites are of special interest for two reasons: (1)
most of these urine metabolites were not associated with
markers of liver injury, and (2) these associations were
not mediated by total TG, HOMA-IR, fasting glucose, or
hsCRP to a substantial amount. In conclusion, these
relations not only represent novel pathophysiological
insights but also have the potential to complement cur-
rent biomarkers for hepatic steatosis. Some of the me-
tabolites were closely related to processes already
described for plasma metabolites (e.g., increased levels of
BCAA catabolites or lactate as a marker for impaired
glucose metabolism).

Altered phase I and phase II detoxification
Apart from this, several steroid species in urine

showed an inverse association with LFC, in particular,
those secreted by the adrenal cortex (e.g., dehydroepian-
drosterone sulfate or etiocholanolone). Interestingly, this
contrasts to some extent with the positive associations
seen in plasma. Considering that most of the observed
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associations were related to sulfated or glucuronidated
compounds, this may indicate an altered metabolism/
degradation of adrenal-derived steroids. Although the re-
lationship between glucocorticoids and hepatic steatosis
has been frequently described (see the following section),
data on other adrenal-derived hormones are less estab-
lished. The presence of hepatic steatosis was linked with
higher dehydroepiandrosterone sulfate levels among adults
(52) and an altered adrenal steroid profile in urine among
children (53). Diminished activity of responsible sulfo-
transferases in the progressively impaired liver (54) may be
one plausible explanation. In general, the urine profile
associated with LFC points toward a diminished detoxi-
fication capacity of the liver, not only phase II, as presented
previously, but also phase I (e.g., the urinary metabolites
gentisate and 5-hydroxyindoleacetate, inversely associated
with LFC, represent degradation products of tyrosine and
serotonin, respectively).

A molecular signature predictive for
hepatic steatosis

Extensive feature selection revealed a model that
allowed slightly better identification of hepatic steatosis
cases compared with classical clinical measures. Notably,
we designed the classification algorithm to generate a
sparse set of variables comprising complementary in-
formation and hence not necessarily including all top
associated metabolites/clinical features. Although this
improvement may be of limited direct clinical relevance,
the identified molecules may be of particular value for the
discrimination of different subtypes of hepatic steatosis,
as has been shown recently (20).

In addition to known risk factors such as abdominal
obesity, insulin resistance, and already outlined molec-
ular perturbations (glycine), the most consistent pa-
rameter was the unknown urinary compound X-20643,
which was linked to decreased odds for hepatic steatosis.
A putative annotation of the metabolite may be possible
because of its direct neighboring with plasma cortisol in
the derivedGaussian graphical modeling (Fig. 4) (55). On
the basis of its molecular weight (;539.4 Da), this would
fit a conjugation of cortisol with glucuronic acid yielding
the respective glucuronide, indicating diminished deg-
radation of cortisol. Cortisol or more general gluco-
corticoid excess caused either endogenously (Cushing
syndrome) or exogenously was consistently linked with
the development and presence of hepatic steatosis [for
review, see (56)]. Cortisol is thereby assumed to drive
several hallmarks of hepatic steatosis, including increased
lipogenesis and VLDL assembly (56, 57). Of note, no
association between LFC and plasma cortisol levels
became apparent, even with accounting for blood sam-
pling time. In summary, altered cortisol metabolism, in

particular in the liver, was a prominent independent
hallmark of hepatic steatosis in the current study, and
degradation intermediates of cortisol in urine may be a
suitable proxy for prolonged hypercortisolism accom-
panying hepatic steatosis.

Strengths and limitations
The current study involved one of the most compre-

hensive metabolomics approaches in an epidemiological
setting to address the metabolic fingerprint of liver
function. The assessment of LFC using MRI thereby
represents an outstanding feature. However, the absence
of liver biopsies restricted the distinction of progressive
liver diseases and represents a drawback of the present
approach. Although hepatic steatosis was present in
approximately one-third of our study population, the
degree of disease was rather mild. Therefore, we could
only speculate about a transfer of our findings to more
severe states of liver disease. Furthermore, the cross-
sectional character of the study provides only observa-
tional results and restricts functional insights on the
molecular level. This fact also subsumes a possible re-
sidual confounding by obesity in linear regression ana-
lyses, even when accounting for BMI. Despite those
limitations, the sample size is a clear advantage for the
classification assessment because it provides by far more
information about the generalizability of the achieved
results than in tightly controlled experimental settings,
which constitute most research conducted so far with
respect to metabolomics and hepatic steatosis.

Conclusions

The present high-quality metabolomics approach among
a population-based sample characterized by the absence
of diabetes revealed a molecular fingerprint of hepatic
steatosis characterized by complex alterations in lipid
metabolism with lipoprotein particles as a key driver and
augmented defense against oxidative stress, as well as
adverse cortisol signaling. Impaired BCAA catabolism and
accumulation of small, dense LDL particles were strongly
related to diminished insulin sensitivity accompanying
hepatic steatosis. From a clinical perspective, the use of
urine samples to identify (or stratify) subjects with hepatic
steatosis may be of particular interest, as the presented
markers provide information that complements already
established data.
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